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Abstract

We present a novel statistical approach to

semantic parsing, WASP, for construct-

ing a complete, formal meaning represen-

tation of a sentence. A semantic parser

is learned given a set of sentences anno-

tated with their correct meaning represen-

tations. The main innovation of WASP

is its use of state-of-the-art statistical ma-

chine translation techniques. A word

alignment model is used for lexical acqui-

sition, and the parsing model itself can be

seen as a syntax-based translation model.

We show that WASP performs favorably

in terms of both accuracy and coverage

compared to existing learning methods re-

quiring similar amount of supervision, and

shows better robustness to variations in

task complexity and word order.

1 Introduction

Recent work on natural language understanding has

mainly focused on shallow semantic analysis, such

as semantic role labeling and word-sense disam-

biguation. This paper considers a more ambi-

tious task of semantic parsing, which is the con-

struction of a complete, formal, symbolic, mean-

ing representation (MR) of a sentence. Seman-

tic parsing has found its way in practical applica-

tions such as natural-language (NL) interfaces to

databases (Androutsopoulos et al., 1995) and ad-

vice taking (Kuhlmann et al., 2004). Figure 1 shows

a sample MR written in a meaning-representation

language (MRL) called CLANG, which is used for

((bowner our {4})

(do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6 should

stay in the left side of our half.

Figure 1: A meaning representation in CLANG

encoding coach advice given to simulated soccer-

playing agents (Kuhlmann et al., 2004).

Prior research in semantic parsing has mainly fo-

cused on relatively simple domains such as ATIS

(Air Travel Information Service) (Miller et al., 1996;

Papineni et al., 1997; Macherey et al., 2001), in

which a typcial MR is only a single semantic frame.

Learning methods have been devised that can gen-

erate MRs with a complex, nested structure (cf.

Figure 1). However, these methods are mostly

based on deterministic parsing (Zelle and Mooney,

1996; Kate et al., 2005), which lack the robustness

that characterizes recent advances in statistical NLP.

Other learning methods involve the use of fully-

annotated augmented parse trees (Ge and Mooney,

2005) or prior knowledge of the NL syntax (Zettle-

moyer and Collins, 2005) in training, and hence re-

quire extensive human efforts when porting to a new

domain or language.

In this paper, we present a novel statistical ap-

proach to semantic parsing which can handle MRs

with a nested structure, based on previous work on

semantic parsing using transformation rules (Kate et

al., 2005). The algorithm learns a semantic parser

given a set of NL sentences annotated with their

correct MRs. It requires no prior knowledge of

the NL syntax, although it assumes that an unam-

biguous, context-free grammar (CFG) of the target

MRL is available. The main innovation of this al-
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answer(count(city(loc 2(countryid(usa)))))

How many cities are there in the US?

Figure 2: A meaning representation in GEOQUERY

gorithm is its integration with state-of-the-art statis-

tical machine translation techniques. More specif-

ically, a statistical word alignment model (Brown

et al., 1993) is used to acquire a bilingual lexi-

con consisting of NL substrings coupled with their

translations in the target MRL. Complete MRs are

then formed by combining these NL substrings and

their translations under a parsing framework called

the synchronous CFG (Aho and Ullman, 1972),

which forms the basis of most existing statisti-

cal syntax-based translation models (Yamada and

Knight, 2001; Chiang, 2005). Our algorithm is

called WASP, short for Word Alignment-based Se-

mantic Parsing. In initial evaluation on several

real-world data sets, we show that WASP performs

favorably in terms of both accuracy and coverage

compared to existing learning methods requiring the

same amount of supervision, and shows better ro-

bustness to variations in task complexity and word

order.

Section 2 provides a brief overview of the do-

mains being considered. In Section 3, we present

the semantic parsing model of WASP. Section 4 out-

lines the algorithm for acquiring a bilingual lexicon

through the use of word alignments. Section 5 de-

scribes a probabilistic model for semantic parsing.

