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Abstract

This paper presents a maximum entropy ma-
chine translation system using a minimal set
of translation blocks (phrase-pairs). While
recent phrase-based statistical machine trans-
lation (SMT) systems achieve significant im-
provement over the original source-channel sta-
tistical translation models, they 1) use a large
inventory of blocks which have significant over-
lap and 2) limit the use of training to just a
few parameters (on the order of ten). In con-
trast, we show that our proposed minimalist
system (DTM2) achieves equal or better per-
formance by 1) recasting the translation prob-
lem in the traditional statistical modeling ap-
proach using blocks with no overlap and 2) re-
lying on training most system parameters (on
the order of millions or larger). The new model
is a direct translation model (DTM) formu-
lation which allows easy integration of addi-
tional/alternative views of both source and tar-
get sentences such as segmentation for a source
language such as Arabic, part-of-speech of both
source and target, etc. We show improvements
over a state-of-the-art phrase-based decoder in
Arabic-English translation.

1 Introduction

Statistical machine translation takes a source se-
quence, S = [s1 s2 . . . sK ], and generates a target
sequence, T

∗ = [t1 t2 . . . tL], by finding the most
likely translation given by:

T
∗ = argmax

T

p(T |S).

1.1 Block selection

Recent statistical machine translation (SMT) al-
gorithms generate such a translation by incorpo-
rating an inventory of bilingual phrases (Och and
Ney, 2000). A m-n phrase-pair, or block, is a se-
quence of m source words paired with a sequence
of n target words. The inventory of blocks in cur-
rent systems is highly redundant. We illustrate the
redundancy using the example in Table 1 which

lljnp

Almrkzyp

llHzb

Al$ywEy

AlSyny

the
Politburo
of
the
Central
Committee
of
the
Chinese
Communist
Party

Almktb

AlsyAsy

Figure 1: Example of Arabic snipet and alignment
to its English translation.

shows a set of phrases that cover the two-word
Arabic fragment “lljnp Almrkzyp” whose align-
ment and translation is shown in Figure 1. One
notices the significant overlap between the vari-
ous blocks including the fact the output target se-
quence “of the central committee” can be pro-
duced in at least two different ways: 1) as 2-4 block
“lljnp Almrkzyp | of the central committee” cov-
ering the two Arabic words, or 2) by using the 1-
3 block “Almrkzyp | of the central” followed by
covering the first Arabic word with the 1-1 block
“lljnp | committee”. In addition, if one adds one
more word to the Arabic fragment in the third posi-
tion such as the block “AlSyny | chinese” the over-
lap increases significantly and more alternate possi-
bilities are available to produce an output such as
the “of the central chinese committee.”

In this work, we propose to only use 1-n blocks and
avoid completely the redundancy obtained by the use
of m-n blocks for m > 1 in current phrase-based sys-
tems. We discuss later how by defining appropriate
features in the translation model, we capture the im-
portant dependencies required for producing n-long
fragments for an m-word input sequence including
the reordering required to produce more fluent out-
put. So in Table 1 only the blocks corresponding to
a single Arabic word are in the block inventory. To
differentiate this work from previous approaches in
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lljnp Almrkzyp

committee central

of the commission the central

commission of the central

of the committee of central

the committee and the central

of the commission on and central

the commission , central

committee of ’s central

. . . . . .

of the central committee(11)

of the central committee of (11)

the central committee of (8)

central committee(7)

committee central (2)

central committee , (2)

. . .

Table 1: Example Arabic-English blocks showing
possible 1-n and 2-n blocks ranked by frequency.
Block count is given in () for 2-n blocks.

direct modeling for machine translation, we call our
current approach DTM2 (Direct Translation Model
2).

