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Abstract

We propose three new features for MT
evaluation: source-sentence constrained
n-gram precision, source-sentence re-
ordering metrics, and discriminative un-
igram precision, as well as a method of
learning linear feature weights to directly
maximize correlation with human judg-
ments. By aligning both the hypothe-
sis and the reference with the source-
language sentence, we achieve better cor-
relation with human judgments than pre-
viously proposed metrics. We further
improve performance by combining indi-
vidual evaluation metrics using maximum
correlation training, which is shown to be
better than the classification-based frame-
work.

1 Introduction

Evaluation has long been a stumbling block in the
development of machine translation systems, due to
the simple fact that there are many correct trans-
lations for a given sentence. The most commonly
used metric, BLEU, correlates well over large test
sets with human judgments (Papineni et al., 2002),
but does not perform as well on sentence-level eval-
uation (Blatz et al., 2003). Later approaches to im-
prove sentence-level evaluation performance can be
summarized as falling into four types:

shown to have better fluency evaluation per-
formance than metrics based on n-grams such
BLEU and NIST (Doddington, 2002).

Metrics based on syntactic similarities such as
the head-word chain metric (HWCM) (Liu and
Gildea, 2005). Such metrics try to improve flu-
ency evaluation performance for MT, but they
heavily depend on automatic parsers, which are
designed for well-formed sentences and cannot
generate robust parse trees for MT outputs.

Metrics based on word alignment between MT
outputs and the references (Banerjee and Lavie,
2005). Such metrics do well in adequacy evalu-
ation, but are not as good in fluency evaluation,
because of their unigram basis (Liu and Gildea,
2006).

Combination of metrics based on machine
learning. Kulesza and Shieber (2004) used
SVMs to combine several metrics. Their
method is based on the assumption that
higher classification accuracy in discriminat-
ing human- from machine-generated transla-
tions will yield closer correlation with human
judgment. This assumption may not always
hold, particularly when classification is diffi-
cult. Lita et al. (2005) proposed a log-linear
model to combine features, but they only did
preliminary experiments based on 2 features.

Following the track of previous work, to improve

evaluation performance, one could either propose

e Metrics based on common loose sequences aew metrics, or find more effective ways to combine
MT outputs and references (Lin and Och, 2004the metrics. We explore both approaches. Much
Liu and Gildea, 2006). Such metrics werework has been done on computing MT scores based
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on the pair of MT output/reference, and we aim tdRate Training (Och, 2003) in the MT community,
investigate whether some other information coulénd is an essential component in building the state-
be used in the MT evaluation, such as source senf-art MT systems. It would seem logical to apply
tences. We propose two types of source-sentensamilar methods to MT evaluation. What is more,
related features as well as a feature based on partiBximum Correlation Training (MCT) enables us
speech. The three new types of feature can be sute-train the weights based on human fluency judg-
marized as follows: ments and adequacy judgments respectively, and
] . thus makes it possible to make a fluency-oriented or
e Source-sentence constrained n-gram pPrecisiofyeqyacy-oriented metric. It surpasses previous MT
Overlapping n-grams between an MT hypothe,etrics approach, where a a single metric evaluates
sisand its refer(_ences do not nec_essanly indicatg, i, fluency and adequacy. The rest of the paper is
correct translation segments, since they coulfganized as follows: Section 2 gives a brief recap of
correspond to different parts of the source Sers_gram precision-based metrics and introduces our
tence. Thus our constrained n-gram precisiog, ae extensions to them; Section 3 introduces MCT
counts only overlapping n-grams in MT hy-¢. \T evaluation; Section 4 describes the experi-

pothesis and reference which are aligned t0 thg,e o) results, and Section 5 gives our conclusion.
same words in the source sentences.