Finally, we report on experiments that show the ro-

bustness of WASP in Section 6, followed by the con-

clusion in Section 7.

2 Application Domains

In this paper, we consider two domains. The first do-

main is ROBOCUP. ROBOCUP (www.robocup.org)

is an AI research initiative using robotic soccer as its

primary domain. In the ROBOCUP Coach Competi-

tion, teams of agents compete on a simulated soccer

field and receive coach advice written in a formal

language called CLANG (Chen et al., 2003). Fig-

ure 1 shows a sample MR in CLANG.

The second domain is GEOQUERY, where a func-

tional, variable-free query language is used for

querying a small database on U.S. geography (Zelle

and Mooney, 1996; Kate et al., 2005). Figure 2

shows a sample query in this language. Note that

both domains involve the use of MRs with a com-

plex, nested structure.

3 The Semantic Parsing Model

To describe the semantic parsing model of WASP,

it is best to start with an example. Consider the

task of translating the sentence in Figure 1 into its

MR in CLANG. To achieve this task, we may first

analyze the syntactic structure of the sentence us-

ing a semantic grammar (Allen, 1995), whose non-

terminals are the ones in the CLANG grammar. The

meaning of the sentence is then obtained by com-

bining the meanings of its sub-parts according to

the semantic parse. Figure 3(a) shows a possible

partial semantic parse of the sample sentence based

on CLANG non-terminals (UNUM stands for uni-

form number). Figure 3(b) shows the corresponding

CLANG parse from which the MR is constructed.

This process can be formalized as an instance of

synchronous parsing (Aho and Ullman, 1972), orig-

inally developed as a theory of compilers in which

syntax analysis and code generation are combined

into a single phase. Synchronous parsing has seen a

surge of interest recently in the machine translation

community as a way of formalizing syntax-based

translation models (Melamed, 2004; Chiang, 2005).

According to this theory, a semantic parser defines a

translation, a set of pairs of strings in which each

pair is an NL sentence coupled with its MR. To

finitely specify a potentially infinite translation, we

use a synchronous context-free grammar (SCFG) for

generating the pairs in a translation. Analogous to

an ordinary CFG, each SCFG rule consists of a sin-

gle non-terminal on the left-hand side (LHS). The

right-hand side (RHS) of an SCFG rule is a pair of

strings, 〈α, β〉, where the non-terminals in β are a

permutation of the non-terminals in α. Below are

some SCFG rules that can be used for generating the

parse trees in Figure 3:

RULE → 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2 )〉

CONDITION → 〈TEAM 1 player UNUM 2 has the ball ,

(bowner TEAM 1 {UNUM 2 })〉

TEAM → 〈our , our〉
UNUM → 〈4 , 4〉
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RULE

If CONDITION

TEAM

our

player UNUM

4

has the ball

...

(a) English

RULE

( CONDITION

(bowner TEAM

our

{ UNUM

4

})

...)

(b) CLANG

Figure 3: Partial parse trees for the CLANG statement and its English gloss shown in Figure 1

Each SCFG rule X → 〈α, β〉 is a combination of a

production of the NL semantic grammar, X → α,

and a production of the MRL grammar, X → β.

Each rule corresponds to a transformation rule in

Kate et al. (2005). Following their terminology,

we call the string α a pattern, and the string β a

template. Non-terminals are indexed to show their

association between a pattern and a template. All

derivations start with a pair of associated start sym-

bols, 〈S 1 , S 1 〉. Each step of a derivation involves

the rewriting of a pair of associated non-terminals

in both of the NL and MRL streams. Below is a

derivation that would generate the sample sentence

and its MR simultaneously: (Note that RULE is the

start symbol for CLANG)

〈RULE 1 , RULE 1 〉

⇒ 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2 )〉

⇒ 〈if TEAM 1 player UNUM 2 has the ball, DIR 3 . ,

((bowner TEAM 1 {UNUM 2 }) DIR 3 )〉

⇒ 〈if our player UNUM 1 has the ball, DIR 2 . ,

((bowner our {UNUM 1 }) DIR 2 )〉

⇒ 〈if our player 4 has the ball, DIRECTIVE 1 . ,

((bowner our {4}) DIRECTIVE 1 )〉

⇒ ...

