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this scheme, the syntactic structure for a sentence

Abstract with n words is a dependency tree representing
head-dependent relations between pairs of words.
We present a novel parser combination When m parsers each output a set of

scheme that works by reparsing input sen- dependencies (formingh dependency structures)
tences once they have already been parsed for a given sentence containing words, the

by several different parsers. We apply this dependencies can be combined in a simple word-
idea to dependency and constituent parsing, by-word voting scheme, where each parser votes
generating results that surpass state-of-the- for the head of each of tiewords in the sentence,

art accuracy levels for individual parsers. and the head with most votes is assigned to each
word. This very simple scheme guarantees that the
1 Introduction final set of dependencies will have as many votes

as possible, but it does not guarantee that the final
Over the past decade, remarkable progress Ngsieq set of dependencies will be a well-formed
been made in data-driven parsing. Much of thigenendency tree. In fact, the resulting graph may
work has been fueled by the availability of large st even be connected. Zeman & Zabokrtsky
corpora annotated with syntactic structures, eSP2005) apply this dependency voting scheme to
cially the Penn Treebank (Marcus et al., 1993). Iix;ech with very strong results. However, when
fact, years of extensive research on training anfhe constraint that structures must be well-formed
testing parsers on the Wall Street Journal (WSJ} enforced, the accuracy of their results drops
corpus of the Penn Treebank have resulted in t@%arply.

availability of several high-accuracy parsers. Instead, if we reparse the sentence based on the

We present a framework for combining the out-Outlout of them parsers, we can maximize the

put of several different accurate parsers to produg®,mber of votes for a well-formed dependency
results that are superior to those of each of the iy cture.  Once we have obtained theinitial
dividual parsers. This is done in a two stage ProGgependency structures to be combined, the first
ess ofreparsing In the first stagem different  gio5 s to build a graph where each word in the
parsers analyze an input sentence, each producignience is a node. We then create weighted
a syntactic structure. In the second stage, a parsigfected edges between the nodes corresponding to
algorithm is applied to the original sentence, takingyorgs for which dependencies are obtained from
into account the analyses produced by each parSgl -, of the initial structurdsin cases where more

in the first stage. Our approach produces resulifan gne dependency structure indicates that an
with accuracy above those of the best individualyge should be created, the corresponding weights
parsers on both dependency and constituent patg simply added. As long as at least one ofithe
ing of the standard WSJ test set. initial structures is a well-formed dependency
structure, the directed graph created this way will
be connected.

In dependency reparsing we focus on unlabeled
dependencies, as described by Eisner (1996). Ipetermining the weights is discussed in sectidn 4.

2 Dependency Reparsing
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Once this graph is created, we reparse theating what smaller constituents they contain.
sentence using a dependency parsing algorithBuilding the final tree amounts to determining
such as, for example, one of the algorithmshese back-pointers. This can be done by running a
described by McDonald et al. (2005). Finding thébottom-up chart parsing algorithm (Allen, 1995)
optimal dependency structure given the set dior a weighted grammar, but instead of using a
weighted dependencies is simply a matter oframmar to determine what constituents can be
finding the maximum spanning tree (MST) for thebuilt and what their weights are, we simply con-
directed weighted graph, which can be done usingtrain the building of constituents to what is al-
the Chu-Liu/Edmonds directed MST algorithmready in the chart (adding the weights of constitu-
(Chu & Liu, 1965; Edmonds, 1967). The ents when they are combined). This way, we per-
maximum spanning tree maximizes the votes foform an exhaustive search for the tree that repre-
dependencies given the constraint that the resultirggnts the heaviest combination of constituents that
structure must be a tree. If projectivity (nospans the entire sentence as a well-formed tree.
crossing branches) is desired, Eisner's (1996) A problem with simply considering all constitu-
dynamic programming algorithm (similar to CYK) ents and picking the heaviest tree is that this favors

for dependency parsing can be used instead. recall over precision. Balancing precision and re-
) ) call is accomplished by discarding every constitu-
3 Constituent Reparsing ent with weight below a thresholt before the

. . . search for the final parse tree starts. In the simple
In constituent reparsing we deal with labeled con= ; . .

. case where each constituent starts out with weight
stituent trees, or phrase structure trees, such

those in the Penn Treebank (after removing traceil'so (before any merging), this means that a con-

empty nodes and function tags). The general ide§tituent is only considered for inclusion in the final
Pty 9s). 9 rse tree if it appears in at leastf the m initial

is the same as with dependencies. Finsparsers e . . .
. arse trees. Intuitively, this should increase preci-
each produce one parse tree for an input senten&s

We then use thesainitial parse trees to guide the sfon, since we expect that a constituent that ap-
o pe 0 9 pears in the output of more parsers to be more
application of a parse algorithm to the input. ikely to be correct. By changing the threshold
Instead of building a graph out of words (nodes y ets ging

and dependencies (edges), in constituent reparsin e can control the precision/recall tradeoft.
P S ges), I . P 94enderson and Brill (1999) proposed two parser
we use then initial trees to build a weighted parse

chart. We start by decomposing each tree into icomblnatlon schemes, one that picks an entire tree

constituents, with each constituent being a 4-tu Irom one of the parsers, and one that, like ours,
> . 9 P Builds a new tree from constituents from the initial
[label, begin, end, weight where label is the

phrase structure type, such as NP or b@ginis trees. The latter scheme performed better, produc-

the index of the word where the constituent startsl,ng remarkable results despite its simplicity. The

: ) ; ombination is done with a simple majority vote of
endis the index of the word wher_e the Consmuengvhether or not constituents should appear in the
ends plus one, andeightis the weight of the con- . : .

