
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 129–132,
New York, June 2006.c©2006 Association for Computational Linguistics

Parser Combination by Reparsing 

 

Kenji Sagae and Alon Lavie 
Language Technologies Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 
{sagae,alavie@cs.cmu.edu} 

  
 

Abstract 

We present a novel parser combination 
scheme that works by reparsing input sen-
tences once they have already been parsed 
by several different parsers.  We apply this 
idea to dependency and constituent parsing, 
generating results that surpass state-of-the-
art accuracy levels for individual parsers. 

1 Introduction 

Over the past decade, remarkable progress has 
been made in data-driven parsing.  Much of this 
work has been fueled by the availability of large 
corpora annotated with syntactic structures, espe-
cially the Penn Treebank (Marcus et al., 1993).  In 
fact, years of extensive research on training and 
testing parsers on the Wall Street Journal (WSJ) 
corpus of the Penn Treebank have resulted in the 
availability of several high-accuracy parsers. 

We present a framework for combining the out-
put of several different accurate parsers to produce 
results that are superior to those of each of the in-
dividual parsers.  This is done in a two stage proc-
ess of reparsing.  In the first stage, m different 
parsers analyze an input sentence, each producing 
a syntactic structure.  In the second stage, a parsing 
algorithm is applied to the original sentence, taking 
into account the analyses produced by each parser 
in the first stage.  Our approach produces results 
with accuracy above those of the best individual 
parsers on both dependency and constituent pars-
ing of the standard WSJ test set. 

2 Dependency Reparsing 

In dependency reparsing we focus on unlabeled 
dependencies, as described by Eisner (1996).  In 

this scheme, the syntactic structure for a sentence 
with n words is a dependency tree representing 
head-dependent relations between pairs of words. 

When m parsers each output a set of 
dependencies (forming m dependency structures) 
for a given sentence containing n words,  the 
dependencies can be combined in a simple word-
by-word voting scheme, where each parser votes 
for the head of each of the n words in the sentence, 
and the head with most votes is assigned to each 
word.  This very simple scheme guarantees that the 
final set of dependencies will have as many votes 
as possible, but it does not guarantee that the final 
voted set of dependencies will be a well-formed 
dependency tree.  In fact, the resulting graph may 
not even be connected.  Zeman & Žabokrtský 
(2005) apply this dependency voting scheme to 
Czech with very strong results.  However, when 
the constraint that structures must be well-formed 
is enforced, the accuracy of their results drops 
sharply. 

Instead, if we reparse the sentence based on the 
output of the m parsers, we can maximize the 
number of votes for a well-formed dependency 
structure.  Once we have obtained the m initial 
dependency structures to be combined, the first 
step is to build a graph where each word in the 
sentence is a node.  We then create weighted 
directed edges between the nodes corresponding to 
words for which dependencies are obtained from 
each of the initial structures.1  In cases where more 
than one dependency structure indicates that an 
edge should be created, the corresponding weights 
are simply added.  As long as at least one of the m 
initial structures is a well-formed dependency 
structure, the directed graph created this way will 
be connected. 

                                                 
1 Determining the weights is discussed in section 4.1. 

129



Once this graph is created, we reparse the 
sentence using a dependency parsing algorithm 
such as, for example, one of the algorithms 
described by McDonald et al. (2005).  Finding the 
optimal dependency structure given the set of 
weighted dependencies is simply a matter of 
finding the maximum spanning tree (MST) for the 
directed weighted graph, which can be done using 
the Chu-Liu/Edmonds directed MST algorithm 
(Chu & Liu, 1965; Edmonds, 1967).  The 
maximum spanning tree maximizes the votes for 
dependencies given the constraint that the resulting 
structure must be a tree.  If projectivity (no 
crossing branches) is desired, Eisner’s (1996) 
dynamic programming algorithm  (similar to CYK) 
for dependency parsing can be used instead.   

3 Constituent Reparsing 

In constituent reparsing we deal with labeled con-
stituent trees, or phrase structure trees, such as 
those in the Penn Treebank (after removing traces, 
empty nodes and function tags).  The general idea 
is the same as with dependencies.  First, m parsers 
each produce one parse tree for an input sentence.  
We then use these m initial parse trees to guide the 
application of a parse algorithm to the input. 