⇒ 〈if our player 4 has the ball, then our player 6

should stay in the left side of our half. ,

((bowner our {4})

(do our {6} (pos (left (half our)))))〉

Here the MR string is said to be a translation of the

NL string. Given an input sentence, e, the task of

semantic parsing is to find a derivation that yields

〈e, f〉, so that f is a translation of e. Since there may

be multiple derivations that yield e (and thus mul-

tiple possible translations of e), a mechanism must

be devised for discriminating the correct derivation

from the incorrect ones.

The semantic parsing model of WASP thus con-

sists of an SCFG, G, and a probabilistic model, pa-

rameterized by λ, that takes a possible derivation, d,

and returns its likelihood of being correct given an

input sentence, e. The output translation, f
⋆, for a

sentence, e, is defined as:

f
⋆ = m

(

arg max
d∈D(G|e)

Prλ(d|e)

)

(1)

where m(d) is the MR string that a derivation d

yields, and D(G|e) is the set of all possible deriva-

tions of G that yield e. In other words, the output

MR is the yield of the most probable derivation that

yields e in the NL stream.

The learning task is to induce a set of SCFG rules,

which we call a lexicon, and a probabilistic model

for derivations. A lexicon defines the set of deriva-

tions that are possible, so the induction of a proba-

bilistic model first requires a lexicon. Therefore, the

learning task can be separated into two sub-tasks:

(1) the induction of a lexicon, followed by (2) the

induction of a probabilistic model. Both sub-tasks

require a training set, {〈ei, fi〉}, where each training

example 〈ei, fi〉 is an NL sentence, ei, paired with

its correct MR, fi. Lexical induction also requires

an unambiguous CFG of the MRL. Since there is no

lexicon to begin with, it is not possible to include

correct derivations in the training data. This is un-

like most recent work on syntactic parsing based on

gold-standard treebanks. Therefore, the induction of

a probabilistic model for derivations is done in an

unsupervised manner.

4 Lexical Acquisition

In this section, we focus on lexical learning, which

is done by finding optimal word alignments between
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RULE → (CONDITION DIRECTIVE)

TEAM → our

UNUM → 4

If

our

player

4

has

the

ball

CONDITION → (bowner TEAM {UNUM})

Figure 4: Partial word alignment for the CLANG statement and its English gloss shown in Figure 1

NL sentences and their MRs in the training set. By

defining a mapping of words from one language to

another, word alignments define a bilingual lexicon.

Using word alignments to induce a lexicon is not a

new idea (Och and Ney, 2003). Indeed, attempts

have been made to directly apply machine transla-

tion systems to the problem of semantic parsing (Pa-

pineni et al., 1997; Macherey et al., 2001). However,

these systems make no use of the MRL grammar,

thus allocating probability mass to MR translations

that are not even syntactically well-formed. Here we

present a lexical induction algorithm that guarantees

syntactic well-formedness of MR translations by us-

ing the MRL grammar.

The basic idea is to train a statistical word align-

ment model on the training set, and then form a

lexicon by extracting transformation rules from the

K = 10 most probable word alignments between

the training sentences and their MRs. While NL

words could be directly aligned with MR tokens,

this is a bad approach for two reasons. First, not all

MR tokens carry specific meanings. For example, in

CLANG, parentheses and braces are delimiters that

are semantically vacuous. Such tokens are not sup-

posed to be aligned with any words, and inclusion of

these tokens in the training data is likely to confuse

the word alignment model. Second, MR tokens may

exhibit polysemy. For instance, the CLANG pred-

icate pt has three meanings based on the types of

arguments it is given: it specifies the xy-coordinates

(e.g. (pt 0 0)), the current position of the ball (i.e.