: 2 ThreeNew Featuresfor MT Evaluation
e Source-sentence reordering agreement. Wit

the alignment information, we can compare théince our source-sentence constrained n-gram preci-
reorderings of the source sentence in the MBion and discriminative unigram precision are both
hypothesis and in its references. Such compaderived from the normal n-gram precision, it is
ison only considers the aligned positions of thevorth describing the original n-gram precision met-
source words in MT hypothesis and referencesic, BLEU (Papineni et al., 2002). For every MT
and thus is oriented towards evaluating the serypothesis, BLEU computes the fraction of n-grams
tence structure. which also appear in the reference sentences, as well

S ) o ~as a brevity penalty. The formula for computing
e Discriminative unigram precision. We divide g| £ is shown below:

the normal n-gram precision into many sub-

precisions according to their part of speech N

(POS). The division gives us flexibility to train gy = B2 3 2.0 Lingramec COUntetip(ngram)

the weights of each sub-precision in frame- N 7= 20 Xngramec Countlngram’)

works such as SVM and Maximum Correla-

tion Training, which will be introduced later. where C' denotes the set of MT hypotheses.

The motivation behind such differentiation isCount.;,(ngram) denotes the clipped number of

that different sub-precisions should have difn-grams in the candidates which also appear in the

ferent importance in MT evaluation, e.g., sub+eferences. BP in the above formula denotes the

precision of nouns, verbs, and adjectives shoulldrevity penalty, which is set to 1 if the accumulated

be important for evaluating adequacy, andength of the MT outputs is longer than the arith-

sub-precision in determiners and conjunctionghetic mean of the accumulated length of the refer-

should mean more in evaluating fluency. ences, and otherwise is set to the ratio of the two.

o o ~ For sentence-level evaluation with BLEU, we com-

Alo'ng the Q|rect|orl _of fea_ture combination, sinceéyyte the score based on each pair of MT hypothe-
indirect weight training using SVMs, based on rexis/reference. Later approaches, as described in Sec-
ducing classification error, can_not alway_s yield 909%on 1, use different ways to manipulate the morpho-
performance, we train the weights by directly optiqogical similarity between the MT hypothesis and its
mizing the evaluation performance, i.e., maximizingeferences. Most of them, except NIST, consider the
the correlation with the human judgment. This typgyords in MT hypothesis as the same, i.e., as long as
of direct optimization is known as Minimum ErTor e words in MT hypothesis appear in the references,
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they make no difference to the metrie®lIST com-  for @l n-gramsw;, ..., w11 in MT hypothesis
putes the n-grams weights as the logarithm of the ra- do

tio of the n-gram frequency and its one word lower maz_val = 0;

n-gram frequency. From our experiments, NIST is  for all reference sentencels

not generally better than BLEU, and the reason, we for all n-gramsr, ..., rj1n—1 in current ref-
conjecture, is that it differentiates the n-grams too erence sentenao
much and the frequency estimated upon the evalua- val=0;
tion corpus is not always reliable. In this section we for k=0; k< n-1; k ++do
will describe two other strategies for differentiating if w1y, equalsr;,p AND MTalign;
the n-grams, one of which uses the alignments with equalskREFalign; then
the source sentence as a further constraint, while the val += %?
other differentiates the n-gram precisions according if val > mazx_val then
to POS. mazx_val = val;
hit_count +=max _val;
2.1 Source-sentence Constrained N-gram return MThy}giﬁZZ%eng — X length_penalty;

Precision
The quality of an MT sentence should be indeperf-i9ureé 1 Algorithm for Computing Source-
dent of the source sentence given the reference trarf&nténce Constrained n-gram Precision
lation, but considering that current metrics are all
based on shallow morphological similarity of themetric: only select the words which are aligned to
MT outputs and the reference, without really underthe same source words. Now the question comes
standing the meaning in both sides, the source sefyhow to find the alignment of source sentence and
tences could have some useful information in difMT hypothesis/references, since the evaluation data
ferentiating the MT outputs. Consider the Chineseset usually does not contain alignment information.

