A fast finite-state relaxation method for enforcing
global constraints on sequence decoding

Roy W. Tromble and Jason Eisner
Department of Computer Science and Center for Language and Speech Processing
Johns Hopkins University
Baltimore, MD 21218
{roytjason }@cs.jhu.edu

Abstract be filled by at most one substring of the in-

We describe finite-state constraint relaxation, a method for ap- ~ PUt, and there are strong preferences on the co-

plying global constraints, expressed as automata, to sequence occurrence and order of certain fields.
model decoding. We present algorithms for both hard con-
straints and binary soft constraints. On the CoNLL-2004 se- ¢ In seminar announcements, a given field

mantic role labeling task, we report a speedup of at least 16x . .
over a previous method that used integer linear programming. (speaker, start tlme_' etc.) should appear with

at most one value in each announcement, al-
though the field and value may be repeated
(Finkel et al., 2005).

1 Introduction

Many tasks in natural language processing involve
sequence labeling. If one models long-distance or ®
global properties of labeled sequences, it can be-

come intractable to find (“decode”) the best labeling ~ Verb. There are several other constraints that
of an unlabeled sequence. we will describe later (Roth and Yih, 2005).

Nonetheless, such global properties can improve A popular approximate technique is to hypothe-
the accuracy of a model, so recent NLP papersize a list of possible answers by decoding without
have considered practical techniques for deco@my global constraints, and theerank (or prune)
ing with them. Such techniques include Gibbshis n-best list using the full model with all con-
sampling (Finkel et al., 2005), a general-purposstraints. Reranking relies on the local model being
Monte Carlo method, and integer linear program«good enough” that the globally best answer appears
ming (ILP), (Roth and Yih, 2005), a general-purposén its n-best list. Otherwise, reranking can't find it.
exact framework for NP-complete problems. In this paper, we propose “constraint relaxation,”

Under generative models such as hidden Markoy simple exact alternative to reranking. As in rerank-
models, the probability of a labeled sequence deng, we start with a weighted lattice of hypotheses
pends only on its local properties. The situatioproposed by the local model. But rather than restrict
improves with discriminatively trained models, sucho then best of these according to the local model,
as conditional random fields (Lafferty et al., 2001)we aim to directly extract thenebest according to
which do efficiently allow features that are functionghe global model. As in reranking, we hope that the
of the entireobservationsequence. However, theselocal constraints alone will work well, but if they do
features can still only look locally at tHabel se- not, the penalty is not incorrect decoding, but longer
quence. That is a significant shortcoming, becausgintime as we gradually fold the global constraints
in many domains, hard or soft global constraints ofhto the lattice. Constraint relaxation can be used
the label sequence are motivated by common sensghenever the global constraints can be expressed as

e For named entity recognition, a phrase tha'iegular languages over the Ifabel Sequence. .
appears multiple times should tend to get the In the worst case, our runtime may be exponential
same label each time (Finkel et al., 2005) in the number of constraints, since we are consider-

ing an intractable class of problems. However, we
¢ In bibliography entries (Peng and McCallum,show that in practice, the method is quite effective
2004), a given field (author, title, etc.) shouldat rapid decoding under global hard constraints.

For semantic role labeling, each argument
should be instantiated only once for a given

423

Proceedings of the Human Language Technology Conference of the North American Chapter of,thagkS1423-430,
New York, June 20062006 Association for Computational Linguistics

bel sequenceg € Y*. In many NLP tasksy is the

‘i’ set of words, an@’ the tags. A latticel: Y* — R
° ? @ maps label sequences to weights, and is encoded as a
weighted FSA. Constraints are formally the same—

any functionC: Y* — R is a constraint, includ-
Figure 1: An automaton expressing the constraint that the Iabmg weighted features from a classifier or probabilis-
sequence cannot 3. Here? matches any symbol except
tic model. In this paper we will consider only con-
straints that are weighted in particular ways.
The remainder of the paper is organized as fol- Given a latticel. and constraints, we seek
lows: In §2 we describe how finite-state automata
can be used to apply global constraints. We then % def
give a brute-force decoding algorithr§i3). In §4, Y= arg;nax (L(y) * ;ECC(Y)> - @
we present a more efficient algorithm for the case of
hard constraints. We report results for the semantic We assume the latticé is generated by a model
role labeling task ir§5. §6 treats soft constraints. M: X* — (Y* — R). For a given observation se-
quencex, we putL = M (x). One possible model
2 Finite-state constraints is a finite-state transducer, wheké(x) is an FSA
found by composing the transducer withAnother

