
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume, pages 284–287,
New York City, June 2006.c©2006 Association for Computational Linguistics

SconeEdit: A Text-guided Domain Knowledge Editor

 Alicia Tribble Benjamin Lambert Scott E. Fahlman

Language Technologies
Institute

Language Technologies
Institute

Language Technologies
Institute

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213
atribble@cs.cmu.edu benlambert@cmu.edu sef@cs.cmu.edu

Abstract

We will demonstrate SconeEdit, a new tool
for exploring and editing knowledge bases
(KBs) that leverages interaction with do-
main texts. The tool provides an annotated
view of user-selected text, allowing a user
to see which concepts from the text are in
the KB and to edit the KB directly from
this Text View. Alongside the Text View,
SconeEdit provides a navigable KB View
of the knowledge base, centered on con-
cepts that appear in the text. This unified
tool gives the user a text-driven way to ex-
plore a KB and add new knowledge.

1 Introduction

We will demonstrate SconeEdit, a new tool for
exploring and editing knowledge bases that inte-
grates domain text. SconeEdit expands on the
function of traditional ontology editors by showing
the user an interactive text window (Text View)
where the user can view and edit concepts from the
knowledge base as highlighted terms in their origi-
nal context. The Text View augments a traditional
KB View, allowing the user to leverage existing
knowledge as well as domain-focused text exam-
ples to perform a variety of knowledge-based
tasks.

Consider the task of assessing the quality of a
knowledge base as a resource for a new AI or natu-
ral language system. In SconeEdit, a user can view

the knowledge base alongside a text document
from the target domain. SconeEdit searches for
instances of KB concepts in the text and highlights
them in the Text View. Already the user can see a
concise visual sample of the coverage of the KB
for this domain.

Now the user can work with the KB View and
Text View together to navigate the ontology.
Double-clicking on a highlighted concept like
“keyboard” opens a detailed view of that concept
in the KB View. Inside the KB View, the user can
click on the superclass of the keyboard concept to
see the concept computer input device and all of its
children. Next, SconeEdit selectively highlights all
instances of computer input device in the text. The
system uses type inference from the KB to high-
light “mouse”, “touchpad”, and “wireless key-
board.” If “scanner” appears in the text but isn’t
included in the knowledge base, the user can spot
the omission quickly.

Figure 1. The SconeEdit Interface

284

In this way, domain text is used as a measuring
tool for coverage of domain knowledge. Our dem-
onstration allows the user to try SconeEdit and to
explore the interaction of text and knowledge.

2 The Knowledge Base

SconeEdit is a software client to the Scone Knowl-
edge Base System, or simply “Scone” (Fahlman,
2005). Scone is an efficient, open-source knowl-
edge base (KB) system being developed in the
Language Technologies Institute of Carnegie Mel-
lon University. Scone is intended to be a practical
KB system that can be used as a component in a
wide range of AI and natural language software
applications. One of the goals in developing Scone
is to make it easy to use, especially when adding
new knowledge.

The SconeEdit interface makes Scone more us-
able in several ways: the Text View display gives
the user a convenient and intuitive starting point
for exploring the knowledge base. SconeEdit also
provides an easy way of adding knowledge to the
KB without learning the formal input language for
Scone. This demonstration focuses on the effec-
tiveness of SconeEdit and Scone together, but the
design principles of SconeEdit are applicable to
knowledge bases written in other formalisms.

Figure 1 shows the SconeEdit window with a
document and KB loaded. The left side of the in-
terface contains the Text View, and the KB View
is on the right. Each of these views is described in
detail below.

3 Architecture

3.1 Text View

In a traditional ontology browser, the user starts
looking for concepts of interest by typing words
and phrases into a search field. This is the model
for several existing tools, including the VisDic
viewer for WordNet (Horák and Smrž, 2004), the
INOH ontology viewer (INOH, 2004), and the
Gene Ontology viewer presented by Koike and
Takagi (2004), among others.