English translation example below: Our approach uses GIZA+#+o construct the many-
Source: wo bu neng zhe me zuo to-one alignments between source sentences and the
Hypothesis: | must hardly not do this MT hypothesis/references respectivlyGIZA++
Reference: | must not do this could generate many-to-one alignments either from

Itis clear that the wordot in the MT output can-  gorce sentence to the MT hypothesis, in which case
_not co-exist Wlth the wordhardly while maintain- every word in MT hypothesis is aligned to a set
ing the meaning of the source sentence. None @k (or none) words in the source sentence, or from
the metrics mentioned above can preveat from  {he reverse direction, in which case every word in
being counted in the evaluation, due to the S|mpl_ﬁ/|-|- hypothesis is aligned to exactly one word (or
reason that they only compute shallow morphologingne) word in the source sentence. In either case,
cal similarity. Then how could the source SentencﬁsingMTaligni and RE Falign; to denote the po-
help in the example? If we reveal the alignmentitions of the words in the source sentences which
of the source sentence with both the reference ange aligned to a word in the MT hypothesis and a
the MT output, the Chinese worbli neng would  \yo(q in the reference respectively, the algorithm for
be aligned tomust not in the reference andwust  computing source-sentence constrained n-gram pre-
hardly in the MT output respgctlvely, leaving thecision of lengthn is described in Figure 1.

wordnot in the MT output not aligned to any word in  gjnce source-sentence constrained n-gram preci-

the source sentence. Therefore, if we can someh(g%n (SSCN) is a precision-based metric, the vari-
find the alignments between the source sentenceand

) 2 s avai
the reference/MT output, we could be smarter in sq{ttplﬁm%g ﬁ"gﬁ%’;gﬁ .~

lecting the overlapping words to be counted in the “sy;ore refined alignments could be got for source-hypothesis
T from the MT system, and for source-references by using manual
roof-reading after the automatic alignment. Doing so, how-
ver, requires the MT system’s cooperation and some costly hu-
man labor.

YIn metrics such as METEOR, ROUGE, SIA (Liu and
Gildea, 2006), the positions of words do make difference, b
it has nothing to do with the word itself.
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able length_penalty is used to avoid assigning a for all word pairw;, w; in the source sentence
short MT hypothesis a high score, and is computed Such that < j do

in the same way as BLEU. Note that in the algo-  for all reference sentences do

rithm for computing the precision of n-grams longer it (SreMT; == SreMTj  AND
than one word, not all words in the n-grams should SrcRefr; == SrcRefr;) OR
satisfy the source-sentence constraint. The reason is ((SreMT; — SrcMTj) x (SrcRefri —
that the high order n-grams are already very sparse SrcRef;) > 0) then

in the sentence-level evaluation. To differentiate the Czoxfigfnj + break;

SSCNs based on the source-to-MT/Ref (many-to- "&UM 5Ky

one) alignments and the MT/Ref-to-source (many-_. o _ o
to-one) alignments, we use SSCN1 and SSCN2 tgigure 2: Compute Pairwise Reordering Similarity

denote them respectively. Naturally, we could com- for all word pairw;,w; in the source sentence,
bine the constraint in SSCN1 and SSCN2 by either gych that < j do

taking their union (the combined constrained is sat- o _ ,

isfied if either one is satisfied) or intersecting them ¥ igg%ﬁ +;STCMTJ < Othen

(the combined constrained is satisfied if both con- gt yrp_2xcount .

straints are satisfied). We use SS@QNind SSCN N> (N=1)

to denote the SSCN based on unioned constraintsgure 3: Compute Source Sentence Monotonic Re-
and intersected constraints respectively. We coulgrdering Ratio

also apply the stochastic word mapping proposed in

SIA (Liu and Gildea, 2006) to replace the hard word i
matching in Figure 1, and the corresponding metOurce sentence. We know that most of the time,
rics are denoted as pSSCN1, pSSCN2, pSSCN the alignment of the source sentence and the MT hy-

PSSCNi, with the suffixed number denoting differ- pothesis is monotonic. This idea leads to the metric
ent cons’traints of monotonic pairwise ratio (MPR), which computes

the fraction of the source word pairs whose aligned
2.2 MetricsBased on Source Word Reordering  positions in the MT hypothesis are of the same order.