Previous approaches to global sequence labelingis-a CRF, wherél/(x) is a lattice with sums of log-
Gibbs sampling, ILP, and reranking—seem motiyqtentials for arc weights.

vated by the idea that standard sequence methods are
incapable of considering global constraints atall. 3 A brute-force finite-state decoder

In fact, finite-state automata (FSAs) are powerful . L .
enough to express many long-distance constraint fmdlthe best constrained I_abelln_g in a lattige,
Since all finite languages are regulany constraint e_lccord_lng to (1), we cou_Id simply intersect the lat-
over label sequences of bounded length is finitdice with all the constraints, then extract the best

state. FSAs are more powerful thangram mod- ath._ _ L L
els. For example, the regular expressisaz*yx* Weighted FSA intersection is a generalization of

matches only sequences of labels that contaitt anordinary u_nweighted FS_A intersection (Mohri et al.,
before ay. Similarly, the regular expression(0*) 199_6)' Itis gl_Jstomary n N!‘P to use the so-called
requires at least one ndnlabel; it compiles into the ”OP'C""' Ssemiring, V_/here weights are represented by
FSA of Figure 1. their natural logarithms and summed rather than

Note that this FSA is in one or the other of its twomUIt'pI'ed' Then the intersected automatbm C

states according to whether it has encountered a naf2TPutes

0 label yet. In general, the current state of an FSA def
records properties of the label sequence prefix read (LNCO)y) = L(y) +C(y) (2)

so far. The FSA needs enough states to keep track OfTo find y*, one would extract the best path in

whether the label sequence as a whole satisfies tEem €y 1 Cy N --- using the Viterbi algorithm, or
global constraint in question. ! 2 '

)) Dijkstra’s algorithm if the lattice is cyclic. This step
FSAs are a flexible approach to constraints bgs act if the intersected automaton is small.

cause they are closed under logical operations suchThe problem is that the multiple intersections in

as disjunction (union) and conjunction (intersec—L N CyNCyN--- can quickly lead to an FSA with

tion). They may be specified by regular EXPressiong, intractable number of states. The intersection

(Karttunen et al., 1996), in a logical language (Va”'of two finite-state automata produces an automaton

lette, 2004), or directly as FSAs. They may also be

weighted to express soft constraints. 1F0fr(examplt)e, ifM(is a S)im;\)llve Iibne_?(;-zhain]\Cj(%ES(y) =
i i v fyio1,yi) + g(@i,y:). We bui = X) as an
Formally, we pose the decoding problem in term%ycllic FSA whose state set}s x {1,2,...n}, with transi-

of an observation sequenges X* and possible la- tions(y’,i — 1) — (y,4) of weight f(y/,y) + g(xi, y)-

424

with the cross product state set. Thatiskihasm ~ HARD-CONSTRAINL ATTICE(L, €):

states ands hasn states, the#” N G has up tomn %Hﬁe 3%5_6 2 ngh thatC(y) = —oo:

states (fewer if some of thewn possible states do L:=LnC

not lie on any accepting path). . S z CBgst{_g;mL)
Intersection of many such constraints, even ifthey return y

have only a few states each, quickly leads to a com-

binatorial explosion. In the worst case, the size, in

states, of the resulting lattice is exponential in the

number of constraints. To deal with this, we present])
a constraint relaxation algorithm. and so on. Eventually, we find somdor which y;

satisfies all constraints, and this path is returned.
4 Hard constraints To determine whether a labelingsatisfies a con-
]) o straintC, we represeny as a straight-line automa-
The simplest kind of constraint is the hard conygn ang intersect witli', checking the result for non-
straint. Hard constraints are necessarily binary—mntiness. This is equivalent to string recognition.
either the labeling satisfies the constraint, or it vi- hope is that, although intractable in the worst
olates it. Violation is fatal—the labeling producedage the constraint relaxation algorithm will operate
by decoding must satisfy each hard copstra!knt. efficiently in practice. The success of traditional se-
Formally, a hard constraintis a mappiig)" — q,ence models on NLP tasks suggests that, for nat-
{0, oo}, encoded as an unweighted FSA. Ifastring, 5| janguage, much of the correct analysis can be
satisfies the constraint, recognition of the string willcoyered from local features and constraints alone.
lead to an accepting state. |If it violates the congye syspect that, as a result, global constraints will
straint, recognition will end in a non-accepting stat€yfan pe easy to satisfy.

