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Abstract to solve the computation problems, we propose al-
gorithms which evaluate the above kernels in linear

In this paper, we use tree kernels to exploit ~ average running time.

deep syntactic parsing information for nat- We experimented such kernels with Support Vec-
ural language applications. We study the  tor Machines (SVMs) on the classification of seman-
properties of different kernels and we pro-  tic roles of PropBank (Kingsbury and Palmer, 2002)
vide a|gorithms for their Computation in and FrameNet (Fl”more, 1982) data sets. The re-

linear average time. The experiments with ~ sults show that: (1) the kernel approach provides the
SVMs on the task of predicate argument ~ same accuracy of the manually designed features.
classification provide empirical data that  (2) The overfitting problem does not occur although

validates our methods. the richer space of PTs does not provide better ac-
curacy than the one based on SST. (3) The average
1 Introduction running time of our tree kernel computation is linear.

Recently, several tree kernels have been applied to! the remainder of this paper, Section 2 intro-

natural language learning, e.g. (Collins and Duﬁyguces the different tree kernel spaces. Section 3 de-

2002: Zelenko et al., 2003; Cumby and Roth 2003s.cribes the kernel functions and our fast algorithms
Culotta and Sorensen. 2004: Moschitti 20021). pdor their evaluation. Section 4 shows the compara-
spite their promising results, three general objeélve performance in terms of execution time and ac-

tions against kernel methods are raised: (1) only &Hacy:

subset of the dual space features are relevant, this, Tree kernel Spaces

it may be possible to design features in the primale consider three different tree kernel spaces: the

space that produce the same accuracy with a fastibtrees (STs), the subset trees (SSTs) and the novel

computation time; (2) in some cases the high nunpartial trees (PTs).

ber of features (substructures) of the dual space canAn ST of a tree is rooted in any node and includes

produce overfitting with a consequent accuracy deall its descendants. For example, Figure 1 shows the

crease (Cumby and Roth, 2003); and (3) the compparse tree of the sentent@ary brought a cat"

tation time of kernel functions may be too high andogether with its 6 STs. An SST is a more general

prevent their application in real scenarios. structure since its leaves can be associated with non-
In this paper, we study the impact of the subterminal symbols. The SSTs satisfy the constraint

tree (ST) (Vishwanathan and Smola, 2002), subs#tat grammatical rules cannot be broken. For exam-

tree (SST) (Collins and Duffy, 2002) and partial tregle, Figure 2 shows 10 SSTs out of 17 of the sub-

(PT) kernels on Semantic Role Labeling (SRL). Théree of Figure 1 rooted iwp. If we relax the non-

PT kernel is a new function that we have designetreaking rule constraint we obtain a more general

to generate larger substructure spaces. Moreovéoym of substructures, i.e. the PTs. For example,
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Figure 3 shows 10 out of the total 30 PTs, derived

from the same tree as before. W) . R
A(ni,n2) =1+ > 1T Aen, 1], enylJ2:])
VE > = - P
N/S\VP V/ \NF - J1,Jd,1(J1)=1(J2) =1 @
MLV v/ \NF brcu‘ght "3/ \"“ "3/ \"\‘ Whereji = (Ji1, J12, Ji3, ..) and jg = (Ja1, J22, Jos, ..)
st T’/ \T = P e oo are index sequences associated with the ordered
P T mlm MTW child sequences,, of n; ande,, of n,, respectively,

Ju: and Jy; point to thei-th children in the two se-

Figure 1:A syntactic parse tree with its subtrees (STs).
guences, and-) returns the sequence length. We

w N L note that (1) Eq. 2 is a convolution kernel accord-
R PP e ing to the definition and the proof given in (Haus-
e r‘/ \‘N@ .‘3/ \T Powr e T sler, 1999). (2) Such kernel generates a feature

T N A O space richer than those defined in (Vishwanathan

Figure 2:A tree with some of its subset trees (SSTs). and Smola, 2002; Collins and Duffy, 2002; Zelenko
et al., 2003; Culotta and Sorensen, 2004; Shawe-

P A U Taylor and Cristianini, 2004). Additionally, we add
(= A WY A WA W A A N the decay factor as followss (ny, ny) =
brough D N D D N D ND D N
[ [ | Np NPONP -
a ca a ca a ca a a D/ \N \N D/ . . 1(J1) . .
| w2+ Z 241 +d(T2) H A(cny [J1i], Cny [JQi]))
Figure 3:A tree with some of its partial trees (PTs). T Tl (T =1(Ts) i=1

@)
whered(J1) = Jy, 7, — Ju andd() = Jy 7, — Jo1.
In this way, we penalize subtrees built on child
The main idea of tree kernels is to compute th%ubsequences that contain gaps. Moreover, to
number of common substructures between two tre@gye a similarity score between 0 and 1, we also
Ty andT; without explicitly considering the whole gpply the normalization in the kernel space, i.e.
fragment space. We designed a general functiog: 1, 7,) — K (T1,Ty) As the summation

C VE(T1T) XK (T2,Ts)
to computg t.he S.T’ SST and PT kernels. Qur faﬁ];' Eq. 3 can be distributed with respect to different
algorithm is inspired by the efficient evaluation of

types of sequences, e.g. those composedpb
non-continuous subsequences (described in (Sha %p d g posedy by

S ) ildren, it follows that
Taylor and Cristianini, 2004)). To further increase
the computation speed, we also applied the pre- A(n1,n2) = (A2 + X0 Ap(n1,na)), 4)
selection of node pairs which have non-null kernel

