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Abstract

SenseClusters is a freely available sys-
tem that clusters similar contexts. It can
be applied to a wide range of problems,
although here we focus on word sense
and name discrimination. It supports
several different measures for automati-
cally determining the number of clusters
in which a collection of contexts should
be grouped. These can be used to discover
the number of senses in which a word is
used in a large corpus of text, or the num-
ber of entities that share the same name.
There are three measures based on clus-
tering criterion functions, and another on
the Gap Statistic.

1 Introduction

Word sense and name discrimination are problems
in unsupervised learning that seek to cluster the oc-
currences of a word (or name) found in multiple con-
texts based on their underlying meaning (or iden-
tity). The assumption is made that each discovered
cluster will represent a different sense of a word, or
the underlying identity of a person or organization
that has an ambiguous name.

Existing approaches to this problem usually re-
quire that the number of clusters to be discovered
(k) be specified ahead of time. However, in most re-
alistic settings, the value of k is unknown to the user.
Here we describe various cluster stopping measures
that are now implemented in SenseClusters (Puran-
dare and Pedersen, 2004) that will group N contexts
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into k clusters, where the value of k will be automat-
ically determined.

Cluster stopping can be viewed as a problem in
model selection, since a number of different models
(i.e., clustering solutions) are created using different
values of k, and the one that best fits the observed
data is selected based on a criterion function. This
is reminiscent of earlier work on sequential model
selection for creating models of word sense disam-
biguation (e.g., (O’Hara et al., 2000)), where it was
found that forward sequential search strategies were
most effective. These methods start with simpler
models and then add to them in a stepwise fash-
ion until no further improvement in model fit is ob-
served. This is in fact very similar to what we have
done here, where we start with solutions based on
one cluster, and steadily increase the number of clus-
ters until we find the best fitting solution.

SenseClusters supports four cluster stopping mea-
sures, each of which is based on interpreting a clus-
tering criterion function in some way. The first three
measures (PK1, PK2, PK3) look at the successive
values of the criterion functions as k increases, and
try to identify the point at which the criterion func-
tion stops improving significantly. We have also cre-
ated an adaptation of the Gap Statistic (Tibshirani
et al., 2001), which compares the criterion function
from the clustering of the observed data with the
clustering of a null reference distribution and selects
the value of k for which the difference between them
is greatest.

In order to evaluate our results, we sometimes
conduct experiments with words that have been
manually sense tagged. We also create name con-

Proceedings of the Human Language Technology Conference of the NAACL, Companion Malgae76-279,
New York City, June 20062006 Association for Computational Linguistics



flations where some number of names of persons,
places, or organizations are replaced with a single
name to create pseudo or false ambiguities. For ex-
ample, in this paper we refer to an example where
we have replaced all mentions of Sonia Gandhi and
Leonid Kuchma with a single ambiguous name.

Clustering methods are typically either partitional
or agglomerative. The main difference is that ag-
glomerative methods start with 1 or NV clusters and
then iteratively arrive at a pre—specified number (k)
of clusters, while partitional methods start by ran-
domly dividing the contexts into k clusters and then
iteratively rearranging the members of the k clusters
until the selected criterion function is maximized. In
this work we have used K-means clustering, which
is a partitional method, and the H2 criterion func-
tion, which is the ratio of within—cluster similarity
(12) to between—cluster similarity (E'1).

2 Methodology

In word sense or name discrimination, the num-
ber of contexts (V) to cluster is usually very large,
and considering all possible values of k from 1...N
would be inefficient. As the value of k increases,
the criterion function will reach a plateau, indicat-
ing that dividing the contexts into more and more
clusters does not improve the quality of the solution.
Thus, we identify an upper bound to k that we refer
to as deltaK by finding the point at which the cri-
terion function only changes to a small degree as k
increases.

According to the H2 criterion function, the higher
its ratio of within—cluster similarity to between—
cluster similarity, the better the clustering. A large
value indicates that the clusters have high internal
similarity, and are clearly separated from each other.
Intuitively then, one solution to selecting k might
be to examine the trend of H2 scores, and look for
the smallest k that results in a nearly maximum H?2
value.

However, a graph of H2 values for a clustering
of the 2 sense name conflation Sonia Gandhi and
Leonid Kuchma as shown in Figure 1 (top) reveals
the difficulties of such an approach. There is a grad-
ual curve in this graph and there is no obvious knee
point (i.e., sharp increase) that indicates the appro-
priate value of k.
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Figure 1: H2 (top) and PK1, PK2, and PK3 for
the name conflate pair Sonia Gandhi and Leonid
Kuchma. The predicted number of senses is 2 for
all the measures.



