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Abstract

A theory of natural language can be
evaluated on both extensional and in-
tensional grounds. Systematic inves-
tigations of the extension of a theory
may, for instance, lead to studies of the
invariance properties of such theories.
The intentional parameters that I wish
to address include complexity, learn-
ability, and monotonicity. The main
results, on which my thesis builds, up
to this point, include: (i) the universal
recognition problem of model-theoretic
feature-based grammar formalisms is
complete for non-deterministic poly-
nomial time, since such formalisms
have the polysize model property, (ii)
this result holds also for linearization-
based extensions, (iii) the universal
recognition problem of strongly mono-
tonic, hybrid feature-based grammar
formalisms is decidable in determinis-
tic polynomial time, and (iv) there ex-
ists a strongly monotonic unification
categorial grammar that is learnable in
the limit from positive data. In ad-
dition, invariance studies have lead to
the identification of a class of modal
languages that define common feature-
based grammar formalisms. The ob-
jective of my studies is to identify a
tractable and learnable feature-based
formalism.
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1 Introduction

My work addresses certain extensional and in-
tensional properties of various feature-based
theories of natural language, incl. unification
categorial grammar (Zeevat, 1988) and head-
driven phrase structure grammar (Pollard and
Sag, 1994). The theories are referred to hence-
forth as UCG and HPSG. A feature-based the-
ory of natural language defines a set of feature-
based grammars (and interfaces). A feature-
based grammar associates feature structures
with the strings of the language in question.
Consequently, it makes sense to start off with
a definition of a feature structure. A sig-
nature (Lbls, Atmc) is a pair of sets of labels
and atomic informations. In UCG and HPSG,
both are finite. A feature structure of a sig-
nature (Lbls, Atmc) is then an ordered triple
(N, {R) }xcLbis; {Qa }acAtme), where N is a set
of nodes, R) is a partial function, and @, is
a unary one, for all A € Lbls and a € Atmc.

Grammars employ feature structures
in different ways. A hybrid grammar,
in its most raw format, is a 4-tuple

((Lbls, Atmc), V,Rules, start), where V is
the vocabulary. One may add a speci-
fication function such that, for instance,
Vz Jy Ry(z,y) = Qa(y). Intuitively, if £(G) is
the language of G, and if G is a hybrid grammar,
L(G) is the set of strings “modelled” (derivable)
by the grammar, whereas the language of a
model-theoretic grammar is the set of strings
that (or whose relational structures) model the
grammar. The generative-enumerative core of
a hybrid grammar is in its set of rules (Rules).
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The language of G is defined as
LG)={z eV |If € Fstart C fA f = z}

where F is the set of feature structures, and
f' E f means that the information in f’ is also
in f, and f A f’ is consistent. Finally, f =
o means that o is derivable from f by Rules.
It should be obvious that a hybrid grammar is
“hybrid” in the sense that it combines generative
rules and subsumption (C), which is essentially

model-theoretically defined, ie. f' C f iff if
f | ¢ then f' = ¢

Consider a grammar G', which is en-
tirely model-theoretic, i.e. the grammar

is axiomatically defined, and feature struc-
tures are seen as Kripke frames. In other
words, a model-theoretic grammar is a 4-tuple
((Lbls, Atmc), V, Axms, root), where rules have
been replaced with a set of axioms Axms defined
in some logic, and the start category is replaced
with a root proposition, defined in the axioms.
The signature is now a signature of modalities
and propositions. It is important, in order to
maintain the overall picture, to remember that
on the standard translation into first order logic,
modalities and propositions translate into bi-
nary and unary relations, respectively. Conse-
quently, this is, at the moment, just a notational
change. The introduction of modal vocabulary
is relevant to the specification of feature-based
theories later on.

The universal recognition problem amounts to
this question: Given some pair 0,G, o € L(G)?
In particular, when it is said that the univer-
sal recognition problem of some formalism is in
some complexity class, it means that there ex-
ists an algorithm such that the membership of
any string in any grammar licensed by the for-
malism can be decided in the time complexity of
that class by running the algorithm. The univer-
sal recognition problems of model-theoretic UCG
and HPSG, and the linearization-based exten-
sion of the latter, and strongly monotonic HPSG
are examined in a minute.