1.2 Statistical modeling for translation

Earlier work in statistical machine translation
(Brown et al., 1993) is based on the “noisy-channel”
formulation where

T
∗ = arg max

T

p(T |S) = argmax
T

p(T )p(S|T ) (1)

where the target language model p(T ) is further de-
composed as

p(T ) ∝
∏

i

p(ti|ti−1, . . . , ti−k+1)

where k is the order of the language model and the
translation model p(S|T ) has been modeled by a
sequence of five models with increasing complexity
(Brown et al., 1993). The parameters of each of the
two components are estimated using Maximum Like-
lihood Estimation (MLE). The LM is estimated by
counting n-grams and using smoothing techniques.
The translation model is estimated via the EM algo-
rithm or approximations that are bootstrapped from
the previous model in the sequence as introduced in
(Brown et al., 1993). As is well known, improved
results are achieved by modifying the Bayes factor-
ization in Equation 1 above by weighing each distri-
bution differently as in:

p(T |S) ∝ pα(T )p1−α(S|T ) (2)

This is the simplest MaxEnt1 model that uses two
feature functions. The parameter α is tuned on a
development set (usually to improve an error met-
ric instead of MLE). This model is a special case
of the Direct Translation Model proposed in (Pap-
ineni et al., 1997; Papineni et al., 1998) for language
understanding; (Foster, 2000) demostrated perplex-
ity reductions by using direct models; and (Och and
Ney, 2002) employed it very successfully for language
translation by using about ten feature functions:

p(T |S) =
1

Z
exp

∑

i

λiφi(S, T )

Many of the feature functions used for translation are
MLE models (or smoothed variants). For example,
if one uses φ1 = log(p(T )) and φ2 = log(p(S|T )) we
get the model described in Equation 2. Most phrase-
based systems, including the baseline decoder used
in this work use feature functions:

• a target word n-gram model (e.g., n = 5),

• a target part-of-speech n-gram model (n ≥ 5),

• various translation models such as a block in-
ventory with the following three varieties: 1) the
unigram block count, 2) a model 1 score p(si|ti)
on the phrase-pair, and 3)a model 1 score for
the other direction p(ti|si),

• a target word count penalty feature |T |,

• a phrase count feature,

• a distortion model (Al-Onaizan and Papineni,
2006).

The weight vector λ is estimated by tuning on a
rather small (as compared to the training set used to
define the feature functions) development set using
the BLEU metric (or other translation error met-
rics). Unlike MaxEnt training, the method (Och,
2003) used for estimating the weight vector for BLEU
maximization are not computationally scalable for a
large number of feature functions.

2 Related Work

Most recent state-of-the-art machine translation de-
coders have the following aspects that we improve
upon in this work: 1) block style, and 2) model pa-
rameterization and parameter estimation. We dis-
cuss each item next.

1The subfields of log-linear models, exponential fam-
ily, and MaxEnt describe the equivalent techniques from
different perspectives.

58



2.1 Block style

In order to extract phrases from alignments available
in one or both directions, most SMT approaches use
a heuristic such as union, intersection, inverse pro-

jection constraint, etc. As discussed earlier, these
approaches result in a large overlap between the ex-
tracted blocks (longer blocks overlap with all the
shorter subcomponents blocks). Also, slightly re-
stating the advantages of phrase-pairs identified in
(Quirk and Menezes, 2006), these blocks are effec-
tive at capturing context including the encoding of
non-compositional phrase pairs, and capturing local
reordering, but they lack variables (e.g. embedding
between ne . . . pas in French), have sparsity prob-
lems, and lack a strategy for global reordering. More
recently, (Chiang, 2005) extended phrase-pairs (or
blocks) to hierarchical phrase-pairs where a grammar
with a single non-terminal allows the embedding of
phrases-pairs, to allow for arbitrary embedding and
capture global reordering though this approach still
has the high overlap problem. However, in (Quirk
and Menezes, 2006), the authors investigate mini-
mum translation units (MTU) which is a refinement
over a similar approach by (Banchs et al., 2005)
to eliminate the overlap issue. The MTU approach
picks all the minimal blocks subject to the condition
that no word alignment link crosses distinct blocks.
They do not have the notion of a block with a vari-
able (a special case of the hierarchical phrase-pairs)
that we employ in this work. They also have a weak-
ness in the parameter estimation method; they rely
on an n-gram language model on blocks which inher-
ently requires a large bilingual training data set.