) ; . . . ombined tree. In other words, if a constituent ap-
stituent. As with dependencies, in the simples

case the weight of each constituent is simply 1 daears at leagtn + 1)/2times in the output of the
. ght of e ply 1. arsers, the constituent is added to the final tree.
but different weighting schemes can be use

Once the initial trees have been broken down into.hIS simple vote resulted in trees with f-score sig-

. : ificantly higher than the one of the best parser in
constituents, we put all the constituents from all o he combination. However, the scheme heavily
thgmtrees Into a single list. We then look fOI’. ead}avors precision over recall. Their results on WSJ
pair of constituenté& andB where thdabel, begin

and end are identical, and merg& and B into a section 23 were 92.1 precision and 89.2 recall

single constituent with the santabel, begin and (90.61 f-score), well above the most accurate
end and withweightequal to theveightof A plus parser in their experiments (88.6 f-score).
thewelgh_tof B. Once no more constituent mergers Experiments

are possible, the resulting constituents are placed

on a standard parse chart, but where the constitln our dependency parsing experiments we used
ents in the chart do not contain back-pointers indiunlabeled dependencies extracted from the Penn
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Treebank using the same head-table as Yamasaeights, depending on which parser generated the
and Matsumoto (2003), using sections 02-21 adependency, and the part-of-speech of the depend-
training data and section 23 as test data, followingnt word. Option 2 takes into consideration that
(McDonald et al., 2005; Nivre & Scholz, 2004; parsers may have different levels of accuracy, and
Yamada & Matsumoto, 2003). Dependencies exdependencies proposed by more accurate parsers
tracted from section 00 were used as held-out datshould be counted more heavily. Option 3 goes a
and section 22 was used as additional developmestiep further, attempting to capitalize on the specific
data. For constituent parsing, we used the secti@trengths of the different parsers.
splits of the Penn Treebank as described above, asThe weights in option 2 are determined by com-
has become standard in statistical parsing researcputing the accuracy of each parser on the held-out
set (WSJ section 00). The weights are simply the
corresponding parser’s accuracy (number of cor-
Six dependency parsers were used in our combinggct dependencies divided by the total number of
tion experiments, as described below. dependencies). The weights in option 3 are deter-
The deterministic shift-reduce parsing algorithmmined in a similar manner, but different accuracy
of (Nivre & Scholz, 2004) was used to create twdigures are computed for each part-of-speech.
parser§ one that processes the input sentence from Table 1 shows the dependency accuracy and
left-to-right (LR), and one that goes from right-to-root accuracy (number of times the root of the de-
left (RL). Because this deterministic a|gorithmpendency tree was identified correctly divided by
makes a single pass over the input string with nthe number of sentences) for each of the parsers,
back-tracking, making decisions based on the pargnd for each of the different weight settings in the
er's state and history, the order in which input tofeparsing experiments (numbered according to
kens are considered affects the result. Thereforteir descriptions above).
we achieve additional parser diversity with the

4.1 Dependency Reparsing Experiments

same algorithm, simply by varying the direction ofSystem Accuracy Root Acc.
parsing. We refer to the two parsers as LR and RLR 91.0 92.6

The deterministic parser of Yamada and MaRL 90.1 86.3
tsumoto (2003) uses an algorithm similar to Nivre-RRL 89.6 89.1
and Scholz's, but it makes several successive lef4cDonald 90.9 94.2
to-right passes over the input instead of keepingeéggggg g:g; g;i‘ ggg
stack. To increase parser diversity, we used a v eparse dep 3 927 9.6

sion (.)f quada and Matsumoto’s algonthm Whe"=I'able 1: Dependency accuracy and root accuracy of
the d_lrectlon _Of each of the consecutive Passes OViliividual dependency parsers and their combination
the input string alternates from left-to-right andynger three different weighted reparsing settings.
right-to-left. We refer to this parser as LRRL.