Here we give an algorithm for decoding with aset pge\,docode for the algorithm appears in Figure 2.
of such constraints. Late§), we discuss the case ngte that line 2 doesiot specify how to choose
of binary soft constraints. In what follows, we will C from among multiple violated constraints. This
assume that there is always at least one path in e yiscyssed i7. Our algorithm resembles the
lattice that satisfies all of the constraints. method of Koskenniemi (1990) and later work. The
difference is that there lattices are unweighted and

])] may not contain a path that satisfies all constraints,
Our decoding algorithm first relaxes the global cong, that the order of constraint intersection matters.
straints and solves a simpler problem. In particular,

we find the best labeling according to the model, 5 Semantic role labeling

[

Eal

Figure 2: Hard constraints decoding algorithm.

4.1 Decoding by constraint relaxation

v def argmax L(y) 3) Th\e semantic rple labeling tgsk_ (Carrgrqs and
y Margues, 2004) involves choosing instantiations of
verb arguments from a sentence for a given verb.
. o The verb and its arguments fornmpeoposition We
Next, we check whetheyy satis!ﬂes the* Con- ;se data from the CoNLL-2004 shared task—the
straints. If so, then we are doneyg-is alsoy™. It pronpank (Palmer et al., 2005) annotations of the
not, then we reintroduce the constraints. Howevepann Treebank (Marcus et al., 1993), with sections
rather than include all at once, we introduce thems_1g 4 the training set and section 20 as the de-
only as they are violated by successive solutions (5 ment set. Unless otherwise specified, all mea-
the relaxed problemsy;, y1, etc. We define surements are made on the development set.
def We follow Roth and Yih (2005) exactly, in order
1= L(y) +C(y)) (4) i i
Y1 arg;nax(y to compare system runtimes. They, in turn, follow
Hacioglu et al. (2004) and others in labeling only
for some constrainC' that y;; violates. Similarly, the heads of syntactic chunks rather than all words.
v satisfies an additional constraint thygtviolates, We label only the core arguments0f-A5), treating

ignoringall the constraints id.

425

? A0 ? e ARGUMENT CANDIDATES (Fig. 5) encodes a

A0 ﬂ » set of position spans each of which must re-
(@) @ ‘@ ‘@ ceive only a single label type. These spans were
5 proposed using a high-recall heuristic (Xue and

Palmer, 2004).

e KNOWN VERB POSITION (Fig. 4(b)) simply
encodes the position of the verb in question,
which must be labeled.

e DisaLLOW ARGUMENTS (Fig. 4(c)) specifies
argument types that are compatible with the
verb in question, according to PropBank.

Figure 4: Automata expressingd\DUPLICATE A0 (? matches

anything butt0), KNOWN VERB POSITION2], and DISALLOW .
ARGUMENTS[A4,A5]. 5.2 Experiments

We implemented our hard constraint relaxation al-
adjuncts and references @s gorithm, using the FSA toolkit (Kanthak and Ney,

Figure 3 shows an example sentence from th004) for finit_e—state opc_er_ations. FSA is an open-
shared task. It is marked with an IOB phrase chuni&ource C++ library providing a useful set of algo-
ing, the heads of the phrases, and the correct sem4f?Ms on weighted finite-state acceptors and trans-
tic role labeling. Heads are taken to be the rightmo&ucers. For each example we decoded, we chose a
words of chunks. On average, there are 18.8 phras@dom order in which to apply the constraints.
per proposition, vs. 23.5 words per sentence. Sen-Lattices are generated from what amounts to a

tences may contain multiple propositions. There afgnigram model—the voted perceptron classifier of
4305 propositions in section 20. Roth and Yih. The features used are a subset of those

commonly applied to the task.
5.1 Constraints Our system produces output identical to that of