Most previous MT metrics concentrate on the colt IS described in Figure 3.

occurrence of the MT hypothesis words in the ref, 5 Discriminative Unigram Precision Based
erences. Our metrics based on source sentence re- on POS

orderings, on the contrary, do not take words identi-

ties into account, but rather compute how similarlyThe Discriminative Unigram Precision Based on

the source words are reordered in the MT output anPOS (DUPP) decomposes the normal unigram pre-

the references. For simplicity, we only consider thé;ggn_l'_ﬂto rlna”}’hsu'?'%fec's!gnz _aclgprdlng4t0 their
pairwise reordering similarity. That s, for the source - The algorithm Is described In Figure 4.
word pairw; andw;, if their aligned positions in the

These sub-precisions by themselves carry the
MT hypothesis and a reference are in the same ordgfMme info_rmation as standard gnigram precision, but
we call it a consistent word pair. Our pairwise re'€Y Provide us the opportunity to make a better
ordering similarity (PRS) metric computes the frac—cc_)mbmed me_trlc than the normal unigram precision
tion of the consistent word pairs in the source senith MCT, which will be introduced in next section.
tence. Figure 2 gives the formal description of PRS.

SreMT; andSrcRefy ; denote the aligned position  for @l unigramsin the MT hypothesisio

of source wordy; in the MT hypothesis and theth I sis found in any of the referenceben

reference respectively, andl denotes the length of countpos(s) +=1

the source sentence. Precision, = p g e
Another criterion for evaluating the reordering of Vo € POS

the source sentence in the MT hypothesis is how, . _
well it maintains the original word order in the Figure 4: Compute DUPP for N-gram with length n
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Such division could in theory be generalized to worlcan be formulated as:
with higher order n-grams, but doing so would make
the n-grams in each POS set much more sparse. The ~ w = argmax Pearson(X (w), H) 2
preprocessing step for the metric is tagging both Y
the MT hypothesis and the references with POS. he function Pearson(X (w), H) is differentiable
might elicit some worries about the robustness of thevith respect to the vectow, and we compute this
POS tagger on the noise-containing MT hypothesiglerivative analytically and perform gradient ascent.
This should not be a problem for two reasons. FirsQur objective function not always convex (one can
compared with other preprocessing steps like pargasily create a non-convex function by setting the
ing, POS tagging is easier and has higher accuradyuman judgments and individual metrics to some
Second, because the counts for each POS are acpatticular value). Thus there is no guarantee that,
mulated, the correctness of a single word’s POS wilitarting from a randomv, we will get the glob-
not affect the result very much. ally optimal w using optimization techniques such
] ) o as gradient ascent. The easiest way to avoid ending
3 Maximum Correlation Training for up with a bad local optimum to run gradient ascent
Machine Translation Evaluation by starting from different random points. In our ex-
Maximum Correlation Training (MCT) is an in- !oeriments, t_he differer_mce in each run _is_\_/ery small,
stance of the general approach of directly optimiz.-€- by starting fro_m different random initial ve_tlu_es
ing the objective function by which a model will ©f w, we end up with, not the same, but very similar
ultimately be evaluated. In our case, the model i¥alues for Pearson’s correlation.
the linear combination of the component metrics, thﬁ
parameters are the weights for each component met-
ric, and the objective function is the Pearson’s corre=xperiments were conducted to evaluate the perfor-
lation of the combined metric and the human judgmance of the new metrics proposed in this paper,
ments. The reason to use the linear combination @& well as the MCT combination framework. The
the metrics is that the component metrics are uswhata for the experiments are from the MT evalua-
ally of the same or similar order of magnitude, and ition workshop at ACLO5. There are seven sets of
makes the optimization problem easy to solve. UWT outputs (E09 E11 E12 E14 E15 E17 E22), each
ing w to denote the weights, and to denote the of which contains 919 English sentences translated
component metrics, the combined metritcs com- from the same set of Chinese sentences. There are
puted as: four references (EO1, E02, EO3, EO4) and two sets
of human scores for each MT hypothesis. Each hu-
z(w) = ijmj (1) man score set contains a fluency and an adequacy
J score, both of which range from 1 to 5. We create a

Using h; andz(w); denote the human judgmentset of overall human scores by averaging the human

and combined metric for a sentence respectively, arjtf€ncy and adequacy scores. For evaluating the au-