The large-margin  parser described in4.2 Congtituent Reparsing Experiments

(McDonald et al., 2005) was used with no alterathe parsers that were used in the constituent

tions. Unlike the deterministic parsers above’_thi?eparsing experiments are: (1) Charniak and John-
parser uses a dynamic programming algorithndgnys (2005) reranking parser; (2) Henderson’s
.(Eisner', 1996) to determine the i)est treg, SO thef9004) synchronous neural network parser; (3)
is no difference between presenting the input frong;iq|'s (2002) implementation of the Collins

left-to-right or right-to-left. _ (1999) model 2 parser; and (4) two versions of Sa-
Three different weight configurations were CON-gae and Lavie’s (2005) shift-reduce parser, one

sidered: (1) giving all dependencies the samging a maximum entropy classifier, and one using
weight; (2) giving dependencies different We'ghtssupport vector machines.

depending only on which parser generated the de- fengerson and Brill's voting scheme mentioned

pendency; and (3) giving dependencies different, section 3 can be emulated by our reparsing ap-
proach by setting all weights to 1.0 antb (m +

2 Nivre and Scholz use memory based learning irr theil)/2, but better results can be obtained by setting
experiments. Our implementation of their parsezsus appropriate weights and adjusting the preci-
support vector machines, with improved results. sion/recall tradeoff. Weights for different types of
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constituents from each parser can be set in a sinikel, D. (2002). Design of a multi-lingual, pasilH

lar way to configuration 3 in the dependency ex- Processing statistical parsing engine.Rroceedings

periments. However, instead of measuring accu- ©f HLT2002 San Diego, CA.

racy for each part-of-speech tag of dependents, Wharniak, E., & Johnson, M. (2005). Coarse-to-fine

measure precision for each non-terminal label. best parsing and MaxEnt discriminative rerankimg. |
The parameter is set using held-out data (from Proceedings of the 43rd meeting of the Association

WSJ section 22) and a simple hill-climbing proce- for Computational LinguisticsAnn Arbor, MI.

dure. First we setto (m + 1)/2 (which heavily cny, v. 3., & Liu, T. H. (1965). On the shortesbares-
favors precision). We then repeatedly evaluate the cence of a directed grapBcience Sinidd4), 1396-
combination of parsers, each time decreasing the1400.
value .Oft (by 0.'0.1' say). We record the values of Edmonds, J. (1967). Optimum branchingsurnal of
for which precision and recall were closest, and for Research of the National Bureau of StandérdB),
which f-score was highest. 233.240.

Table 2 shows the accuracy of each individual . o
parser and for three reparsing settings. Setting 1 fSner. J. (1996). Three new probabilistic models f
the emulation of Henderson and Brill’'s voting. In dependency parsing: An exploration. Proceedings

Hing 2t i t for bal . - d I of the International Conference on Computational
Setling LIS setlor balancing precision and recall. Linguistics (COLING'96)Copenhagen, Denmark.
In setting 31 is set for highest f-score.

Henderson, J. (2004). Discriminative training ofieu-

ral network statistical parser. IARroceedings of the

System Precision  Recall F-score ' v )
Charniak/Johnson 913 906 91.0 ALl?nd .I\g_eetlgg ofI the gssqmatlon for Computational
Henderson 90.2 89.1 89.6 inguistics barcelona, spain.

Bikel (Collins) 88.3 88.1 88.2 Henderson, J., & Brill, E. (1999). Exploiting digdy in
Sagae/Lavie (a) 86.9 86.6 86.7 natural language processing: combining parsers. In
Sagae/Lavie (b) 88.0 87.8 87.9 Proceedings of the Fourth Conference on Empirical
Reparse 1 95.1 88.5 91.6 Methods in Natural Language Processing (EMNLP)
Reparse 2 91.8 919 91.8 o Cl

Reparse 3 932 91.0 w01 Marcus, M. P., Santorini, B., & Marcinkiewics, M.. A

(1993). Building a large annotated corpus of Einglis

Table 2: Precision, recall and f-score of each et The Penn Treebaniomputational Linguistics, 19

parser and their combination under three different

reparsing settings. McDonald, R., Pereira, F., Ribarov, K., & Hajic, J.
(2005). Non-Projective Dependency Parsing using
5 Discussion Spanning Tree Algorithms. IfProceedings of the

_ Conference on Human Language Technolo-
We have presented a reparsing scheme that progies/Empirical Methods in Natural Language Proc-
duces results with accuracy higher than the bestessing (HLT-EMNLP)Vancouver, Canada.

individual parsers available by' combining theirNivre, J., & Scholz, M. (2004). Deterministic depen
results. We have shown that in the case of de-gncy parsing of English text. IRroceedings of the

pendencies, the reparsing approach successfully2oth International Conference on Computational Lin-
addresses the issue of constructing high-accuracyguistics(pp. 64-70). Geneva, Switzerland.

well-formed strucf[ures from the output of severagagae, K., & Lavie, A. (2005). A classifier-basextger
parsers. In constituent reparsing, held-out data can ;i\’ inear run-time complexity. IrProceedings of
be used for setting a parameter that allows for bal’the Ninth International Workshop on Parsing Tech-
ancing precision and recall, or increasing f-score. pojogies.vancouver, Canada.

By combining several parsers with f-scores rangin
from 91.0% to 86.7%, we obtain reparsed result
with a 92.1% f-score.
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