Instead of building a graph out of words (nodes) 
and dependencies (edges), in constituent reparsing 
we use the m initial trees to build a weighted parse 
chart.  We start by decomposing each tree into its 
constituents, with each constituent being a 4-tuple 
[label, begin, end, weight], where label is the 
phrase structure type, such as NP or VP, begin is 
the index of the word where the constituent starts, 
end is the index of the word where the constituent 
ends plus one, and weight is the weight of the con-
stituent.  As with dependencies, in the simplest 
case the weight of each constituent is simply 1.0, 
but different weighting schemes can be used.  
Once the initial trees have been broken down into 
constituents, we put all the constituents from all of 
the m trees into a single list.  We then look for each 
pair of constituents A and B where the label, begin, 
and end are identical, and merge A and B into a 
single constituent with the same label, begin, and 
end, and with weight equal to the weight of A plus 
the weight of B.  Once no more constituent mergers 
are possible, the resulting constituents are placed 
on a standard parse chart, but where the constitu-
ents in the chart do not contain back-pointers indi-

cating what smaller constituents they contain.  
Building the final tree amounts to determining 
these back-pointers.  This can be done by running a 
bottom-up chart parsing algorithm (Allen, 1995) 
for a weighted grammar, but instead of using a 
grammar to determine what constituents can be 
built and what their weights are, we simply con-
strain the building of constituents to what is al-
ready in the chart (adding the weights of constitu-
ents when they are combined).  This way, we per-
form an exhaustive search for the tree that repre-
sents the heaviest combination of constituents that 
spans the entire sentence as a well-formed tree. 

A problem with simply considering all constitu-
ents and picking the heaviest tree is that this favors 
recall over precision.  Balancing precision and re-
call is accomplished by discarding every constitu-
ent with weight below a threshold t before the 
search for the final parse tree starts.  In the simple 
case where each constituent starts out with weight 
1.0 (before any merging), this means that a con-
stituent is only considered for inclusion in the final 
parse tree if it appears in at least t of the m initial 
parse trees.  Intuitively, this should increase preci-
sion, since we expect that a constituent that ap-
pears in the output of more parsers to be more 
likely to be correct.  By changing the threshold t 
we can control the precision/recall tradeoff.  

Henderson and Brill (1999) proposed two parser 
combination schemes, one that picks an entire tree 
from one of the parsers, and one that, like ours, 
builds a new tree from constituents from the initial 
trees.  The latter scheme performed better, produc-
ing remarkable results despite its simplicity.  The 
combination is done with a simple majority vote of 
whether or not constituents should appear in the 
combined tree.  In other words, if a constituent ap-
pears at least (m + 1)/2 times in the output of the m 
parsers, the constituent is added to the final tree.  
This simple vote resulted in trees with f-score sig-
nificantly higher than the one of the best parser in 
the combination.  However, the scheme heavily 
favors precision over recall.  Their results on WSJ 
section 23 were 92.1 precision and 89.2 recall 
(90.61 f-score), well above the most accurate 
parser in their experiments (88.6 f-score). 

4 Experiments 

In our dependency parsing experiments we used 
unlabeled dependencies extracted from the Penn 

130



Treebank using the same head-table as Yamada 
and Matsumoto (2003), using sections 02-21 as 
training data and section 23 as test data, following 
(McDonald et al., 2005; Nivre & Scholz, 2004; 
Yamada & Matsumoto, 2003).  Dependencies ex-
tracted from section 00 were used as held-out data, 
and section 22 was used as additional development 
data.  For constituent parsing, we used the section 
splits of the Penn Treebank as described above, as 
has become standard in statistical parsing research. 

4.1 Dependency Reparsing Experiments 

Six dependency parsers were used in our combina-
tion experiments, as described below. 

The deterministic shift-reduce parsing algorithm 
of (Nivre & Scholz, 2004) was used to create two 
parsers2, one that processes the input sentence from 
left-to-right (LR), and one that goes from right-to-
left (RL).  Because this deterministic algorithm 
makes a single pass over the input string with no 
back-tracking, making decisions based on the pars-
er’s state and history, the order in which input to-
kens are considered affects the result.  Therefore, 
we achieve additional parser diversity with the 
same algorithm, simply by varying the direction of 
parsing.  We refer to the two parsers as LR and RL. 