Roth and Yih use five global constraints on label s¢X0th @nd Yih. Table 1 shows F-measure on the core
quences for the semantic role labeling task. We e@rguments. Table 2 shows a runtime comparison.
press these constraints as FSAs. The first two arg'€ ILP runtime was provided by the authors (per-

general, and the seven automata encoding them c31@! communication). Because the systems were
be constructed offline: run under different conditions, the times are not di-

rectly comparable. However, constraint relaxation is
e NO DUPLICATE ARGUMENT LABELS Mmore than sixteen times faster than ILP despite run-

(Fig. 4(a)) requires that each verb have afing on a slower platform.

most one argument of each type in a give@-)_z_l Comparison to an ILP solver

sentence. We separate this into six individual Roth and Yin's I has two kinds of
constraints, one for each core argument type. oth and ¥ihs finear program has two Kinds o

Thus, we have constraints callecoONbUPLI- numeric constrain_ts. Some encode the shortest path
CATE A0, NO DUPLICATE A1, etc. Each of proplem structure; the others encode the globa_l con-
these is represented as a three-state FSA. straints ofg5.1, The ILP solver work§ by relaxmg_
to a (real-valued) linear program, which may obtain
e AT LEAST ONE ARGUMENT(Fig. 1) simply re- @ fractional solution that represents a path mixture
quires that the label sequence is adt This is instead of a path. It then uses branch-and-bound to
a two-state automaton as describedn seek the optimal rounding of this fractional solution
to an integer solution (Garet et al., 2002) that repre-
The last three constraints require informatiorsents a single path satisfying the global constraints.
about the example, and the automata must be con-Our method avoids fractional solutions: a relaxed
structed on a per-example basis: solution is always a true single path, which either

426

Mr. Turner said the test will be shipped in 45 days to hospitals and clinical laboratories .
B-NP I-NP B-VP B-NP I-NP B-VP I-VP [|-VP B-PP B-NP I-NP B-PP B-NP O B-NP I-NP O
Turner said test shipped in days to hospitals and laboratories .
AO 0 Al Al Al Al Al Al Al Al 0

Figure 3: Example sentence, with phrase tags and heads, and core argument labelsaargbhenent of “said” is a long clause.

(0)—"—()

Figure 5: An automaton expressinlRAUMENT CANDIDATES.

Argument | Count | F-measure Constraint Violations | Fraction
AOQ 2849 79.27 ARGUMENT CANDIDATES 1619 0.376
Al 4029 75.59 NO DUPLICATE Al 899 0.209
A2 943 55.68 NO DUPLICATE AO 348 0.081
A3 149 46.41 NO DUPLICATE A2 151 0.035
A4 147 81.82 AT LEAST ONE ARGUMENT 108 0.025
A5 4 25.00 DISALLOW ARGUMENTS 48 0.011
All 8121 7451 NO DUPLICATE A3 13 0.003
NO DUPLICATE A4 3 0.001

) NO DUPLICATE A5 1 0.000
Table 1: F-measure on core arguments. K NOWN VERB POSITION 0 0.000

satisfies or violates each global constraint. In effect, Table 3: Violations of constraints by .

we are using two kinds of domain knowledge. First,

we recognize that this is a graph problem, and insighodel. This confirms our intuition that natural lan-
on true paths so we can use Viterbi decoding. Seguage structure is largely apparent locally. Table 4
ond, we choose to relax only domain-specific conshows the breakdown. The majority of examples are
straints that are likely to be satisfied anyway (in ougery efficient to decode, because they don't require
domain), in contrast to the meta-constraint of intemtersection of the lattice with any constraintg=:—
grality relaxed by ILP. Thus it is cheaper on averis extracted and is good enough. Those examples
age for us to repair a relaxed solution. (Our repaifyhere constraintareviolated are still relatively effi-
strategy—finite-state intersection in place of branchtjent because they only require a small number of in-
and-bound search—remains expensive in the worgdrsections. In total, the average number of intersec-
case, as the problem is NP-hard.) tions needed, even with the naive randomized con-
straint ordering, was only 0.65. The order doesn't
matter very much, since 75% of examples have one

The y;s, generated with onljocal information, violation or fewer.
satisfy most of the global constraints most of the
time. Table 3 shows the violations by type. 5.2.3 Effects on lattice size

