
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 423–430,
New York, June 2006.c©2006 Association for Computational Linguistics

A fast finite-state relaxation method for enforcing
global constraints on sequence decoding

Roy W. Tromble and Jason Eisner
Department of Computer Science and Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218

{royt,jason }@cs.jhu.edu

Abstract
We describe finite-state constraint relaxation, a method for ap-
plying global constraints, expressed as automata, to sequence
model decoding. We present algorithms for both hard con-
straints and binary soft constraints. On the CoNLL-2004 se-
mantic role labeling task, we report a speedup of at least 16x
over a previous method that used integer linear programming.

1 Introduction

Many tasks in natural language processing involve
sequence labeling. If one models long-distance or
global properties of labeled sequences, it can be-
come intractable to find (“decode”) the best labeling
of an unlabeled sequence.

Nonetheless, such global properties can improve
the accuracy of a model, so recent NLP papers
have considered practical techniques for decod-
ing with them. Such techniques include Gibbs
sampling (Finkel et al., 2005), a general-purpose
Monte Carlo method, and integer linear program-
ming (ILP), (Roth and Yih, 2005), a general-purpose
exact framework for NP-complete problems.

Under generative models such as hidden Markov
models, the probability of a labeled sequence de-
pends only on its local properties. The situation
improves with discriminatively trained models, such
as conditional random fields (Lafferty et al., 2001),
which do efficiently allow features that are functions
of the entireobservationsequence. However, these
features can still only look locally at thelabel se-
quence. That is a significant shortcoming, because
in many domains, hard or soft global constraints on
the label sequence are motivated by common sense:

• For named entity recognition, a phrase that
appears multiple times should tend to get the
same label each time (Finkel et al., 2005).

• In bibliography entries (Peng and McCallum,
2004), a given field (author, title, etc.) should

be filled by at most one substring of the in-
put, and there are strong preferences on the co-
occurrence and order of certain fields.

• In seminar announcements, a given field
(speaker, start time, etc.) should appear with
at most one value in each announcement, al-
though the field and value may be repeated
(Finkel et al., 2005).

• For semantic role labeling, each argument
should be instantiated only once for a given
verb. There are several other constraints that
we will describe later (Roth and Yih, 2005).

A popular approximate technique is to hypothe-
size a list of possible answers by decoding without
any global constraints, and thenrerank (or prune)
this n-best list using the full model with all con-
straints. Reranking relies on the local model being
“good enough” that the globally best answer appears
in its n-best list. Otherwise, reranking can’t find it.

In this paper, we propose “constraint relaxation,”
a simple exact alternative to reranking. As in rerank-
ing, we start with a weighted lattice of hypotheses
proposed by the local model. But rather than restrict
to then best of these according to the local model,
we aim to directly extract theonebest according to
theglobal model. As in reranking, we hope that the
local constraints alone will work well, but if they do
not, the penalty is not incorrect decoding, but longer
runtime as we gradually fold the global constraints
into the lattice. Constraint relaxation can be used
whenever the global constraints can be expressed as
regular languages over the label sequence.

In the worst case, our runtime may be exponential
in the number of constraints, since we are consider-
ing an intractable class of problems. However, we
show that in practice, the method is quite effective
at rapid decoding under global hard constraints.

423

0

O

1?

O
?

Figure 1: An automaton expressing the constraint that the label
sequence cannot beO∗. Here? matches any symbol exceptO.

The remainder of the paper is organized as fol-
lows: In §2 we describe how finite-state automata
can be used to apply global constraints. We then
give a brute-force decoding algorithm (§3). In §4,
we present a more efficient algorithm for the case of
hard constraints. We report results for the semantic
role labeling task in§5. §6 treats soft constraints.

2 Finite-state constraints

Previous approaches to global sequence labeling—
Gibbs sampling, ILP, and reranking—seem moti-
vated by the idea that standard sequence methods are
incapable of considering global constraints at all.

In fact, finite-state automata (FSAs) are powerful
enough to express many long-distance constraints.
Since all finite languages are regular,anyconstraint
over label sequences of bounded length is finite-
state. FSAs are more powerful thann-gram mod-
els. For example, the regular expressionΣ∗XΣ∗YΣ∗

matches only sequences of labels that contain anX
before aY. Similarly, the regular expression¬(O∗)
requires at least one non-O label; it compiles into the
FSA of Figure 1.

Note that this FSA is in one or the other of its two
states according to whether it has encountered a non-
O label yet. In general, the current state of an FSA
records properties of the label sequence prefix read
so far. The FSA needs enough states to keep track of
whether the label sequence as a whole satisfies the
global constraint in question.

FSAs are a flexible approach to constraints be-
cause they are closed under logical operations such
as disjunction (union) and conjunction (intersec-
tion). They may be specified by regular expressions
(Karttunen et al., 1996), in a logical language (Vail-
lette, 2004), or directly as FSAs. They may also be
weighted to express soft constraints.