N denote the number of sentences in the evaluatigAMmatic metrics, we compute the Pearson’s correla-
set, the objective function is then computed as: tion of the automatic scores and the averaged human

scores (over the two sets of available human scores),
Pearson(X (w), H) = for overall score, fluency, and adequacy. The align-
ment between the source sentences and the MT hy-
pothesis/references is computed by GIZA++, which
\/(Zﬁvzlfc(w)? — BRI (N g2 5 M%) g trained on the combined corpus of the evalua-
tion data and a parallel corpus of Chinese-English
Now our task is to find the weights for each componewswire text. The parallel newswire corpus con-
nent metric so that the correlation of the combinethins around 75,000 sentence pairs, 2,600,000 En-
metric with the human judgment is maximized. ltglish words and 2,200,000 Chinese words. The

Experiments

N z(w); =N i
Zf\f:l x(w)lhl _ Zi:l' ( ]371 21,,1 hi
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stochastic word mapping is_trained on a French- Fluency Adequacy Overall

English parallel corpus containing 700,000 sentence ROUGEW | 24.8 27.8 29.0
pairs, and, following Liu and Gildea (2005), we only ROUGES | 19.7 30.9 28.5
keep the top 100 most similar words for each En METEOR | 24.4 318 Bl
€p P imifar w - SIA | 268 321 326
glish word. NIST.1 | 09.6 22.6 18.5
WER | 22.5 27.5 27.7

4.1 Performance of the Individual Metrics PRS| 14.2 19.4 18.7
_ MPR | 11.0 18.2 16.5

To evaluate our source-sentence based metrics, they BLEU(1) | 18.4 29.6 27.0
are used to evaluate the 7 MT outputs, with the 4 sets BLEU(2) | 20.4 311 28.9
f human references. The sentence-level Pearson’s BLEU(3) | 20.7 304 28.0
0 AN TETE - : HWCM(2) | 221 30.3 29.2
correlation with human judgment is computed for SSCN1(1)| 24.2 29.6 29.8
each MT output, and the averaged results are shown SSCN2(1)| 22.9 33.0 313
in Table 1. As a comparison, we also show the re- SSChu() | 23.8 34.2 325
Inla : P , SSCNi(1) | 23.4 28.0 285
sults of BLEU, NIST, METEOR, ROUGE, WER, PSSCN1(1)| 24.9 30.2 30.6
and HWCM. For METEOR and ROUGE, WORD- %Ssscch'l\'f(%) gjg 33;‘60 3%21-4
NET and PORTER-STEMMER are enabled, and for I?osscr\li(l) 241 28.8 293
SIA, the decay factor is set to 0.6. The number SSCN1(2)| 24.0 29.6 29.7
: ) : SSCN2(2)| 23.3 31.5 31.8
in brackets, for BLEU, shows the n-gram length it SSCNU) | 241 e 28
counts up to, and for SSCN, shows the length of the SSCNi(2) | 23.1 278 28.2
n-gram it uses. In the table, the top 3 results in each pgggNégg 34-93 330-2 3320é6

. p N 4. 4.4 .

columr\ are marked bold and the best result is also pSSCNU(2) | 25.2 354 339
underlined. The results show that the SSCN2 met- pSSCNiI(2) | 23.9 28.7 29.1

rics are better than the SSCN1 metrics in adequacy _ _
and overall score. This is understandable since what 1apble 1: Performance of Component Metrics
SSCN metrics need is which words in the source

sentence are aligned to an n-gram in the MT hyof the individual performance. It should not be sur-
pothesis/references. This is directly modeled in thgrising since they are totally different kind of met-

alignment used in SSCN2. Though we could alsgics, which do not count the overlapping n-grams,
get such information from the reverse alignment, agut the consistent/monotonic word pair reorderings.
in SSCNL1, itis rather an indirect way and could conAs |ong as they capture some property of the MT
tain more noise. It is interesting that SSCN1 gethypothesis, they might be able to boost the per-

better fluency evaluation results than SSCN2. Th®rmance of the combined metric under the MCT