(pt ball)), or the current position of a player (e.g.

(pt our 4)). Judging from the pt token alone, the

word alignment model would not be able to identify

its exact meaning.

A simple, principled way to avoid these diffi-

culties is to represent an MR using a sequence of

productions used to generate it. Specifically, the

sequence corresponds to the top-down, left-most

derivation of an MR. Figure 4 shows a partial word

alignment between the sample sentence and the lin-

earized parse of its MR. Here the second produc-

tion, CONDITION → (bowner TEAM {UNUM}), is

the one that rewrites the CONDITION non-terminal

in the first production, RULE → (CONDITION DI-

RECTIVE), and so on. Note that the structure of a

parse tree is preserved through linearization, and for

each MR there is a unique linearized parse, since the

MRL grammar is unambiguous. Such alignments

can be obtained through the use of any off-the-shelf

word alignment model. In this work, we use the

GIZA++ implementation (Och and Ney, 2003) of

IBM Model 5 (Brown et al., 1993).

Assuming that each NL word is linked to at most

one MRL production, transformation rules are ex-

tracted in a bottom-up manner. The process starts

with productions whose RHS is all terminals, e.g.

TEAM → our and UNUM → 4. For each of these

productions, X → β, a rule X → 〈α, β〉 is ex-

tracted such that α consists of the words to which

the production is linked, e.g. TEAM → 〈our, our〉,
UNUM → 〈4, 4〉. Then we consider productions

whose RHS contains non-terminals, i.e. predicates

with arguments. In this case, an extracted pattern

consists of the words to which the production is

linked, as well as non-terminals showing where the

arguments are realized. For example, for the bowner

predicate, the extracted rule would be CONDITION

→ 〈TEAM 1 player UNUM 2 has (1) ball, (bowner

TEAM 1 {UNUM 2 })〉, where (1) denotes a word

gap of size 1, due to the unaligned word the that

comes between has and ball. A word gap, (g), can

be seen as a non-terminal that expands to at most

g words in the NL stream, which allows for some

flexibility in pattern matching. Rule extraction thus

proceeds backward from the end of a linearized MR
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our

left

penalty

area

REGION → (left REGION)

REGION → (penalty-area TEAM)

TEAM → our

Figure 5: A word alignment from which no rules can be extracted for the penalty-area predicate

parse (so that a predicate is processed only after its

arguments have all been processed), until rules are

extracted for all productions.

There are two cases where the above algorithm

would not extract any rules for a production r. First

is when no descendants of r in the MR parse are

linked to any words. Second is when there is a

link from a word w, covered by the pattern for r,

to a production r′ outside the sub-parse rooted at

r. Rule extraction is forbidden in this case be-

cause it would destroy the link between w and r′.

The first case arises when a component of an MR

is not realized, e.g. assumed in context. The sec-

ond case arises when a predicate and its arguments

are not realized close enough. Figure 5 shows an

example of this, where no rules can be extracted

for the penalty-area predicate. Both cases can be

solved by merging nodes in the MR parse tree, com-

bining several productions into one. For example,

since no rules can be extracted for penalty-area,

it is combined with its parent to form REGION →
(left (penalty-area TEAM)), for which the pat-

tern TEAM left penalty area is extracted.