The deterministic parser of Yamada and Ma-
tsumoto (2003) uses an algorithm similar to Nivre 
and Scholz’s, but it makes several successive left-
to-right passes over the input instead of keeping a 
stack.  To increase parser diversity, we used a ver-
sion of Yamada and Matsumoto’s algorithm where 
the direction of each of the consecutive passes over 
the input string alternates from left-to-right and 
right-to-left.  We refer to this parser as LRRL. 

The large-margin parser described in 
(McDonald et al., 2005) was used with no altera-
tions.  Unlike the deterministic parsers above, this 
parser uses a dynamic programming algorithm 
(Eisner, 1996) to determine the best tree, so there 
is no difference between presenting the input from 
left-to-right or right-to-left. 

Three different weight configurations were con-
sidered: (1) giving all dependencies the same 
weight; (2) giving dependencies different weights, 
depending only on which parser generated the de-
pendency; and (3) giving dependencies different 

                                                 
2 Nivre and Scholz use memory based learning in their 
experiments.  Our implementation of their parser uses 
support vector machines, with improved results. 

weights, depending on which parser generated the 
dependency, and the part-of-speech of the depend-
ent word.  Option 2 takes into consideration that 
parsers may have different levels of accuracy, and 
dependencies proposed by more accurate parsers 
should be counted more heavily.  Option 3 goes a 
step further, attempting to capitalize on the specific 
strengths of the different parsers. 

The weights in option 2 are determined by com-
puting the accuracy of each parser on the held-out 
set (WSJ section 00).  The weights are simply the 
corresponding parser’s accuracy (number of cor-
rect dependencies divided by the total number of 
dependencies).  The weights in option 3 are deter-
mined in a similar manner, but different accuracy 
figures are computed for each part-of-speech. 

Table 1 shows the dependency accuracy and 
root accuracy (number of times the root of the de-
pendency tree was identified correctly divided by 
the number of sentences) for each of the parsers, 
and for each of the different weight settings in the 
reparsing experiments (numbered according to 
their descriptions above). 

 
System Accuracy Root Acc. 
LR 91.0 92.6 
RL 90.1 86.3 
LRRL 89.6 89.1 
McDonald 90.9 94.2 
Reparse dep 1 91.8 96.0 
Reparse dep 2 92.1 95.9 
Reparse dep 3 92.7 96.6 
Table 1: Dependency accuracy and root accuracy of 
individual dependency parsers and their combination 
under three different weighted reparsing settings. 

4.2 Constituent Reparsing Experiments 

The parsers that were used in the constituent 
reparsing experiments are: (1) Charniak and John-
son’s (2005) reranking parser; (2) Henderson’s 
(2004) synchronous neural network parser; (3) 
Bikel’s (2002) implementation of the Collins 
(1999) model 2 parser; and (4) two versions of Sa-
gae and Lavie’s (2005) shift-reduce parser, one 
using a maximum entropy classifier, and one using 
support vector machines. 

Henderson and Brill’s voting scheme mentioned 
in section 3 can be emulated by our reparsing ap-
proach by setting all weights to 1.0 and t to (m + 
1)/2, but better results can be obtained by setting 
appropriate weights and adjusting the preci-
sion/recall tradeoff.  Weights for different types of 

131



constituents from each parser can be set in a simi-
lar way to configuration 3 in the dependency ex-
periments.  However, instead of measuring accu-
racy for each part-of-speech tag of dependents, we 
measure precision for each non-terminal label.   

The parameter t is set using held-out data (from 
WSJ section 22) and a simple hill-climbing proce-
dure.  First we set t to (m + 1)/2 (which heavily 
favors precision).  We then repeatedly evaluate the 
combination of parsers, each time decreasing the 
value of t (by 0.01, say).  We record the values of t 
for which precision and recall were closest, and for 
which f-score was highest. 