The majority of best labelings according to the Figure 6 shows the effect of intersection with vi-
local model don't violateany global constraints— olated constraints on the average size of lattices,
a fact especially remarkable because therermre measured in arcs. The vertical barskat= 0,
label sequence features in Roth and Yih's unigrarh = 1, ... show the number of examples where con-

5.2.2 Constraint violations

427

Method Total Time | Per Example| Platform

Brute Force Finite-State 37m25.290s| 0.522s| Pentium Ill, 1.0 GHz
ILP 11m39.220s| 0.162s| Xeon, 3.x GHz
Constraint Relaxation 39.700s 0.009s| Pentium lll, 1.0 GHz

Table 2: A comparison of runtimes for constrained decoding with ILP and FSA.

Violations | Labelings| Fraction | Cumulative Constraint Violations | Fraction
0 2368 0.550 0.550 ARGUMENT CANDIDATES 90 | 0.0209
1 863 0.200 0.750 AT LEAST ONE ARGUMENT 27 0.0063
2 907 0.211 0.961 NO DUPLICATE A2 3 0.0007
3 156 0.036 0.997 NO DUPLICATE AO 2 0.0005
4 10 0.002 0.999 NO DUPLICATE A1 2 0.0005
5 1 0.000 1.000 NO DUPLICATE A3 1 0.0002
6-10 0 0.000 1.000 NO DUPLICATE A4 1 0.0002
Table 4: Number of/; with each violation count. Table 5: Violations of constraints by, measured over the de-

velopment set.

2500

Verbs mmmm
Mean Arcs with Relaxation --{--
Mean Arcs with Brute Force X

longer runtime of the brute-force method (Table 2).
Harder examples (corresponding to longer trajec-
tories) have larger lattices, on average. This is partly
just because it is disproportionately the longer sen-
tences that are hard: they have more opportunities
for a relaxed decoding to violate global constraints.
Hard examples are rare. The left three columns,
requiring only 0-2 intersections, constitute 96% of
examples. The vast majority can be decoded without
much more than doubling the local-lattice size.

2000

1500

1000 -

500 |

0 1 2 3 4 5

Figure 6: Mean lattice size (measured in arcs) throughout d& SOft constraints
coding. Vertical bars show the number of examples over which
each mean is computed. The gold standard labejs occasionally violate the

hard global constraints that we are using. Counts
straint relaxation had to intersektcontraints (i.e., Ior thel dt_evelopfml\eé)nt set appeaz\m dTabIte. 5'| ((Zjounts
y* = y;). The trajectory ending at (for example) or viofations o DUPLICATE A- donotinclude -

k = 3 shows how the average lattice size for thaglscontlnous arguments, of which there are 104 in-
subset of examples evolved over thintersections. stances, since we ignore them.

TheXatk = 3 shows the final size of the brute-force Because of the infrequency, the hard constraints
lattice on thesamesubset of examples still help most of the time. However, on a small sub-

For the most part, our lattices do stay muct‘?‘Et of the examples, they preclude us from inferring

smaller than those produced by the brute-force alg(gr_u?Ncorrect Iabelllng.h . it iah
rithm. (The uppermost curvé, = 5, is an obvious e can apply these constraints with weignts,

exception; however, that curve describes only threatherthan making them inviolable. This constitutes

seven hardest examples.) Note that plotting only {2 (ransition frqm harfl 0 sojt _constralnt_s. Formally,
final size of the brute-force lattice obscures the lon soft constrainC: J* — R S amapping from a
trajectory of its construction, which involves 10 in- abel sequencg to a non-positive pgnalty.
tersections and, like the trajectories shown, includes SOt constraints present new difficulty for decod-

larger intermediate automataThis explains the far cjusion of, for example, BBALLOW ARGUMENTS, which can
- only remove arcs. That constraint is rarely included in the re-
2The final brute-force lattice is especially shrunk by its in-laxation lattices because it is rarely violated (see Table 3).