The above algorithm is effective only when words

linked to an MR predicate and its arguments stay

close to each other, a property that we call phrasal

coherence. Any links that destroy this property

would lead to excessive node merging, a major cause

of overfitting. Since building a model that strictly

observes phrasal coherence often requires rules that

model the reordering of tree nodes, our goal is to

bootstrap the learning process by using a simpler,

word-based alignment model that produces a gen-

erally coherent alignment, and then remove links

that would cause excessive node merging before rule

extraction takes place. Given an alignment, a, we

count the number of links that would prevent a rule

from being extracted for each production in the MR

parse. Then the total sum for all productions is ob-

tained, denoted by v(a). A greedy procedure is em-

ployed that repeatedly removes a link a ∈ a that

would maximize v(a) − v(a\{a}) > 0, until v(a)
cannot be further reduced. A link w ↔ r is never

removed if the translation probability, Pr(r|w), is

greater than a certain threshold (0.9). To replenish

the removed links, links from the most probable re-

verse alignment, ã (obtained by treating the source

language as target, and vice versa), are added to a, as

long as a remains n-to-1, and v(a) is not increased.

5 Parameter Estimation

Once a lexicon is acquired, the next task is to learn a

probabilistic model for the semantic parser. We pro-

pose a maximum-entropy model that defines a con-

ditional probability distribution over derivations (d)

given the observed NL string (e):

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (2)

where fi is a feature function, and Zλ(e) is a nor-

malizing factor. For each rule r in the lexicon there

is a feature function that returns the number of times

r is used in a derivation. Also for each word w there

is a feature function that returns the number of times

w is generated from word gaps. Generation of un-

seen words is modeled using an extra feature whose

value is the total number of words generated from

word gaps. The number of features is quite modest

(less than 3,000 in our experiments). A similar fea-

ture set is used by Zettlemoyer and Collins (2005).

Decoding of the model can be done in cubic time

with respect to sentence length using the Viterbi al-

gorithm. An Earley chart is used for keeping track

of all derivations that are consistent with the in-

put (Stolcke, 1995). The maximum conditional like-

lihood criterion is used for estimating the model pa-

rameters, λi. A Gaussian prior (σ2 = 1) is used for

regularizing the model (Chen and Rosenfeld, 1999).

Since gold-standard derivations are not available in

the training data, correct derivations must be treated

as hidden variables. Here we use a version of im-
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proved iterative scaling (IIS) coupled with EM (Rie-

zler et al., 2000) for finding an optimal set of param-

eters.1 Unlike the fully-supervised case, the condi-

tional likelihood is not concave with respect to λ,

so the estimation algorithm is sensitive to initial pa-

rameters. To assume as little as possible, λ is initial-

ized to 0. The estimation algorithm requires statis-

tics that depend on all possible derivations for a sen-

tence or a sentence-MR pair. While it is not fea-

sible to enumerate all derivations, a variant of the

Inside-Outside algorithm can be used for efficiently

collecting the required statistics (Miyao and Tsujii,

2002). Following Zettlemoyer and Collins (2005),

only rules that are used in the best parses for the

training set are retained in the final lexicon. All

other rules are discarded. This heuristic, commonly

known as Viterbi approximation, is used to improve

accuracy, assuming that rules used in the best parses

are the most accurate.

6 Experiments

We evaluated WASP in the ROBOCUP and GEO-

QUERY domains (see Section 2). To build a cor-

pus for ROBOCUP, 300 pieces of coach advice were

randomly selected from the log files of the 2003

ROBOCUP Coach Competition, which were manu-

ally translated into English (Kuhlmann et al., 2004).

The average sentence length is 22.52. To build a

corpus for GEOQUERY, 880 English questions were

gathered from various sources, which were manu-

ally translated into the functional GEOQUERY lan-

guage (Tang and Mooney, 2001). The average sen-

tence length is 7.48, much shorter than ROBOCUP.

250 of the queries were also translated into Spanish,

Japanese and Turkish, resulting in a smaller, multi-

lingual data set.

For each domain, there was a minimal set of ini-

tial rules representing knowledge needed for trans-

lating basic domain entities. These rules were al-

ways included in a lexicon. For example, in GEO-

QUERY, the initial rules were: NUM → 〈x, x〉, for

all x ∈ R; CITY → 〈c, cityid(’c’, )〉, for all

city names c (e.g. new york); and similar rules for

other types of names (e.g. rivers). Name transla-

tions were provided for the multilingual data set (e.g.