SSCN metrics with the unioned constraint, SSGN framework.

by combining the strength of SSCN1 and SSCN2,

get even better results in all three aspects. We cé2 Performance of the Combined Metrics

see that SSCN metrics, even without stochastic worTb test how well MCT works, the following scheme

mapping, get significantly better results than theiis used: each set of MT outputs is evaluated by MCT,

relatives, BLEU, which indicates the source senwhich is trained on the other 6 sets of MT outputs

tence constraints do make a difference. SSCN2 arnghd their corresponding human judgment; the aver-

SSCNu are also competitive to the state-of-art MTaged correlation of the 7 sets of MT outputs with the

metrics such as METEOR and SIA. The best SSCNuman judgment is taken as the final result.

metric, pSSCNu(2), achieves the best performance o ) ..

among all the testing metrics in overall and ade?21  Discriminative Unigram Precision based

qguacy, and the second best performance in fluency, on POS

which is just a little bit worse than the best fluency We first use MCT to combine the discriminative

metric SIA. unigram precisions. To reduce the sparseness of the
The two reordering based metrics, PRS and MPRinigrams of each POS, we do not use the original

are not as good as the other testing metrics, in terfiXOS set, but use a generalized one by combining
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all POS tags with the same first letter (e.g., the dif- Fluency Adequacy Overall
ferent verb forms such agBN, VBD, andVBZ are DUPPT | 23.6 30.1 30.1
transformed tdv). The unified POS set contains 23 Bﬁsg—a %g% 3522-98 gg-g
POS tags. To give a fair cpmparison of IZ_)UPI_D with MCTﬁf(j)) 03 36.7 375
BLEU, the length penalty is also added into it as a MCT.a(4) | 28.0 389 37.4
component. Results are shown in Table 2. DUPP . MCT60(4)d gg-g ?é-i 32-202
- pper boun . . .
DUPPa and DUPRo denote DUPP' trained on hu- MCTR(3) | 292 307 353
man fluency, adequacy and overall judgment respec- MCT.a(3) | 27.4 38.4 36.8
tively. This shows that DUPP achieves obvious im- MCTo(3) | 28.8 38.0 37.2
CSVM(3) | 27.3 36.9 355

provement over BLEU, with only the unigrams and
length penalty, and DUPP _a/o gets the best re-  Table 2: Combination of the Testing Metrics
sult in fluency/adequacy/overall evaluation, showing

that MCT is able to make a fluency- or adequacyt- i h is th MCT t that
oriented metric. esting scheme is the same as , except that we

only use 3 references for each MT hypothesis, and

4.2.2  Putting It All Together the positive samples for training CSVM are com-

The most interesting question in this paper is, witfputed as the scores of one of the 4 references based
all these metrics, how well we can do in the MTon the other 3 references. The slack parameter of
evaluation. To answer the question, we put all th€SVM is chosen so as to maximize the classifica-
metrics described into the MCT framework and us&on accuracy of a heldout set of 800 negative and
the combined metric to evaluate the 7 MT outputs300 positive samples, which are randomly selected
Note that to speed up the training process, we dgom the training set. The results are shown in Ta-
not directly use 24 DUPP components, instead, wele 2. We can see that MCT, with the same number
use the 3 combined DUPP metrics. With the metof reference sentences, is better than CSVM. Note
rics shown in Table 1, we then have in total 31 metthat the resources required by MCT and CSVM are
rics. Table 2 shows the results of the final combinedifferent. MCT uses human judgments to adjust the
metric. We can see that MCT trained on fluencyyweights, while CSVM needs extra human references
adequacy and overall human judgment get the beist produce positive training samples.
results among all the testing metrics in fluency, ade- To have a rough idea of how the component met-
quacy and overall evaluation respectively. We did &cs contribute to the final performance of MCT, we
t-test with Fisher’s z transform for the combined reincrementally add metrics into the MCT in descend-
sults and the individual results to see how significaring order of their overall evaluation performance,
the difference is. The combined results in adequadyith the results shown in Figure 5. We can see that
and overall are significantly better at 99.5% confithe performance improves as the number of metrics
dence than the best results of the individual metrid§icreases, in a rough sense. The major improvement
(pPSSCNu(2)), and the combined result in fluencyhappens in the 3rd, 4th, 9th, 14th, and 30th metrics,
is significantly better at 96.9% confidence than th#hich are METEOR, SIA, DUPR, pSSCN1(1),
best individual metric (SIA). We also give the upperand PRS. It is interesting to note that these are not
bound for each evaluation aspect by training MCThe metrics with the highest individual performance.
on the testing MT outputs, e.g., we train MCT onAnother interesting observation is that there are no
E09 and then use it to evaluate E09. The uppetwo metrics belonging to the same series in the most
bound is the best we can do with the MCT basebeneficial metrics, indicating that to get better com-
on linear combination. Another linear framework,bined metrics, individual metrics showing different
Classification SVM (CSVMY, is also used to com- sentence properties are preferred.
bine the testing metrics except DUPP. Since DUPP i
is based on MCT, to make a neat comparison, wR Conclusion

