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Abstract

We describe a method based on “tweak-
ing” an existing learned sequential classi-
fier to change the recall-precision tradeoff,
guided by a user-provided performance
criterion. This method is evaluated on
the task of recognizing personal names in
email and newswire text, and proves to be
both simple and effective.

1 Introduction

Named entity recognition (NER) is the task of iden-
tifying named entities in free text—typically per-
sonal names, organizations, gene-protein entities,
and so on. Recently, sequential learning methods,
such as hidden Markov models (HMMs) and con-
ditional random fields (CRFs), have been used suc-
cessfully for a number of applications, including
NER (Sha and Pereira, 2003; Pinto et al., 2003; Mc-
callum and Lee, 2003). In practice, these methods
provide imperfect performance: precision and re-
call, even for well-studied problems on clean well-
written text, reach at most the mid-90’s. While
performance of NER systems is often evaluated in
terms ofF1 measure (a harmonic mean of preci-
sion and recall), this measure may not match user
preferences regarding precision and recall. Further-
more, learned NER models may be sub-optimal also
in terms of F1, as they are trained to optimize other
measures (e.g., loglikelihood of the training data for
CRFs).

Obviously, different applications of NER have
different requirements for precision and recall. A

system might require high precision if it is designed
to extract entities as one stage of fact-extraction,
where facts are stored directly into a database. On
the other hand, a system that generates candidate ex-
tractions which are passed to a semi-automatic cu-
ration system might prefer higher recall. In some
domains, such as anonymization of medical records,
high recall is essential.

One way to manipulate an extractor’s precision-
recall tradeoff is to assign a confidence score to each
extracted entity and then apply a global threshold to
confidence level. However, confidence thresholding
of this sort cannot increase recall. Also, while confi-
dence scores are straightforward to compute in many
classification settings, there is no inherent mecha-
nism for computing confidence of a sequential ex-
tractor. Culotta and McCallum (2004) suggest sev-
eral methods for doing this with CRFs.

In this paper, we suggest an alternative simple
method for exploring and optimizing the relation-
ship between precision and recall for NER systems.
In particular, we describe and evaluate a technique
called “extractor tweaking” that optimizes a learned
extractor with respect to a specific evaluation met-
ric. In a nutshell, we directlytweak the threashold
term that is part of any linear classifier, including se-
quential extractors. Though simple, this approach
has not been empirically evaluated before, to our
knowledge. Further, although sequential extractors
such as HMMs and CRFs are state-of-the-art meth-
ods for tasks like NER, there has been little prior re-
search about tuning these extractors’ performance to
suit user preferences. The suggested algorithm op-
timizes the system performance per a user-provided
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evaluation criterion, using a linear search procedure.
Applying this procedure is not trivial, since the un-
derlying function is not smooth. However, we show
that the system’s precision-recall rate can indeed be
tuned to user preferences given labelled data using
this method. Empirical results are presented for a
particular NER task—recognizing person names, for
three corpora, including email and newswire text.

2 Extractor tweaking

Learning methods such as VP-HMM and CRFs op-
timize criteria such as margin separation (implicitly
maximized by VP-HMMs) or log-likelihood (ex-
plicitly maximized by CRFs), which are at best indi-
rectly related to precision and recall. Can such learn-
ing methods be modified to more directly reward a
user-provided performance metric?

In a non-sequential classifier, a threshold on confi-
dence can be set to alter the precision-recall tradeoff.
This is nontrivial to do for VP-HMMs and CRFs.
Both learners use dynamic programming to find the
label sequencey = (y1, . . . , yi, . . . , yN ) for a word
sequencex = (x1, . . . , xi, . . . , xN ) that maximizes
the functionW ·

∑

i f(x, i, yi−1, yi) , whereW is
the learned weight vector andf is a vector of fea-
tures computed fromx, i, the labelyi for xi, and the
previous labelyi−1. Dynamic programming finds
the most likely state sequence, and does not output
probability for a particular sub-sequence. (Culotta
and McCallum, 2004) suggest several ways to gen-
erate confidence estimation in this framework. We
propose a simpler approach for directly manipulat-
ing the learned extractor’s precision-recall ratio.

We will assume that the labelsy include one label
O for “outside any named entity”, and letw0 be the
weight for the featuref0, defined as follows:

f0(x, i, yi−1, yi) ≡

{

1 if yi = O

0 else

If no such feature exists, then we will create one.
The NER based onW will be sensitive to the value
of w0: large negative values will force the dynamic
programming method to label tokens as inside enti-
ties, and large positive values will force it to label
fewer entities1.

1We clarify thatw0 will refer to featuref0 only, and not to
other features that may incorporate label information.

We thus propose to “tweak” a learned NER by
varying the single parameterw0 systematically so as
to optimize some user-provided performance metric.
Specifically, we tunew0 using a a Gauss-Newton
line search, where the objective function is itera-
tively approximated by quadratics.2 We terminate
the search when two adjacent evaluation results are
within a 0.01% difference3.

A variety of performance metrics might be imag-
ined: for instance, one might wish to optimize re-
call, after applying some sort of penalty for pre-
cision below some fixed threshold. In this paper
we will experiment with performance metrics based
on the (complete) F-measure formula, which com-
bines precision and recall into a single numeric value
based on a user-provided parameterβ:

F (β, P, R) =
(β2 + 1)PR

β2P + R

A value ofβ > 1 assigns higher importance to re-
call. In particular,F2 weights recall twice as much
as precision. Similarly,F0.5 weights precision twice
as much as recall.