2.2 Estimating Model Parameters

Most recent SMT systems use blocks (i.e. phrase-
pairs) with a few real valued “informative” features
which can be viewed as an indicator of how proba-
ble the current translation is. As discussed in Sec-
tion 1.2, these features are typically MLE models
(e.g. block translation, Model 1, language model,
etc.) whose scores are log-linearly combined using
a weight vector, λf where f is a particular feature.
The λf are trained using a held-out corpus using
maximum BLEU training (Och, 2003). This method
is only practical for a small number of features; typ-
ically, the number of features is on the order of 10 to
20.

Recently, there have been several discriminative
approaches at training large parameter sets includ-
ing (Tillmann and Zhang, 2006) and (Liang et al.,
2006). In (Tillmann and Zhang, 2006) the model
is optimized to produce a block orientation and the
target sentence is used only for computing a sentence
level BLEU. (Liang et al., 2006) demonstrates a dis-

criminatively trained system for machine translation
that has the following characteristics: 1) requires a
varying update strategy (local vs. bold) depending
on whether the reference sentence is “reachable” or
not, 2) uses sentence level BLEU as a criterion for se-
lecting which output to update towards, and 3) only
trains on limited length (5-15 words) sentences.

So both methods fundamentally rely on a prior
decoder to produce an “N-best” list that is used to
find a target (using max BLEU) for the training al-
gorithm. The methods to produce an “N-best” list
tend to be not very effective since most alternative
translations are minor differences from the highest
scoring translation and do not typically include the
reference translation (particularly when the system
makes a large error).

In this paper, the algorithm trains on all sentences
in the test-specific corpus and crucially, the algo-
rithm directly uses the target translation to update
the model parameters. This latter point is a critical
difference that contrasts to the major weakness of the
work of (Liang et al., 2006) which uses a top-N list of
translations to select the maximum BLEU sentence
as a target for training (so called local update).

3 A Categorization of Block Styles

In (Brown et al., 1993), multi-word “cepts” (which
are realized in our block concept) are discussed and
the authors state that when a target sequence is
sufficiently different from a word by word transla-
tion, only then should the target sequence should
be promoted to a cept. This is in direct opposition
to phrase-based decoders which utilize all possible
phrase-pairs and limit the number of phrases only
due to practical considerations. Following the per-
spective of (Brown et al., 1993), a minimal set of
phrase blocks with lengths (m, n) where either m or
n must be greater than zero results in the following
types of blocks:

1. n = 0, source word producing nothing in the
target language (deletion block),

2. m = 0, spontaneous target word (insertion
block),

3. m = 1 and n ≥ 1, a source word producing n

target words including the possibility of a vari-
able (denoted by X) which is to be filled with
other blocks from the sentence (the latter case
called a discontiguous block)

4. m ≥ 1 and n = 1, a sequence of source words
producing a single target words including the
possibility of a variable on the source side (as in
the French ne...pas translating into not, called
multi-word singletons) in the source sequence
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5. m > 1 and n > 1, a non-compositional phrase
translation

In this paper, we restrict the blocks to Types 1 and 3.
From the example in Figure 1, the following blocks
are extracted:

• lljnp ⇒ of the X Committee

• Almrkzyp ⇒ Central

• llHzb ⇒ of the X Party

• Al$ywEy ⇒ Communist

• AlSyny ⇒ Chinese.

