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Abstract tency assumption examples close to labeled ex-
amples within the same class will have the same
To overcome the problem of not hav-  |apels. Such methods ignore considering the simi-
ing enough manually labeled relation in- |4ty between unlabeled examples and do not per-

stances for supervised relation extraction  form classification from a global consistency view-
methods, in this paper we propose a label  oint, which may fail to exploit appropriate mani-
propagation (LP) based semi-supervised  fq|d structure in data when training data is limited.
learning algorithm for relation extraction The objective of this paper is to present a label
task to learn from both labeled and unla-  hropagation based semi-supervised learning algo-
beled data. Evaluation on the ACE corpus  yithm (LP algorithm) (Zhu and Ghahramani, 2002)
showed when only a few labeled examples  for Relation Extraction task. This algorithm works
are available, our LP basedrelation extrac-  py representing labeled and unlabeled examples as
tion can achieve better performance than  yertices in a connected graph, then propagating the

SVM and another bootstrapping method.  |apel information from any vertex to nearby vertices
through weighted edges iteratively, finally inferring
1 Introduction the labels of unlabeled examples after the propaga-

tion process converges. Through the label propaga-
Relation extraction is the task of finding relation- P g g propag

hios bet ) iities f text. For the t k|on process, our method can make the best of the
Ships between two entities from text. For the 1ask, ¢, mation of labeled and unlabeled examples to re-
many machine learning methods have been pr

Yize aglobal consistency assumptionsimilar ex-
posed, including supervised methods (Miller et al.

‘amples should have similar labels. In other words,
2000; Zelenko et al., 2002; Culotta and Soresen P

2004: Kambhatla, 2004: Zhou et al., 2005), se mthe labels of unlabeled examples are determined by

conS|der|ng not only the similarity between labeled

supervised methods (Brin, 1998; Agichtein and Gra and unlabeled examples, but also the similarity be-
vano, 2000; Zhang, 2004), and unsupervised meth?\%een unlabeled examples.
(Hasegawa et al., 2004).

Supervised relation extraction achieves good pep The Proposed Method
formance, but it requires a large amount of manu-
ally labeled relation instances. Unsupervised mettf-1 Problem Definition
ods do not need the definition of relation types antet X = {z;}7" , be a set of contexts of occurrences
manually labeled data, but it is difficult to evaluateof all entity pairs, wherex; represents the contexts
the clustering result since there is no relation typef the i-th occurrence, and is the total number of
label for each instance in clusters. Therefore, semipccurrences of all entity pairs. The fiisexamples
supervised learning has received attention, whichre labeled ag, (y, € {r;}/-,, r; denotes relation
can minimize corpus annotation requirement. type andR is the total number of relation types).

Current works on semi-supervised resolution foAnd the remaining.(u = n — [) examples are unla-
relation extraction task mostly use the bootstrapeled.
ping algorithm, which is based onlacal consis- Intuitively, if two occurrences of entity pairs have
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the similar contexts, they tend to hold the same re|= ) . . -
. . . able 1:Frequency of Relation SubTypes in the ACE training
lation type. Based on this assumption, we create &q devtest corpus.

graph where the vertices are all the occurrences offype | SubType [ Training  Deviest

entity pairs, both labeled and unlabeled. The edgeRrOLE | General-Staff 550 149

: L aiilar Management 677 122

between vert|ce_s represer_lts their similarity. Then Citizen-Of 127 o4

the task of relation extraction can be formulated as Founder 11 5

a form of propagation on a graph, where a vertex's %\"Petr part ﬁ? ig
. . . . lnate-Partner