We consider optimizing both token- and entity-
level Fβ – awarding partial credit for partially ex-
tracted entities and no credit for incorrect entity
boundaries, respectively. Performance is optimized
over the dataset on whichW was trained, and tested
on a separate set. A key question our evaluation
should address is whether the values optimized for
the training examples transfer well to unseen test ex-
amples, using the suggested approximate procedure.

3 Experiments

3.1 Experimental Settings

We experiment with three datasets, of both email
and newswire text. Table 1 gives summary statis-
tics for all datasets. The widely-usedMUC-6 dataset
includes news articles drawn from the Wall Street
Journal. TheEnron dataset is a collection of emails
extracted from the Enron corpus (Klimt and Yang,
2004), where we use a subcollection of the mes-
sages located in folders named “meetings” or “cal-
endar”. TheMgmt-Groups dataset is a second email

2from http://billharlan.com/pub/code/inv.
3In the experiments, this is usually within around 10 itera-

tions. Each iteration requires evaluating a “tweaked” extractor
on a training set.
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collection, extracted from the CSpace email cor-
pus, which contains email messages sent by MBA
students taking a management course conducted at
Carnegie Mellon University in 1997. This data was
split such that its test set contains a different mix of
entity names comparing to training exmaples. Fur-
ther details about these datasets are available else-
where (Minkov et al., 2005).

# documents # names
Train Test # tokens per doc.

MUC-6 347 30 204,071 6.8
Enron 833 143 204,423 3.0
Mgmt-Groups 631 128 104,662 3.7

Table 1:Summary of the corpora used in the experiments

We used an implementation of Collins’ voted-
percepton method for discriminatively training
HMMs (henceforth, VP-HMM) (Collins, 2002) as
well as CRF (Lafferty et al., 2001) to learn a NER.
Both VP-HMM and CRF were trained for 20 epochs
on every dataset, using a simple set of features such
as word identity and capitalization patterns for a
window of three words around each word being clas-
sified. Each word is classified as either inside or out-
side a person name.4

3.2 Extractor tweaking Results

Figure 1 evaluates the effectiveness of the optimiza-
tion process used by “extractor tweaking” on the
Enron dataset. We optimized models forFβ with
different values ofβ, and also evaluated each op-
timized model with differentFβ metrics. The top
graph shows the results for token-levelFβ , and the
bottom graph shows entity-levelFβ behavior. The
graph illustates that the optimized model does in-
deed roughly maximize performance for the target
β value: for example, the token-levelFβ curve for
the model optimized forβ = 0.5 indeed peaks at
β = 0.5 on the test set data. The optimization is
only roughly accurate5 for several possible reasons:
first, there are differences between train and test sets;
in addition, the line search assumes that the perfor-
mance metric is smooth and convex, which need
not be true. Note that evaluation-metric optimiza-
tion is less successful for entity-level performance,

4This problem encoding is basic. However, in the context of
this paper we focus on precision-recall trade-off in the general
case, avoiding settings’ optimization.

5E.g, the token-levelF2 curve peaks atβ = 5.
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Figure 1: Results of token-level (top) and entity-level (bot-
tom) optimization for varying values ofβ, for the Enron dataset,
VP-HMM. The y-axis gives F in terms ofβ. β (x-axis) is given
in a logarithmic scale.

which behaves less smoothly than token-level per-
formance.

Token Entity
β Prec Recall Prec Recall
Baseline 93.3 76.0 93.6 70.6
0.2 100 53.2 98.2 57.0
0.5 95.3 71.1 94.4 67.9
1.0 88.6 79.4 89.2 70.9
2.0 81.0 83.9 81.8 70.9
5.0 65.8 91.3 69.4 71.4

Table 2: Sample optimized CRF results, for the MUC-6
dataset and entity-level optimization.

Similar results were obtained optimizing baseline
CRF classifiers. Sample results (for MUC-6 only,
due to space limitations) are given in Table 2, opti-
mizing a CRF baseline for entity-levelFβ . Note that
as β increases, recall monotonically increases and
precision monotonically falls.

The graphs in Figure 2 present another set of re-
sults with a more traditional recall-precision curves.
The top three graphs are for token-levelFβ opti-
mization, and the bottom three are for entity-level
optimization. The solid lines show the token-level
and entity-level precision-recall tradeoff obtained by
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Figure 2: Results for the evaluation-metric model optimization. The top three graphs are for token-levelF (β) optimization,
and the bottom three are for entity-level optimization. Each graph shows thebaseline learned VP-HMM and evaluation-metric
optimization for different values ofβ, in terms of both token-level and entity-level performance.

varying6 β and optimizing the relevant measure for
Fβ ; the points labeled “baseline” show the precision
and recall in token and entity level of the baseline
model, learned by VP-HMM. These graphs demon-
strate that extractor “tweaking” gives approximately
smooth precision-recall curves, as desired. Again,
we note that the resulting recall-precision trade-
off for entity-level optimization is generally less
smooth.

4 Conclusion

We described an approach that is based on mod-
ifying an existing learned sequential classifier to
change the recall-precision tradeoff, guided by a
user-provided performance criterion. This approach
not only allows one to explore a recall-precision
tradeoff, but actually allows the user to specify a
performance metric to optimize, and optimizes a
learned NER system for that metric. We showed
that using a single free parameter and a Gauss-
Newton line search (where the objective is itera-
tively approximated by quadratics), effectively op-
timizes two plausible performance measures, token-

6We variedβ over the values 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 3
and 5

level Fβ and entity-levelFβ . This approach is in
fact general, as it is applicable for sequential and/or
structured learning applications other than NER.
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