These blocks can now be considered more “general”
and can be used to generate more phrases compared
to the blocks shown in Table 1. These blocks when
utilized independently of the remainder of the model
perform very poorly as all the advantages of blocks
are absent. These advantages are obtained using the
features to be described below. Also, we store with a
block additional information such as: (a) alignment
information, and (b) source and target analysis. The
target analysis includes part of speech and for each
target string a list of part of speech sequences are
stored along with their corpus frequencies.

The first alignment shown in Figure 1 is an exam-
ple of a Type 5 non-compositional block; although
this is not currently addressed by the decoder, we
plan to handle such blocks in the future.

4 Algorithm

A classification problem can be considered as a map-
ping from a set of histories, S, into a set of futures,
T . Traditional classification problems deal with a
small finite set of futures usually no more than a few
thousands of classes.

Machine translation can be cast into the same
framework with a much larger future space. In con-
trast to the current global models, we decompose the
process into a sequence of steps. The process begins
at the left edge of a sentence and for practical rea-
sons considers a window of source words that could
be translated. The first action is to jump a distance,
j to a source position and to produce a target string,
t corresponding to the source word at that position.
The process then marks the source position as hav-
ing been visited and iterates till all source words have
been visited. The only wrinkle in this relatively sim-
ple process is the presence of a variable in the tar-
get sequence. In the case of a variable, the source
position is marked as having been partially visited.
When a partially visited source position is visited
again, the target string to the right of the variable is

output and the process is iterated. The distortion or
jump from the previously translated source word, j

in training can vary widely due to automatic sentence
alignment that is used to create the parallel corpus.
To limit the sparseness created by these longer jumps
we cap the jump to a window of source words (-5 to 5
words) around the last translated source word; jumps
outside the window are treated as being to the edge
of the window.

We combine the above translation model with a
n-gram language model as in

p(T, j|S) =
∏

i

p(ti, j|si)

≈
∏

i

λLMp(ti|ti−1, . . . , ti−n)+

λTMp(ti, j|si)

This mixing allows the use of language model built
from a very large monolingual corpus to be used with
a translation model which is built from a smaller
parallel corpus. In the rest of this paper, we are
concerned only with the translation model.

The minimum requirements for the algorithm are
(a) parallel corpus of source and target languages
and (b) word-alignments. While one can use the
EM algorithm to train this hidden alignment model
(the jump step), we use Viterbi training, i.e. we use
the most likely alignment between target and source
words in the training corpus to estimate this model.
We assume that each sentence pair in the training
corpus is word-aligned (e.g. using a MaxEnt aligner
(Ittycheriah and Roukos, 2005) or an HMM aligner
(Ge, 2004)). The algorithm performs the following
steps in order to train the maximum entropy model:
(a) block extraction, (b) feature extraction, and (c)
parameter estimation. Each of the first two steps
requires a pass over the training data and param-
eter estimation requires typically 5-10 passes over
the data. (Della Pietra et al., 1995) documents the
Improved Iterative Scaling (IIS) algorithm for train-
ing maximum entropy models. When the system is
restricted to 1-N type blocks, the future space in-
cludes all the source word positions that are within
the skip window and all their corresponding blocks.
The training algorithm at the parameter estimation
step can be concisely stated as:

1. For each sentence pair in the parallel corpus,
walk the alignment in source word order.

2. At each source word, the alignment identifies the
“true” block.

3. Form a window of source words and allow all
blocks at source words to generate at this gen-
eration point.
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4. Apply the features relevant to each block and
compute the probability of each block.

5. Form the MaxEnt polynomials(Della Pietra et
al., 1995) and solve to find the update for each
feature.

We will next discuss the prior distribution used in
the maximum entropy model, the block extraction
method and the feature generation method and dis-
cuss differences with a standard phrase based de-
coder.

4.1 Prior Distribution

Maximum entropy models are of the form,

p(t, j|s) =
p0(t, j|s)

Z
exp

∑

i

λiφi(t, j, s)

where p0 is a prior distribution, Z is a normalizing
term, and φi(t, j, s) are the features of the model.
The prior distribution can contain any information
we know about our future and in this work we utilize
the normalized phrase count as our prior. Strictly,
the prior has to be uniform on the set of futures to
be a “maximum” entropy algorithm and choices of
other priors result in minimum divergence models.
We refer to both as a maximum entropy models.