Table 2 shows the accuracy of each individual 
parser and for three reparsing settings.  Setting 1 is 
the emulation of Henderson and Brill’s voting.  In 
setting 2, t is set for balancing precision and recall.  
In setting 3, t is set for highest f-score.  
 
System Precision Recall F-score 
Charniak/Johnson 91.3 90.6 91.0 
Henderson 90.2 89.1 89.6 
Bikel (Collins) 88.3 88.1 88.2 
Sagae/Lavie (a) 86.9 86.6 86.7 
Sagae/Lavie (b) 88.0 87.8 87.9 
Reparse 1 95.1 88.5 91.6 
Reparse 2 91.8 91.9 91.8 
Reparse 3 93.2 91.0 92.1 
Table 2: Precision, recall and f-score of each constituent 
parser and their combination under three different 
reparsing settings. 

5 Discussion 

We have presented a reparsing scheme that pro-
duces results with accuracy higher than the best 
individual parsers available by combining their 
results.  We have shown that in the case of de-
pendencies, the reparsing approach successfully 
addresses the issue of constructing high-accuracy 
well-formed structures from the output of several 
parsers.  In constituent reparsing, held-out data can 
be used for setting a parameter that allows for bal-
ancing precision and recall, or increasing f-score.  
By combining several parsers with f-scores ranging 
from 91.0% to 86.7%, we obtain reparsed results 
with a 92.1% f-score. 

References 

Allen, J. (1995). Natural Language Understanding (2nd 
ed.). Redwood City, CA: The Benjamin/Cummings 
Publishing Company, Inc. 

Bikel, D. (2002). Design of a multi-lingual, parallel-
processing statistical parsing engine. In Proceedings 
of HLT2002. San Diego, CA. 

Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-
best parsing and MaxEnt discriminative reranking. In 
Proceedings of the 43rd meeting of the Association 
for Computational Linguistics. Ann Arbor, MI. 

Chu, Y. J., & Liu, T. H. (1965). On the shortest arbores-
cence of a directed graph. Science Sinica(14), 1396-
1400. 

Edmonds, J. (1967). Optimum branchings. Journal of 
Research of the National Bureau of Standards(71B), 
233-240. 

Eisner, J. (1996). Three new probabilistic models for 
dependency parsing: An exploration. In Proceedings 
of the International Conference on Computational 
Linguistics (COLING'96). Copenhagen, Denmark. 

Henderson, J. (2004). Discriminative training of a neu-
ral network statistical parser. In Proceedings of the 
42nd Meeting of the Association for Computational 
Linguistics. Barcelona, Spain. 

Henderson, J., & Brill, E. (1999). Exploiting diversity in 
natural language processing: combining parsers. In 
Proceedings of the Fourth Conference on Empirical 
Methods in Natural Language Processing (EMNLP). 

Marcus, M. P., Santorini, B., & Marcinkiewics, M. A. 
(1993). Building a large annotated corpus of English: 
The Penn Treebank. Computational Linguistics, 19. 

McDonald, R., Pereira, F., Ribarov, K., & Hajic, J. 
(2005). Non-Projective Dependency Parsing using 
Spanning Tree Algorithms. In Proceedings of the 
Conference on Human Language Technolo-
gies/Empirical Methods in Natural Language Proc-
essing (HLT-EMNLP). Vancouver, Canada. 

Nivre, J., & Scholz, M. (2004). Deterministic depend-
ency parsing of English text. In Proceedings of the 
20th International Conference on Computational Lin-
guistics (pp. 64-70). Geneva, Switzerland. 

Sagae, K., & Lavie, A. (2005). A classifier-based parser 
with linear run-time complexity. In Proceedings of 
the Ninth International Workshop on Parsing Tech-
nologies. Vancouver, Canada. 

Yamada, H., & Matsumoto, Y. (2003). Statistical de-
pendency analysis using support vector machines. In 
Proceedings of the Eighth International Workshop on 
Parsing Technologies. Nancy, France. 

Zeman, D., & Žabokrtský, Z. (2005). Improving Parsing 
Accuracy by Combining Diverse Dependency Pars-
ers. In Proceedings of the International Workshop on 
Parsing Technologies. Vancouver, Canada. 

132