rule out DUPP in the eXperimentS with CSVM. TheTh|S paper first describes two types of new ap-
“http://svmlight.joachims.org/ proaches to MT evaluation, which includes making

47



guage and Speech Processing, Johns Hopkins Univer-
o4r sity, Baltimore. Summer Workshop Final Report.

o
w
@

G. Doddington. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence statis-
tics. InIn HLT 2002, Human Language Technology
Conference, San Diego, CA.

o
w
S

o
w
g

Alex Kulesza and Stuart M. Shieber. 2004. A learning
approach to improving sentence-level MT evaluation.
In Proceedings of the 10th International Conference
on Theoretical and Methodological I1ssuesin Machine
Trandation (TMI), Baltimore, MD, October.

o

o w

w ]
T

o
N
@

correlation with human fluency/overall/adequacy judgements

Chin-Yew Lin and Franz Josef Och. 2004. Automatic
evaluation of machine translation quality using longest
L S s ps ps P % common subsequence and skip-bigram statistics. In
the number of metrics (o: adequacy, x: fluency, +: overall) PrOCEGdIngS Of the 42th Annual Confermce of the
Association for Computational Linguistics (ACL-04),
Figure 5: Performance as a Function of the Number Barcelona, Spain.

of Interpolated Metrics

o
N
)

o
N
b

Lucian Vlad Lita, Monica Rogati, and Alon Lavie. 2005.
Blanc: Learning evaluation metrics for mt. Vancouver.

use Qf'source sentences, and discriminating _“”‘gfamng Liu and Daniel Gildea. 2005. Syntactic features for
precisions based on POS. Among all the testing met- evaluation of machine translation. ACL 2005 Work-
rics including BLEU, NIST, METEOR, ROUGE, shop on Intrinsic and Extrinsic Evaluation Measures

and SIA, our new metric, pSSCMN(2), based on for Machine Trandlation and/or Summarization.

source-sentence constrained bigrams, achieves ¥ Liu and Daniel Gildea. 2006. Stochastic iterative
best adequacy and overall evaluation results, and thealignment for machine translation evaluation. Sydney.

second best result in fluency evaluation. We fur- - i
y Franz Josef Och. 2003. Minimum error rate training for

the.r improve 'the performance by combining the_ in- statistical machine translation. Rroceedings of ACL-
dividual metrics under the MCT framework, which g3,
is shown to be better than a classification based

o . Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
framework such as SVM. By examining the contri Jing Zhu. 2002. Bleu: a method for automatic evalu-

bution of each component metric, we find that met- ation of machine translation. IRroceedings of ACL-
rics showing different properties of a sentence are 02, Philadelphia, PA.
more likely to make a good combined metric.

Acknowledgments This work was supported by
NSF grants 11S-0546554, 11S-0428020, and IIS-
0325646.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judegments. Proceedings of
the ACL-04 workshop on Intrinsic and Extrinsic Eval-
uation Measures for Machine Translation and/or Sum-
marization, Ann Arbor, Michigan.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2003. Confidence estimation for
machine translation. Technical report, Center for Lan-

48