The practical benefit of using normalized phrase
count as the prior distribution is for rare transla-
tions of a common source words. Such a translation
block may not have a feature due to restrictions in
the number of features in the model. Utilizing the
normalized phrase count prior, the model is still able
to penalize such translations. In the best case, a fea-
ture is present in the model and the model has the
freedom to either boost the translation probability
or to further reduce the prior.

4.2 Block Extraction

Similar to phrase decoders, a single pass is made
through the parallel corpus and for each source word,
the target sequence derived from the alignments
is extracted. The ‘Inverse Projection Constraint’,
which requires that the target sequence be aligned
only to the source word or phrase in question, is then
checked to ensure that the phrase pair is consistent.
A slight relaxation is made to the traditional target
sequence in that variables are allowed if the length of
their span is 3 words or less. The length restriction is
imposed to reduce the effect of alignment errors. An
example of blocks extracted for the romanized ara-
bic words ‘lljnp’ and ‘Almrkzyp’ are shown Figure 2,
where on the left side are shown the unsegmented
Arabic words, the segmented Arabic stream and the
corresponding Arabic part-of-speech. On the right,

the target sequences are shown with the most fre-
quently occuring part-of-speech and the corpus count
of this block.

The extracted blocks are pruned in order to min-
imize alignment problems as well as optimize the
speed during decoding. Blocks are pruned if their
corpus count is a factor of 30 times smaller than the
most frequent target sequence for the same source
word. This results in about 1.6 million blocks from
an original size of 3.2 million blocks (note this is
much smaller than the 50 million blocks or so that
are derived in current phrase-based systems).

4.3 Features

The features investigated in this work are binary
questions about the lexical context both in the source
and target streams. These features can be classi-
fied into the following categories: (a) block internal
features, and (b) block context features. Features
can be designed that are specific to a block. Such
features are modeling the unigram phrase count of
the block, which is information already present in
the prior distribution as discussed above. Features
which are less specific are tied across many transla-
tions of the word. For example in Figure 2, the pri-
mary translation for ‘lljnp’ is ‘committee’ and occurs
920 times across all blocks extracted from the corpus;
the final block shown which is ‘of the X committee’
occurs only 37 times but employs a lexical feature
‘lljnp committee’ which fires 920 times.

4.3.1 Lexical Features

Lexical features are block internal features which
examine a source word, a target word and the jump
from the previously translated source word. As dis-
cussed above, these are shared across blocks.

4.3.2 Lexical Context Features

Context features encode the context surrounding
a block by examining the previous and next source
word and the previous two target words. Unlike a
traditional phrase pair, which encodes all the infor-
mation lexically, in this approach we define in Ta-
ble 2, individual feature types to examine a por-
tion of the context. One or more of these features
may apply in each instance where a block is relevant.
The previous source word is defined as the previously
translated source word, but the next source word is
always the next word in the source string. At train-
ing time, the previously translated source word is
found by finding the previous target word and utiliz-
ing the alignment to find the previous source word.
If the previous target word is unaligned, no context
feature is applied.
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committee/NN (613)
of the commission/IN DT NN (169)
the committee/DT NN (136)
commission/NN (135)
of the committee/IN DT NN (134)
the commission/DT NN (106)
of the HOLE committee/IN DT -1 NN(37)

central/NNP (731)
the central/DT JJ (504)
of the central/IN DT NNP(64)
the cia/DT NNP (58)

Almrkzyp

Al# mrkzy +p

DET ADJ NSUFF_FEM_SG

lljnp

l# ljn +p

PREP NOUN NSUFF_FEM_SG

Figure 2: Extracted blocks for ‘lljnp’ and ‘Almrkzyp’.