SconeEdit improves on this browsing paradigm
by giving a user who is unfamiliar with the knowl-
edge base an easy way to start exploring. Rather
than generating a series of guesses at what may be

Figure 2. Excerpt from Text View, with Search
and Text Tabs

covered by the KB, the user can load natural lan-
guage text into SconeEdit from a file or the system
clipboard. We take an article from Xinhuanet
News Service (Xinhuanet, 2006) as an example.
Figure 2 shows an excerpt of this text after it has
been loaded.

When the text file is loaded, it appears in the
Text Tab of the Text View pane. SconeEdit high-
lights all strings that it can identify as concepts
from the knowledge base. In this example, “Wash-
ington” is correctly identified as the city, not the
state. In many cases the concept may be ambigu-
ous from the string alone. SconeEdit currently
uses dynamic programming to highlight the long-
est-matching concept names it can find (see Sec-
tion 5). More sophisticated disambiguation is a
priority for our future work.

The result of highlighting is a concise visual
representation of what is “known” about that text.
The Text View helps a user find relevant knowl-
edge quickly, even in a large general-domain KB.
Clicking on any highlighted term in the Text View
brings up a hierarchical representation of that con-
cept in the KB View.

3.2 KB View

The KB View contains two tabs: a Graph Tab and
a List Tab. The Graph Tab displays an excerpt
from the knowledge base as a network of linked
concepts with one focus concept in the center.
When the user clicks on a highlighted concept in
the Text View, a graph focused on that concept
appears in the Graph Tab. Continuing with our
Xinhuanet example, Figure 3 shows the Graph Tab
after a user has clicked on “Washington” in the
text. The Graph View now displays concepts that
are closely related to Washington-Dc in the knowl-
edge base.

285

Figure 3. KB View, Graph Tab of Washington-Dc

Figure 4. KB View, List Tab of City

Clicking on any of these related concepts in the
Graph Tab moves the focus of the graph to that
concept.

The List Tab shows an alternative view of the
same focus concept. It displays KB information as
a set of property lists. As in the Graph Tab, the
user can double-click on any concept in the List
Tab to bring that concept into focus. When the
focus concept is densely connected to other con-
cepts in the KB, the List Tab can be easier to inter-
pret than the Graph Tab. In general, research has
shown that preference for the list style or graph
style is personal and varies from user to user
(Tribble and Rosé, 2006). Figure 4 shows the List
Tab, focused on the concept City.

4 Adding Knowledge

Browsing the knowledge base in this way gives the
user a detailed, domain-targeted view of its con-
tents. A natural extension of this paradigm is to
allow the user to edit the KB while browsing. For
example, a user may encounter a concept in the

Figure 5. Adding a concept synonym

text that is not present in the knowledge base.
SconeEdit allows the user to simply click on a
word in the text to create a new concept in the KB
(see Figure 5). To specify where the new concept
belongs, the user navigates to the appropriate loca-
tion in the KB View (List Tab or Graph Tab).

The user can also modify an existing KB con-
cept by adding English synonyms. For example,
the word “United States” may be highlighted in a
text example, while “U.S.” is not. To add a syno-
nym for the “United States” concept, the user
navigates to this concept in the KB View, and then
clicks on the text “U.S.”. A menu offers the choice
of adding a synonym to the existing focus concept.
Figure 5 illustrates this process.

5 Identifying KB Concepts in Text

Elements in a Scone knowledge base represent
specific concepts, rather than words or word
senses. Each concept is linked with a list of Eng-
lish names (words or phrases). This association
between Scone elements and English names is
many-to-many.

To map a sentence to the set of concepts that
appear there, a dynamic-programming alignment is
performed using the English names in the KB as a
dictionary. SconeEdit searches for an alignment
that covers as much of the input text as possible.
The result of aligning an input string with concepts
is a set of triples, each consisting of a concept, an
offset, and a length. These triples are used directly
by the Text Tab to highlight substrings and associ-
ate them with KB concepts.