428

SOFT-CONSTRAIN-LATTICE(L, C):

© O NGO K WNR

N =
»> w b P o

(y", Scorgy™)) := (empty, —oo)

branches := [(L,C, 0)]

while (L, C, penalty) := Dequeuébranches):
L := PrunéL, Scoréy™) — penalty)

or all paths that cannot score better than Sgofe

the score of the best path found on any branch so
far. Our experiments used almost the simplest possi-
ble PRUNE: replaceL by the empty lattice if the best

unlessEmpty(L):
y = Best-PatkiL) path falls below the bound, else leal/@inchanged.
forcec: ‘ A similar bounding would be possible in the im-
i Cc(y):éo_ e (0Cy)=we™ hiicit branches. If, during théor loop, we find that

Enqueuébranches, (L N C,C, penalty))
penalty := penalty + C(y)
if Scordy™) < L(y) + penalty:
(y", Scordy™)) := (y, L(y) + penalty)
return y*

Figure 7: Soft constraints decoding algorithm

the test at line 12 would fail, we can quit tlier
loop and immediately move to the next branch in
the queue at line 3.

There are two factors in this algorithm that con-
tribute to avoiding consideration afl of the expo-
nential number of leaves corresponding to the power

set of constraints. First, bounding stops evaluation
of subtrees. Second, oniyiolated constraints re-
quire branching. If a lattice’s best path satisifies a
constraint, then the best path that violates it can be
better since, by assumptioty, C(y) < 0.

ing, because instead of eliminating paths.ofrom
contention, they just reweight them.

In what follows, we consider only binary soft
constraints—they are either satisfied or violated, and®
the same penalty is assessed whenever a violatigh, Rrntime experiments
occurs. That isvC € C,3wc < 0 such that

\V/Y> C(y) € {Oa wC}'

6.1 Soft constraint relaxation

Using the ten constraints fron§5.1, weighted
naively by their log odds of violation, the soft con-
straint relaxation algorithm runs in a time of 58.40

The decoding algorithm for soft constraints is a gerS€conds. Itis, as expected, slower than hard con-
eralization of that for hard constraints. The differStraint relaxation, but only by a factor of about two.
ence is that, whereas with hard constraints a vio- AS @ Side note, softening these particular con-
lation meant disqualification, here violation simplyStraints in this particular way did not improve de-
means a penalty. We therefore must find and con§©ding quality in this case. It might help to jointly
pare two labelings: the best that satisfies the coif@in the relative weights of these constraints and
straint, and the best that violates it. the local model—e.g., using a perceptron algorithm
We present a branch-and-bound algorithnﬁ':reund and Schapire, 1998), WhiCh repeate(_JIIy ex-
(Lawler and Wood, 1966), with pseudocode irfracts the best global path (using our algorithm),
Figure 7. At line 9, we process and eliminate £Ompares it to the gold standard, and adjusts the con-
currently violated constrainf' € C by considering straint weights. An obvious alternative is maximum-
two cases. On the first branch, we insist thabe €Ntropy training, but the partition function would
satisfied, enqueuingj N C for later exploration. On have to be computed using the large brute-force lat-
the second branch, we assuffiés violated by all {ices, or else approximated by a sampling method.

paths, and so continue considerifigunmodified, 7 Euture work
but accept a penalty for doing so; we immediately utu

explore the second branch by returning to the staflor a given task, we may be able to obtain further
of thefor loop3 speedups by carefully choosing the order in which
Not every branch needs to be completely exto test and apply the constraints. We might treat this

plored. Bounding is handled by theRBNE func- as a reinforcement learning problem (Sutton, 1988),
tion at line 4, which shrinkd. by removing some —
B “Partial pruning is also possible: by running the Viterbi ver-

%It is possible that a future best path on the second brandion of the forward-backward algorithm, one can discover for
will notactually violateC, in which case we have overpenalizedeach edge the weight of the best path on which it appears. One
it, but in that case we will also find it with correct penalty on thecan then remove all edges that do not appear on any sufficiently
first branch. good path.

429

where an agent will obtain rewards by findiyg References

quickly. In the hard-constraint algorithm, for ex-xayier Carreras and Lis Marques. 2004. Introduction to the
ample, the agent’s possible moves are to test someCoNLL-2004 shared task: Semantic role labeling.Phoc.

; ; ; of CoNLL, pp. 89-97.
constraint for violation by the current best path, Or]enny Rose Finkel, Trond Grenager, and Christopher Manning.

to intersect some constraint with the current lattice. 2005, Incorporating non-local information into information
Several features can help the agent choose the nexextraction systems by Gibbs sampling.Rroc. of ACL pp.