Feature Name Feature variables
SRC LEFT source left, source word,

target word
SRC RIGHT source right, source word,

target word
SRC TGT LEFT source left, target left,

source word, target word
SRC TGT LEFT 2 source left, target left,

target left 2, source word,
target word

Table 2: Context Feature Types

4.3.3 Arabic Segmentation Features

An Arabic segmenter produces morphemes; in
Arabic, prefixes and suffixes are used as prepositions,
pronouns, gender and case markers. This produces a
segmentation view of the arabic source words (Lee et
al., 2003). The features used in the model are formed
from the Cartesian product of all segmentation to-
kens with the English target sequence produced by
this source word or words. However, prefixes and
suffixes which are specific in translation are limited
to their English translations. For example the pre-
fix ‘Al#’ is only allowed to participate in a feature
with the English word ‘the’ and similarly ‘the’ is not
allowed to participate in a feature with the stem of
the Arabic word. These restrictions limit the num-
ber of features and also reduce the over fitting by the
model.

4.3.4 Part-of-speech Features

Part-of-speech taggers were run on each language:
the English part of speech tagger is a MaxEnt tag-
ger built on the WSJ corpus and on the WSJ test
set achieves an accuracy of 96.8%; the Arabic part
of speech tagger is a similar tagger built on the Ara-
bic tree bank and achieves an accuracy of 95.7% on
automatically segmented data. The part of speech
feature type examines the source and target as well
as the previous target and the corresponding previ-
ous source part of speech. A separate feature type
examines the part of speech of the next source word

when the target sequence has a variable.

4.3.5 Coverage Features

These features examine the coverage status of the
source word to the left and the source word to the
right. During training, the coverage is determined
by examining the alignments; the source word to the
left is uncovered if its target sequence is to the right
of the current target sequence. Since the model em-
ploys binary questions and predominantly the source
word to the left is already covered and the right
source word is uncovered, these features fire only if
the left is open or if the right is closed in order to
minimize the number of features in the model.

5 Translation Decoder

A beam search decoder similar to phrase-based sys-
tems (Tillmann and Ney, 2003) is used to translate
the Arabic sentence into English. These decoders
have two parameters that control their search strat-
egy: (a) the skip length (how many positions are al-
lowed to be untranslated) and (b) the window width,
which controls how many words are allowed to be
considered for translation. Since the majority of the
blocks employed in this work do not encode local re-
ordering explicitly, the current DTM2 decoder uses
a large skip (4 source words for Arabic) and tries
all possible reorderings. The primary difference be-
tween a DTM2 decoder and standard phrase based
decoders is that the maximum entropy model pro-
vides a cost estimate of producing this translation
using the features described in previous sections. An-
other difference is that the DTM2 decoder handles
blocks with variables. When such a block is pro-
posed, the initial target sequence is first output and
the source word position is marked as being partially
visited and an index into which segment was gener-
ated is kept for completing the visit at a later time.
Subsequent extensions of this path can either com-
plete this visit or visit other source words. On a
search path, we make a further assumption that only
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one source position can be in a partially visited state
at any point. This greatly reduces the search task
and suffices to handle the type of blocks encountered
in Arabic to English translation.

6 Experiments

The UN parallel corpus and the LDC news corpora
released as training data for the NIST MT06 eval-
uation are used for all evaluations presented in this
paper. A variety of test corpora are now available
and we use MT03 as development test data, and
test results are presented on MT05. Results obtained
on MT06 are from a blind evaluation. For Arabic-
English, the NIST MT06 training data contains 3.7M
sentence pairs from the UN from 1993-2002 and 100K
sentences pairs from news sources. This represents
the universe of training data, but for each test set
we sample this corpus to train efficiently while also
observing slight gains in performance. The training
universe is time sorted and the most recent corpora
are sampled first. Then for a given test set, we obtain
the first 20 instances of n-grams from the test that
occur in the training universe and the resulting sam-
pled sentences then form the training sample. The
contribution of the sampling technique is to produce
a smaller training corpus which reduces the compu-
tational load; however, the sampling of the universe
of sentences can be viewed as test set domain adapta-
tion which improves performance and is not strictly
done due to computational limitations2. The 5-gram
language model is trained from the English Gigaword
corpus and the English portion of the parallel corpus
used in the translation model training.