3 Fast Tree Kernel Functions

‘wherea, evaluates the number of common subtrees
3.1 Generalized Tree Kernel function rooted in subsequences of exagtlghildren (ofn,

andn.) andim = min{l(cn1),(cn2)}. Note also that if
¢ We consider only the contribution of the longest se-
guence of node pairs that have the same children, we
implement the SST kernel. For the STs computation
we need also to remove thé term from Eq. 4.
K(T,T)= > > A(m,n), (1) Given the two child sequencesa = ¢,, and

" ENTy n2ENT, e2b = ¢, (a @andb are the last children)y, (cia, c2b) =

Given a tree fragment space= {fi, fo, .., f}, We
use the indicator function(n) which is equal to 1 i
the targety; is rooted at node and O otherwise. We
define the general kernel as:

where Ny, and Nz, are the sets of nodes in and el lea]

Ty, respectively and\(ni,n2) = S Li(n) 1 (n2), Aa,b) x 303 ARl AL (L i el 1),
i.e. the number of common fragments rooted at the i1 =1

n1 andn, nodes. We can compute it as follows:  \yherec,[1 : i and e[t : +] are the child subse-

- if the node labels of.; andn. are different then quences from to i and from1 to » of ¢; andc,. If
A(ni,ng) = 0; we name the double summation termias we can
- else: rewrite the relation as:
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were obtained by training an SVM for each class
in the ONE-vs.-ALL fashion. In the testing phase,

A(a,b)D,(le1], |ea]) if @ = b we selected the class associated with the maximum
Ap(cia,cab) = { 0 . SVM score.
otherwise.
For the ST, SST and PT kernels, we found that the
Note thatD, satisfies the recursive relation: best\ values (see Section 3) on the development set
were 1, 0.4 and 0.8, respectively, whereas the pest
Dy(k,1) = Ap—1(s[1: k], t[1:1]) + ADp(k,l = 1) was 0.4.

+ADp(k —1,1) + XDy (k — 1,1 — 1). ing ti i
o ) n( ) 4.1 Kernel running time experiments

By means of the above relation, we can comput@o study the FTK running time, we extracted from
the child subsequences of two seisand ¢, in the Penn Treebank several samples of 500 trees con-

O(plerlle=]).  This means that the worst case comtaining exactlyn nodes. Each point of Figure 4
plexity of the PT kernel iso(pp?| Nz, || N1, |), Where shows the average computation ti the kernel

» is the maximum branching factor of the two treesfunction applied to the 250,000 pairs of trees of size
Note that the averagge in natural language parse " It clearly appears that the FTK-SST and FTK-PT
trees is very small and the overall complexity can bé-€- FTK applied to the SST and PT kernels) av-
reduced by avoiding the computation of node pair§fage running time has linear behavior whereas, as
with different labels. The next section shows our fagXPected, the e SST algorithm shows a quadratic

algorithm to find non-null node pairs. curve.
3.2 Fast non-null node pair computation 0 /
To compute the kernels defined in the previous sec- 0 || o hveser /!

—8-FTK-PT

tion, we sum thea function for each paitn,, n)e
Nr, x Nz, (Eq. 1). When the labels associated

60

Hseconds

with », andn, are different, we can avoid evaluating © o

A(n1,n9) Since it iso. Thus, we look for a node pair G //3/

SetN, ={(n1,n2)€ Ny, x Ny, : label(ni) = label(nz2)}. o S
To efficiently build n,, we (i) extract ther, and TR oot

L, lists of nodes fromry and 73, (i) sort them in  Figure 4:Average time inuseconds for the fiee SST kernel,
alphanumeric order and (iii) scan them to fing.  FTK-SST and FTK-PT evaluations.
Step (iii) may require only(| Nz, | +|Nr,|) ime, but, 4 5 Eyheriments on SRL dataset
if label(n,) appears, times in7; andiabel(nz) IST€- \We used two different corpora:  PropBank
peatedr, times inT,, we need to considet; x r» (www.cis.upenn.edu/  ~ace) along with Penn
pairs. The formal can be found in (Moschitti, 2006)Treebank 2 (Marcus et al., 1993) and FrameNet.
4 The Experiments PropBank contains about 53,700 sentences and
In these experiments, we study tree kernel perfor fixed split between training and testing used in
mance in terms of average running time and accwther researches. In this split, sections from 02 to
racy on the classification of predicate arguments. A2l are used for training, section 23 for testing and
shown in (Moschitti, 2004), we can label semansection 22 as development set. We considered a
tic roles by classifying the smallest subtree that intotal of 122,774 and 7,359 arguments (fraxrg0
cludes the predicate with one of its arguments, i.¢0 Arg5, ArgA and ArgM) in training and testing,
the so called PAF structure. respectively. The tree structures were extracted
The experiments were carried out withfrom the Penn Treebank.
the SVM-light-TK software available at From the FrameNet corpus wyw.icsi.
http://ai-nlp.info.uniromaz2.it/moschitti/ berkeley.edu/  ~framenet ) we extracted all
which encodes the fast tree kernels in the SVM-light " 1\ye 15 the experiments on a Pentium 4, 2GHz, with 1 Gb
software (Joachims, 1999). The multiclassifiergam.
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jgyf'j manually designed features by 2/3 percent points,
0ss %g/_/éd //// thus they can be seen as a useful tactic to boost sys-
- i tem accuracy.

0.83 %

0.80 /

Accuracy

:Z:ear o [ Args [ unear | sT [ ssT | PT |
[Acc. [ 876 84.6] 87.7] 86.7]

AV

Table 1: Evaluation of kernels on PropBank data and gold
parse trees.

0.75
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Figure 5:Multiclassifier accuracy according to different train- [ Roles [ tiear | sT_| sst_| pr_|]
ing set percentage. [ Acc. [823]80.0[81.2]79.9]

Table 2:Evaluation of keels on FrameNet data encoded in
24,558 sentences of the 40 Frames selected f@ftomatic parse trees.
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