Our introductions of UCG and HPSG are of
course only partial, since this paper is of limited
length. In fact, no more than a paragraph is
spend on these introductions:

240

Unification categorial grammar UCG and
HPSG are both said to be sign-based, i.e. the
fundamental unit is the sign. A sign in UCG
has the structure W:C:S:O, where W contains
information about the phonology of the sign, C
presents its syntactic category, S is the seman-
tics, and O constrains word order in determining
how the sign combines with other signs. Signs
combine by functional application (instantiation
and stripping). Instantiation checks if the ac-
tive part of the syntactic category of the functor
unifies with the syntactic category of the argu-
ment, and if unification succeeds, the instanti-
ated functor is stripped, and the phonology fea-
tures are concatenated. Type hierarchies extend
UCG in a natural way. Instantiation and strip-
ping can be interpreted as phrasal types rather
than functions. Model-theoretic parsing of some
string o € £(G) then amounts to finding a con-
nected and rooted (minimal) model M whose
linearization is o, s.t. M,w € [root] = Axms.

Head-driven phrase structure grammar
HPSG parsing is much the same, except Axms is
conjoined with Prncp, the set of linguistic princi-
ples. One traditional problem with HPSG is that
it employs sets. Some recent (computationally
oriented) versions of HPSG substitute sets with
so-called “diff-lists”, which are briefly lists with
pointers to their last elements, and for now we
settle with this option. An alternative is men-
tioned in our discussion of linearization-based
HPSG, namely a simulation of sets as underspec-
ified lists; or one can perhaps employ polyadic
modalities (n-ary relations). The linguistic prin-
ciples in Prncp include, for instance, the head
feature principle, which says that in a headed
phrase, the HEAD value of the mother is identi-
cal to that of the head daughter, the immediate
dominance principle and the weak coordination
principle.

2 Some formal results

Our first complexity result, i.e. (i) the universal
recognition problem of model-theoretic feature-
based grammar formalisms is complete for non-
deterministic polynomial time, since such for-
malisms have the polysize model property, is



obtained by specification of UCG and HPSG in
some modal language that has a model checking
problem of polynomial time complexity. The
model checking amounts to evaluating a for-
mula ¢ in a model M. If a formalism has the
polysize model property, its universal recogni-
tion problem can be evaluated on small models
that are polynomial in the size of the strings.
If the specification language has a polynomial
model checking problem, a model can thus be
non-deterministically chosen and evaluated in
polynomial time, and the result follows. Con-
sequently, the quest is two-fold: It is necessary
to establish the polysize model property for UCG
and HSPG, and we then need to identify an ad-
equate specification language that embeds these
theories. The polysize model property follows
from Lemma 2.1.!

Lemma 2.1. Say ¢ represents a UCG or HPSG
recognition problem for a string o. If there
exists a model M and a node w € N s.t.
M,w € [root] = ¢, then there also exists a
model M" of at most k cardinality and a node
w' € N st. M, w € [root] = ¢, where
kE = (2lo] — 1) x (u + 1) x paths, where u
is the number of unary rules in the grammar,
and paths is a constant that depends on the
non-recursive part of the feature geometries of
UCG and HPSG. In particular, paths = |{7 €
Lbls*|no label occurs twice in w}|.

It is now left to show that UCG and HPSG can
be specified (defined) in some formal language
that has a polynomial time model checking prob-
lem. Since UCG subsumes HPSG, it suffices to
show that this holds for HPSG. Various transla-
tions of HPSG into specification languages have
been proposed, and my recent work includes a
couple of such translations, but in this synopsis,
to save space, we refer to the specification lan-
guage of Kracht (1995). He defines a translation
of HPSG into PDL“!, propositional dynamic
logic with intersection and the master modality.
The master modality is defined s.t. M, w |= [*]¢

!Unary rules only apply once to the same unary ex-
tension in Lemma 2.1. In the proof of Theorem 2.3, a
unary extension is the result of a single application, i.e.
v = 1 in Lemma 2.1. It is not clear to me what the
linguistic relevant restriction is.
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iff Vo' ((w,w") € (U, is atomic Ba)&M,w' =
¢). It is trivial to show the high undecidabil-
ity of this language, for instance, the recurrent
tiling problem can be encoded in PDLY*. The
model checking of PDLY*! is indeed decidable in
polynomial time; this is evident from the inves-
tigations of Lange (2006). Consequently, Theo-
rem 2.2 follows.