21 PK1

The PK1 measure is based on (Mojena, 1977),
which finds clustering solutions for all values of k
from 1..V, and then determines the mean and stan-
dard deviation of the criterion function. Then, a
score is computed for each value of k by subtracting
the mean from the criterion function, and dividing
by the standard deviation. We adapt this technique
by using the H2 criterion function, and limit k from
1...deltaK:

H2(k) — mean(H2[1...deltaK])
std(H2[1...deltaK])

PK1(k) =
@

To select a value of k, a threshold must be set.
Then, as soon as PK1(k) exceeds this threshold,
k-1 is selected as the appropriate number of clus-
ters. Mojena suggests values of 2.75 to 3.50, but also
states they would need to be adjusted for different
data sets. We have arrived at an empirically deter-
mined value of -0.70, which coincides with the point
in the standard normal distribution where 75% of the
probability mass is associated with values greater
than this.

We observe that the distribution of PK1 scores
tends to change with different data sets, making it
hard to apply a single threshold. The graph of the
PK1 scores shown in Figure 1 illustrates the diffi-
culty : the slope of these scores is nearly linear, and
as such any threshold is a somewhat arbitrary cutoff.

22 PK2

PK2issimilar to (Hartigan, 1975), in that both take
the ratio of a criterion function at k and k-1, in order
to assess the relative improvement when increasing
the number of clusters.

H2(k)

PK2(k) = =T

)

When this ratio approaches 1, the clustering has
reached a plateau, and increasing k will have no
benefit. If PK2 is greater than 1, then we should
increase k. We compute the standard deviation of
P K2 and use that to establish a boundary as to what
it means to be “close enough” to 1 to consider that
we have reached a plateau. Thus, PK2 will select k

278

where PK2(k) is the closest to (but not less than) 1
+ standard deviation(PK2[1...deltaK]).

The graph of PK2 in Figure 1 shows an elbow
that is near the actual number of senses. The critical
region defined by the standard deviation is shaded,
and note that PK 2 selected the value of k that was
outside of (but closest to) that region. This is inter-
preted as being the last value of k that resulted in a
significant improvement in clustering quality. Note
that here P K2 predicts 2 senses, which corresponds
to the number of underlying entities.

23 PK3

P K3 utilizes three k values, in an attempt to find a
point at which the criterion function increases and
then suddenly decreases. Thus, for a given value of
k we compare its criterion function to the preceding
and following value of k:

PE3(k) = 2 x H2(k)

 H2(k—1)+ H2(k+1) @)

The form of this measure is identical to that of the
Dice Coefficient, although in set theoretic or prob-
abilistic applications Dice tends to be used to com-
pare two variables or sets with each other.

PK3 is close to 1 if the H2 values form a line,
meaning that they are either ascending, or they are
on the plateau. However, our use of deltaK elimi-
nates the plateau, so in our case values of 1 show that
k is resulting in consistent improvements to clus-
tering quality, and that we should continue. When
P K3 rises significantly above 1, we know that k+1
is not climbing as quickly, and we have reached a
point where additional clustering may not be help-
ful. To select k£ we select the largest value of
PK3(k) that is closest to (but still greater than) the
critical region defined by the standard deviation of
PK3.

PK3 is similar in spirit to (Salvador and Chan,
2004), which introduces the L measure. This tries to
find the point of maximum curvature in the criterion
function graph, by fitting a pair of lines to the curve
(where the intersection of these lines represents the
selected k).



24 TheGap Statistic

SenseClusters includes an adaptation of the Gap
Statistic (Tibshirani et al., 2001). It is distinct from
the measures PK1, PK2, and PK3 since it does not
attempt to directly find a knee point in the graph of
a criterion function. Rather, it creates a sample of
reference data that represents the observed data as
if it had no meaningful clusters in it and was sim-
ply made up of noise. The criterion function of the
reference data is then compared to that of the ob-
served data, in order to identify the value of k in the
observed data that is least like noise, and therefore
represents the best clustering of the data.

To do this, it generates a null reference distri-
bution by sampling from a distribution where the
marginal totals are fixed to the observed marginal
values. Then some number of replicates of the ref-
erence distribution are created by sampling from it
with replacement, and each of these replicates is
clustered just like the observed data (for successive
values of k using a given criterion function).

The criterion function scores for the observed and
reference data are compared, and the point at which
the distance between them is greatest is taken to pro-
vide the appropriate value of k. An example of this
is seen in Figure 2. The reference distribution repre-
sents the noise in the observed data, so the value of
k where the distance between the reference and ob-
served data is greatest represents the most effective
clustering of the data.

Our adaption of the Gap Statistic allows us to
use any clustering criterion function to make the
comparison of the observed and reference data,
whereas the original formulation is based on using
the within—cluster dispersion.
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