label _propaga‘Fes to neighboring yertlces accord_lng Member 160 145

to their proximity. Here, the graph is connected with Client 67 13

. s2. . . Other 15 7

the weights;; = exp(—-4), wheres;; is the SiM-  —PART | Part-of 790 103

ilarity betweenz; andz; calculated by some simi- Subsidiary 85 19

larity measures. In this paper,two similarity mea- E)gc‘g:ed 9725 1912

sures are investigated, i.e. Co_sine similarit)_/ measure Based-In 187 64

and Jensen-Shannon (JS) divergence (Lin, 1991). Residence 154 54

And we setn as the average similarity between la- SOC | Other-Professiona 195 25

. Other-Personal 60 10

beled examples from different classes. Parent 68 24

Spous_e 21 4

2.2 Label Propagation Algorithm Associate 49 7

Other-Relative 23 10

Given such a graph with labeled and unlabeled ver- Sibling 7 4

; ; ; : ; GrandParent 6 1

m
tices, we investigate the label propagation algorlth...NE AR | Relaive-Location g5 %

(Zhu and Ghahramani, 2002) to help us propagate
the label information of any vertex in the graph

to nearby vertices through weighted edges until a Step 4: Repeat from step 2 untilY” converges.
global stable stage is achieved. Step 5: Assignzy (I + 1 < h < n) with a label:

Define an x n probabilistic transition matrid’  ¥n = argmaz;Yy;.
T;j=P(j —i)= E"L whereT}; is the prob-
k=1 Wkj

ability to jump from vertexc; to vertexz;. Also de-
fine an x R label matrixY’, whereY;; representing 3-1 Data

3 Experiments and Results

the probabilities of vertey; to have the labet;. Our proposed graph-based method is evaluated on
Then the label propagation algorithm consists ththe ACE corpus!, which contains 519 files from
following main steps: sources including broadcast, newswire, and news-

Stepl: Initialization Firstly, set the iteration in- paper. A break-down of the tagged data by different
dext = 0. Then letY'? be the initial soft labels at- relation subtypes is given in Table 1.
tached to each vertex aﬁ@ be the tog rows ofY?,
which is consistent with the labeling in labeled dat&-2 Features
(Yg = 1if y; is labelr; and0 otherwise ). Le}} We extract the following lexical and syntactic fea-
be the remaining. rows corresponding to unlabeledtures from two entity mentions, and the contexts be-
data points and its initialization can be arbitrary.  fore, between and after the entity pairs. Especially,
Step 2: Propagate the label byy*t! = Ty!, ~we set the mid-context window as everything be-
whereT is the row-normalized matrix of’, i.e. tween the two entities and the pre- and post- context
f-j = T;;/ >k Tir, which can maintain the classas up to two words before and after the correspond-
probability interpretation. ing entity. Most of these features are computed from
Step 3: Clamp the labeled datai.e., replace the the parse trees derived from Charniak Parser (Char-
top ! row of Y+ with V2. In this step, the labeled niak, 1999) and the Chunklink scritwritten by
data is clamped to replenish the label sources frof@bine Buchholz from Tilburg University.
these labeled data. Thus the labeled data act like 1 nyp:/www.Ilde.upenn.edu/Projects/ACE/
sources to push out labels through unlabeled data. Software available at http://ilk.uvt.alsabine/chunklink/
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Table 2: Performance of Relation Detection: SVM and LP algorithm with different size of labeled data. The LP algorithm is
performed with two similarity measures: Cosine similarity and JS divergence.

[ SVM [ LPCosine [ I—PJS
Percentagg P R F P R F P R F

1% | 35.9 32.6 34.4 58.3 56.1 57.1 58.5 58.7 58.5

10% | 51.3 41.5 45.9 64.5 57.5 60.7 64.6 62.0 63.2

25% | 67.1 52.9 59.1 68.7 59.0 63.4 68.9 63.7 66.1

50% | 74.0 57.8 64.9 69.9 61.8 65.6 70.1 64.1 66.9

75% | 77.6 59.4 67.2 71.8 63.4 67.3 72.4 64.8 68.3
100% | 79.8 62.9 70.3 73.9 66.9 70.2 74.2 68.2 71.1

Table 3:Performance of Relation Classification on Relation Subtype: SVM and LP algorithm with different size of labeled data.
The LP algorithm is performed with two similarity measures: Cosine similarity and JS divergence.