; : : 363-370.
move. How Iarge is the current lattice, which con Yoav Freund and Robert E. Schapire. 1998. Large margin clas-

straints does it already incorporate, and which re- sification using the perceptron algorithm. Rroc. of COLT
maining constraints are already known to be satis- pp. 209-217, New York. ACM Press.

: ; ; hristelle Géret, Christian Prins, and Marc Sevaux. 208p-
2 y)
fied or violated by its best path? And what were thé: plications of optimization with Xpress-MmPash Optimiza-

answers to those questions at previous stages? tion. Translated and revised by Susanne Heipcke.
Our constraint relaxation method should be testefpdri Hacioglu, Sameer Pradhan, Wayne Ward, James H. Mar-

. . tin, and Daniel Jurafsky. 2004. Semantic role labeling by
on problems other than semantic role labeling. For tagging syntactic chunks. Rroc. of CoNLL pp. 110-113,

example, information extraction from bibliographystephan Kanthak and Hermann Ney. 2004. FSA: An efficient
entries, as discussed§n, has about 13 fields to ex- and flexible C++ toolkit for finite state automata using on-

. . . demand computation. IRroc. of ACL, pp. 510-517.
tract, and interesting hard and soft global COns'[ram‘_s@.\uri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette,

on co-occurrence, order, and adjacency. The methodand Anne Schiller. 1996. Regular expressions for lan-
Should also be evaluated on a task W|th |0nger se- guage englneerlngJournaI of Natural Language Englneer-

. though the finite-stat ti ing, 2(4):305-328.
e T € ninite-state operalions We URgnmo Koskenniemi. 1990. Finite-state parsing and disam-

do scale up linearly with the sequence length, longer biguation. InProc. of COLING pp. 229-232.

Sequences have more Chance Of Violating a glob%hn Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-

constraint somewhere in the sequence, requiring US menting and labeling sequence data.Pc. of ICML pp.

to apply that constraint explicitly. 282-289.

Eugene L. Lawler and David E. Wood. 1966. Branch-and-
bound methods: A surveyperations Resear¢i4(4):699—
7109.

. . _.Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Roth and Yih (2005) showed that global constraints yjarcinkiewicz. 1993. Building a large annotatedycorpus

can improve the output of sequence labeling models of English: the Penn Treebankomputational Linguistics

for semantic role labeling. In general ing un-, 19:313-330.
or semantic role labe 9 general, decod gu ehryar Mohri, Fernando Pereira, and Michael Riley. 1996.

der such constraints is NP-complete. We exhibited \yeighted automata in text and speech processing. In A. Ko-
a practical approach, finite-state constraint relax- rnai, editor,Proc. of the ECAI 96 Workshopp. 46-50.

; ; ; artha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The
ation, that greatly sped up decoding on this NLP task Proposition Bank: An annotated corpus of semantic roles.

by using familiar finite-state operations—weighted computational Linguistigs31(1):71-106.
FSA intersection and best-path extraction—rathégfuchun Peng and Andrew McCallum. 2004. Accurate informa-

; ; ; tion extraction from research papers using conditional ran-
than integer linear programming. dom fields. InProc. of HLT-NAACI_pp. 329-336.

We have also given a constraint relaxation algopan Roth and Wen-tau Yih. 2005. Integer linear programming
rithm for binary soft constraints. This allows incor- inference for conditional random fields. Rroc. of ICML,

8 Conclusion

: ; ; ; i pp. 737744,
pora_lt'lon of _constralnts akin t? rerankmg features, II&ichard S. Sutton. 1988. Learning to predict by the methods of
addition to inviolable constraints. temporal differencesMachine Learning3(1):9—44.
Nathan Vaillette. 2004.Logical Specification of Finite-State
Acknowledgments Transductions for Natural Language Processih.D. the-

sis, Ohio State University.
anwen Xue and Martha Palmer. 2004. Calibrating features

. S i
This material is based upon work supported b>’>‘ for semantic role labeling. IRroc. of EMNLR pp. 88—94.

the National Science Foundation under Grant No.
0347822. We thank Scott Yih for kindly providing
both the voted-perceptron classifier and runtime re-
sults for decoding with ILP, and the reviewers for
helpful comments.

430