1We also implemented limited-memory BFGS (Nocedal,
1980). Preliminary experiments showed that it typically reduces
training time by more than half with similar accuracy.

CITY → 〈nyuu yooku, cityid(’new york’, )〉 for

Japanese).

Standard 10-fold cross validation was used in our

experiments. A semantic parser was learned from

the training set. Then the learned parser was used

to translate the test sentences into MRs. Translation

failed when there were constructs that the parser did

not cover. We counted the number of sentences that

were translated into an MR, and the number of trans-

lations that were correct. For ROBOCUP, a trans-

lation was correct if it exactly matched the correct

MR. For GEOQUERY, a translation was correct if it

retrieved the same answer as the correct query. Us-

ing these counts, we measured the performance of

the parser in terms of precision (percentage of trans-

lations that were correct) and recall (percentage of

test sentences that were correctly translated). For

ROBOCUP, it took 47 minutes to learn a parser us-

ing IIS. For GEOQUERY, it took 83 minutes.

Figure 6 shows the performance of WASP com-

pared to four other algorithms: SILT (Kate et al.,

2005), COCKTAIL (Tang and Mooney, 2001), SCIS-

SOR (Ge and Mooney, 2005) and Zettlemoyer and

Collins (2005). Experimental results clearly show

the advantage of extra supervision in SCISSOR and

Zettlemoyer and Collins’s parser (see Section 1).

However, WASP performs quite favorably compared

to SILT and COCKTAIL, which use the same train-

ing data. In particular, COCKTAIL, a determinis-

tic shift-reduce parser based on inductive logic pro-

gramming, fails to scale up to the ROBOCUP do-

main where sentences are much longer, and crashes

on larger training sets due to memory overflow.

WASP also outperforms SILT in terms of recall,

where lexical learning is done by a local bottom-up

search, which is much less effective than the word-

alignment-based algorithm in WASP.

Figure 7 shows the performance of WASP on

the multilingual GEOQUERY data set. The lan-

guages being considered differ in terms of word or-

der: Subject-Verb-Object for English and Spanish,

and Subject-Object-Verb for Japanese and Turkish.

WASP’s performance is consistent across these lan-

guages despite some slight differences, most proba-

bly due to factors other than word order (e.g. lower

recall for Turkish due to a much larger vocabulary).

Details can be found in a longer version of this pa-

per (Wong, 2005).
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Figure 6: Precision and recall learning curves comparing various semantic parsers
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7 Conclusion

We have presented a novel statistical approach to

semantic parsing in which a word-based alignment

model is used for lexical learning, and the parsing

model itself can be seen as a syntax-based trans-

lation model. Our method is like many phrase-

based translation models, which require a simpler,

word-based alignment model for the acquisition of a

phrasal lexicon (Och and Ney, 2003). It is also sim-

ilar to the hierarchical phrase-based model of Chi-

ang (2005), in which hierarchical phrase pairs, es-

sentially SCFG rules, are learned through the use of

a simpler, phrase-based alignment model. Our work

shows that ideas from compiler theory (SCFG) and

machine translation (word alignment models) can be

successfully applied to semantic parsing, a closely-

related task whose goal is to translate a natural lan-

guage into a formal language.

Lexical learning requires word alignments that are

phrasally coherent. We presented a simple greedy

algorithm for removing links that destroy phrasal co-

herence. Although it is shown to be quite effective in

the current domains, it is preferable to have a more

principled way of promoting phrasal coherence. The

problem is that, by treating MRL productions as

atomic units, current word-based alignment models

have no knowledge about the tree structure hidden

in a linearized MR parse. In the future, we would

like to develop a word-based alignment model that
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is aware of the MRL syntax, so that better lexicons

can be learned.
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