Theorem 2.2. The universal recognition prob-
lem of UCG and HPSG is decidable in non-
deterministic polynomial time.

The result can be extended to linearization-
based versions of model-theoretic UCG and
HPSG. On the model-theoretic perspective, im-
mediate dominance and linear precedence are
already split, since they are represented by dif-
ferent modalities. The thing to do when lan-
guages of freer word-order are considered, is
then simply to relax the linearization of immedi-
ate dominance principles. The master modality
of PDLY* can be used to implement weak lin-
ear precedence. Weak linear precedence is thus,
in some sense, constraints on an underspecified
list of strings, and domain union, for instance,
is “unification” of underspecified lists.

Strong monotonicity has been mentioned a
couple of times. The notion is relevant on a
hybrid set-up. Some grammar formalisms are
non-monotonic in the traditional sense, but we
confine ourselves to monotonic ones, for the sim-
ple reason that the modal languages considered
here are all monotonic. The notion of strong
monotonicity is different. Consider a conven-
tional context-free grammar. On our definition
of strong monotonicity, a context-free grammar
G of L is not strongly monotonic if it is ambigu-
ous on L, i.e. if there exists a string o € L,
such that more than one tree can be derived by
Rulesg. The strong monotonicity hypothesis, i.e.
that natural language grammars are strongly
monotonic, is very strong and somewhat unnat-
ural to most linguists. Since Linguistics 101,
we were taught that languages are inherently
ambiguous. Strongly monotonic grammars of
course have formal interest, since they exhibit
a number of nice properties, discussed in the
next paragraph, but they need not be irrelevant



in linguistics either. In feature-based grammars
that employ type hierarchies, it is possible, after
all, to underspecify ambiguities. It has been ar-
gued that such underspecification is possible and
a linguistically interesting option in the context
of both quantification, attachment ambiguities,
and the combinatorics of case and word order.
Say G is a hybrid grammar and strongly
monotonic. For one thing, this means that the
lexicon in Rulesg is rigid s.t. a partial func-
tion map strings onto feature structures. It also
means that ¢ has a unique model of size less
than or equal to k. A rather restrictive parsing
algorithm is introduced: Say Rulesg consists of
b binary rules and w unary ones. G tries to com-
bine pairs of constituents bottom-up by b, and if
this does not succeed, u is used to extend any of
the constituents by a single application. On the
assumption that Rules contains no unary rules,
(W) x b is the number of possible projec-
tions. When unary rules are added, this num-
ber is multiplied by the number of unary rules
times the number of binary rules, since the bi-
nary rules are first tried out, and if that doesn’t
work, unary rules are used to extend nodes, and
binary rules are applied again. The algorithm
only has to run once because of strong mono-
tonicity. Consequently, Theorem 2.3 holds:

Theorem 2.3. The universal recognition prob-
lem of strongly monotonic and hybrid feature-
based grammars is decidable in deterministic
polynomial time.

Proof. (M) X b is the number of possible
projections in the abscence of unary rules. Add
unary rules and the number of possible projec-
tions is

M;;@(u +1)3 +|olu

For each step, unification is tested. Unifica-
tion is decidable in time ©(6 x w(d)) (Hegner,
1991), where § is the number of distinct edges in
the two feature structures, i.e. 6 = paths in the
above, and w(d) is the inverse Ackermann func-
tion. For all practical purposes, w(d) is lower
than 5 (Hegner, 1991). Nothing else has to be
computed to decide universal recognition for a
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strongly monotonic hybrid feature-based gram-
mar. The result follows. U

The learnability result, “(iv)” in the
above, derives from a result established by
Kanazawa (1998), namely that rigid categorial
grammars are leanable in the limit, even from
positive data. If so it follows that there ex-
ists strongly monotonic unification categorial
grammars that are also learnable in the limit
from positive data, since strongly monotonic
grammars are rigid, by definition, and since
simple unification categorial grammars can be
embedded in classical ones.

I envisage a tractable and learnable feature-
based grammar formalism to look much like
strongly monotonic UCG extended with type
hiearchies and linearization. —The notion of
strong monotonic can be relativized in various
ways without loosing tractability, and this line
of research should be pursued.
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