Consider the sentence “Washington, D.C. is a
city.” Table 1 shows some example Scone con-
cepts and their English names. Given a knowledge

286

Concept Name English Names

Washington-State
“Washington”, “Washing-
ton State”,

Washington-Dc
“Washington”, “Washing-
ton, D.C.”

City “city”

Table 1. Example concepts and their English
Name lists

base with these concepts, SconeEdit returns the
alignment: (concept: Washington-DC, offset: 1,
length: 16) (concept: City, offset: 23, length: 4).

6 Planned Features

A single node in the KB could have hundreds or
thousands of outgoing links. For readability, the
browser must select a subset of these links to dis-
play to the user. We plan to leverage Scone’s rea-
soning ability, along with SconeEdit’s document-
driven design, to select which nodes are likely to
be relevant to the user in the context of the loaded
document(s). For example, a user who views sub-
classes of disease in a medical ontology may be
presented with thousands of disease types. If the
current document loaded into SconeEdit is a
document about food, Scone may be able to prune
the subclasses it lists to only food-borne illnesses.

Another feature we hope to add is better integra-
tion with an entire corpus. The current system al-
lows the user to work with individual documents.
This could be extended to allow a user to navigate
to a particular concept in the knowledge base and
retrieve all documents in a corpus containing that
concept (in its various forms). These documents
could then be used to generate more KB concepts
of interest.

7 Related Work

To the best of our knowledge, existing ontology
and KB editors and viewers do not specifically
focus on editing and viewing an ontology or KB in
the context of natural language text. Other ontol-
ogy editors such as Protégé (Gennari, 2002) and
OntoEdit (Sure, 2002) offer many features for gen-
erating complex ontologies, but do not provide the
rich interaction with domain text that is the focus
of SconeEdit. The CNet Big Picture (CNet News

Online, 2000) is one example of a system that does
link ontology knowledge to text, but the concepts
in the ontology are limited to a small fixed set.

Acknowledgements

This material is based upon work supported by the
Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHD030010.
The authors would like to thank Vasco Pedro, Eric
Nyberg, and Tim Isganitis for their contributions to
SconeEdit.

References

CNet News Online. 2000. The Big Picture,
http://news.com.com/The+Big+Picture/2030-12_3-
5843390.html.

Scott E. Fahlman. 2006. Scone User's Manual,
http://www.cs.cmu.edu/~sef/scone/.

J. Gennari, M. A. Musen, R. W. Fergerson, W. E.
Grosso, M. Crubezy, H. Eriksson, N. F. Noy, S. W.
Tu. 2002. The Evolution of Protégé: An Environment
for Knowledge-Based Systems Development. Inter-
national Journal of Human-Computer Interaction,
58(1), pp. 89—123.

Aleš Horák and Pavel Smrž. 2004. VisDic -- WordNet
Browsing and Editing Tool. Proceedings of GWC
2004, pp. 136—141.

INOH, 2004. INOH Ontology Viewer Website.
http://www.inoh.org:8083/ontology-viewer/.

Asako Koike and Toshishisa Takagi, 2004.
Gene/protein/family name recognition in biomedical
literature. In Proceedings of BioLINK 2004: Linking
Biological Literature, Ontologies, and Databases,
pp. 9-16.

Alicia Tribble and Carolyn Rosé. 2006. Usable Brows-
ers for Ontological Knowledge Acquisition. To ap-
pear in Proceedings of CHI-2006. Montréal, Canada.
April 22-27, 2006.

Xinhuanet. 2006. US accused of blocking approval of
new UN human rights body.
http://news.xinhuanet.com/english/2006-
03/02/content_4247159.htm.

 Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer
and D. Wenke. OntoEdit: Collaborative Ontology
Engineering for the Semantic Web. In Proceedings of
the first International Semantic Web Conference
2002 (ISWC 2002).

287