The baseline decoder is a phrase-based decoder
that employs n-m blocks and uses the same test set
specific training corpus described above.

6.1 Feature Type Experiments

There are 15 individual feature types utilized in the
system, but in order to be brief we present the re-
sults by feature groups (see Table 3): (a) lexical, (b)
lexical context, (c) segmentation, (d) part-of-speech,
and (e) coverage features. The results show im-
provements with the addition of each feature set, but
the part-of-speech features and coverage features are
not statistically significant improvements. The more
complex features based on Arabic segmentation and
English part-of-speech yield a small improvement of
0.5 BLEU points over the model with only lexical
context.

2Recent results indicate that test set adaptation by
test set sampling of the training corpus achieves a cased
Bleu of 53.26 on MT03 whereas a general system trained
on all data achieves only 51.02

Verb Placement 3
Missing Word 5
Extra Word 5
Word Choice 26
Word Order 3
Other error 1
Total 43

Table 4: Errors on last 25 sentences of MT-03.

7 Error Analysis and Discussion

We analyzed the errors in the last 25 sentences of the
MT-03 development data using the broad categories
shown in Table 4. These error types are not indepen-
dent of each other; indeed, incorrect verb placement
is just a special case of the word order error type
but for this error analysis for each error we take the
first category available in this list. Word choice er-
rors can be a result of (a) rare words with few, or
incorrect, or no translation blocks (4 times) or (b)
model weakness3 (22 times). In order to address the
model weakness type of errors, we plan on investigat-
ing feature selection using a language model prior.
As an example, consider an arabic word which pro-
duces both ‘the’ (due to alignment errors) and ‘the
conduct’. An n-gram LM has very low cost for the
word ‘the’ but a rather high cost for content words
such as ‘conduct’. Incorporating the LM model as a
prior should help the maximum entropy model focus
its weighting on the content word to overcome the
prior information.

8 Conclusion and Future Work

We have presented a complete direct translation
model with training of millions of parameters based
on a set of minimalist blocks and demonstrated the
ability to retain good performance relative to phrase
based decoders. Tied features minimize the num-
ber of parameters and help avoid the sparsity prob-
lems associated with phrase based decoders. Uti-
lizing language analysis of both the source and tar-
get languages adds 0.8 BLEU points on MT-03, and
0.4 BLEU points on MT-05. The DTM2 decoder
achieved a 1.7 BLEU point improvement over the
phrase based decoder on MT-06. In this work, we
have restricted the block types to only single source
word blocks. Many city names and dates in Ara-
bic can not be handled by such blocks and in future
work we intend to investigate the utilization of more
complex blocks as necessary. Also, the DTM2 de-
coder utilized the LM component independently of

3The word occurred with the correct translation in
the phrase library with a count more than 10 and yet the
system used an incorrect translation.
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Feature Types # of feats MT-03 MT-05 MT-06
(MT03)

Training Size
Num. of Sentences 197K 267K 279K
Phrase-based Decoder 51.20 49.06 36.92
DTM2 Decoder
Lex Feats a 439,582 49.70 48.37
+Lex Context b 2,455,394 50.45 49.61
+Seg Feats c 2,563,338 50.97 49.96
+POS Feats d 2,608,352 51.27 49.93
+Cov Feats e 2,783,813 51.19 50.00 38.61

Table 3: Bleu scores on MT03-MT06.

the translation model; however, in future work we
intend to investigate feature selection using the lan-
guage model as a prior which should result in much
smaller systems.
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