[ SVM [ LPCosine [ I—PJS
Percentagg P R F P R F P R F

1% | 31.6 26.1 28.6 39.6 375 38.5 40.1 38.0 39.0

10% | 39.1 32.7 35.6 45.9 39.6 42.5 46.2 41.6 43.7

25% | 49.8 35.0 41.1 51.0 44.5 47.3 52.3 46.0 48.9

50% | 52.5 41.3 46.2 541 48.6 51.2 54.9 50.8 52.7

75% | 58.7 46.7 52.0 56.0 52.0 53.9 56.1 52.6 54.3
100% | 60.8 48.9 54.2 56.2 52.3 54.1 56.3 52.9 54.6

Words: Surface tokens of the two entities an
dTabIe 4: Comparison of performance on individual relation

three context windows. type of Zhang (2004)'s method and our method. For Zhang
Entity Type: the entity type of both entity men- (2004)’'s method, feature sampling probability is set to 0.3 and

tions, which can be PERSON, ORGANIZA—I—ION,agreementthreshold is set to 9 out of 10.

[ Bootstrapping [ LPss
FACILITY, LOCATION and GPE. . Rel-Type 5 = S 5 = S
POS: Part-Of-Speech tags corresponding to allROLE 785 69.7 738|810 747 T77.7
tokens in the two entities and three context windows.PART 656 341 4491701 416 522
. ) . . 61.0 848 709|742 791 76.6
Chunking features: Chunk tag information and goc 470 574 517|450 591 51.0
Grammatical function of the two entities and three NEAR undef 0  wundef | 13.7 125 13.0

context windows. |I0B-chains of the heads of the
two entities are also considered. 10B-chain notes i ted b i les f
the syntactic categories of all the constituents on thcéaSS Is resulted by samplingxamples fron/C'1.

path from the root node to this leaf node of tree. Moreover, we combine the rest examplestif and

We combine the above features with their positiortlhe whole seC’2 asunlabeled data

information in the context to form the context vec- Plelen I_art])eled agd unlabeleqbflata,\llvg can pe:prhm
tor. Before that, we filter out low frequency featured-T @lgorithm to detect possible relations, whic

which appeared only once in the entire set are those entity pairs that are not classified to the
' “NONE” class but to the other 24 subtype classes.
3.3 Experimental Evaluation In addition,we conduct experiments with different

sampling set sizé, including1% X Nirqin,10% x
Ntrain,25% X Ntrain’50% X Ntrain’75% X Ntraina

We collect all entity mention pairs which co-occurl00% X Nirain (Nirain = |AC1]). If any major
in the same sentence from the training and devtestibtype was absent from the sampled labeled set,we
corpus into two se€'1 andC'2 respectively. The set redo the sampling. For each size,we perform 20 tri-
C'1 includes annotated training dateC'1 and un- als and calculate an average of 20 random trials.
related datd/C'1. We randomly sampléexamples
from AC'1 aslabeled dataand add a “NONE” class 3-3-2 SVMvs. LP
into labeled data for the case where the two entity Table 2 reports the performance of relation detec-
mentions are not related. The data of the “NONEtion by using SVM and LP with different sizes of

3.3.1 Relation Detection
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labled data. For SVM, we use LIBSVM tool with minimize corpus annotation requirement. In the fu-
linear kernel functior?. And the same sampled la- ture we would like to investigate how to select more
beled data used in LP is used to train SVM moduseful feature stream and whether feature selection
els. From Table 2, we see that bothdB,. and method can improve the performance of our graph-
LP;s achieve higheRecallthan SVM. Especially, based semi-supervised relation extraction.

with small labeled dataset (percentage of labeled

data< 25%), this merit is more distinct. When

the percentage of labeled data increases 56 References
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