Formally, we pose the decoding problem in terms
of an observation sequencex ∈ X ∗ and possible la-

bel sequencesy ∈ Y∗. In many NLP tasks,X is the
set of words, andY the tags. A latticeL: Y∗ 7→ R
maps label sequences to weights, and is encoded as a
weighted FSA. Constraints are formally the same—
any functionC: Y∗ 7→ R is a constraint, includ-
ing weighted features from a classifier or probabilis-
tic model. In this paper we will consider only con-
straints that are weighted in particular ways.

Given a latticeL and constraintsC, we seek

y∗ def= argmax
y

(
L(y) +

∑
C∈C

C(y)

)
. (1)

We assume the latticeL is generated by a model
M : X ∗ 7→ (Y∗ 7→ R). For a given observation se-
quencex, we putL = M(x). One possible model
is a finite-state transducer, whereM(x) is an FSA
found by composing the transducer withx. Another
is a CRF, whereM(x) is a lattice with sums of log-
potentials for arc weights.1

3 A brute-force finite-state decoder

To find the best constrained labeling in a lattice,y∗,
according to (1), we could simply intersect the lat-
tice with all the constraints, then extract the best
path.

Weighted FSA intersection is a generalization of
ordinary unweighted FSA intersection (Mohri et al.,
1996). It is customary in NLP to use the so-called
tropical semiring, where weights are represented by
their natural logarithms and summed rather than
multiplied. Then the intersected automatonL ∩ C
computes

(L ∩ C)(y) def= L(y) + C(y) (2)

To find y∗, one would extract the best path in
L ∩ C1 ∩ C2 ∩ · · · using the Viterbi algorithm, or
Dijkstra’s algorithm if the lattice is cyclic. This step
is fast if the intersected automaton is small.

The problem is that the multiple intersections in
L ∩ C1 ∩ C2 ∩ · · · can quickly lead to an FSA with
an intractable number of states. The intersection
of two finite-state automata produces an automaton

1For example, ifM is a simple linear-chain CRF,L(y) =Pn
i=1 f(yi−1, yi) + g(xi, yi). We build L = M(x) as an

acyclic FSA whose state set isY × {1, 2, . . . n}, with transi-
tions(y′, i− 1) → (y, i) of weightf(y′, y) + g(xi, y).

424

with the cross product state set. That is, ifF hasm
states andG hasn states, thenF ∩G has up tomn
states (fewer if some of themn possible states do
not lie on any accepting path).

Intersection of many such constraints, even if they
have only a few states each, quickly leads to a com-
binatorial explosion. In the worst case, the size, in
states, of the resulting lattice is exponential in the
number of constraints. To deal with this, we present
a constraint relaxation algorithm.

4 Hard constraints

The simplest kind of constraint is the hard con-
straint. Hard constraints are necessarily binary—
either the labeling satisfies the constraint, or it vi-
olates it. Violation is fatal—the labeling produced
by decoding must satisfy each hard constraint.

Formally, a hard constraint is a mappingC: Y∗ 7→
{0,−∞}, encoded as an unweighted FSA. If a string
satisfies the constraint, recognition of the string will
lead to an accepting state. If it violates the con-
straint, recognition will end in a non-accepting state.

Here we give an algorithm for decoding with a set
of such constraints. Later (§6), we discuss the case
of binary soft constraints. In what follows, we will
assume that there is always at least one path in the
lattice that satisfies all of the constraints.

4.1 Decoding by constraint relaxation

Our decoding algorithm first relaxes the global con-
straints and solves a simpler problem. In particular,
we find the best labeling according to the model,

y∗0
def= argmax

y
L(y) (3)

ignoringall the constraints inC.
Next, we check whethery∗0 satisifies the con-

straints. If so, then we are done—y∗0 is alsoy∗. If
not, then we reintroduce the constraints. However,
rather than include all at once, we introduce them
only as they are violated by successive solutions to
the relaxed problems:y∗0, y∗1, etc. We define

y∗1
def= argmax

y
(L(y) + C(y)) (4)

for some constraintC that y∗0 violates. Similarly,
y∗2 satisfies an additional constraint thaty∗1 violates,

HARD-CONSTRAIN-LATTICE(L, C):
1. y := Best-Path(L)
2. while ∃C ∈ C such thatC(y) = −∞:
3. L := L ∩ C
4. C := C − {C}
5. y := Best-Path(L)
6. return y

Figure 2: Hard constraints decoding algorithm.

and so on. Eventually, we find somek for whichy∗k
satisfies all constraints, and this path is returned.

To determine whether a labelingy satisfies a con-
straintC, we representy as a straight-line automa-
ton and intersect withC, checking the result for non-
emptiness. This is equivalent to string recognition.

Our hope is that, although intractable in the worst
case, the constraint relaxation algorithm will operate
efficiently in practice. The success of traditional se-
quence models on NLP tasks suggests that, for nat-
ural language, much of the correct analysis can be
recovered from local features and constraints alone.
We suspect that, as a result, global constraints will
often be easy to satisfy.

Pseudocode for the algorithm appears in Figure 2.
Note that line 2 doesnot specify how to choose
C from among multiple violated constraints. This
is discussed in§7. Our algorithm resembles the
method of Koskenniemi (1990) and later work. The
difference is that there lattices are unweighted and
may not contain a path that satisfies all constraints,
so that the order of constraint intersection matters.

5 Semantic role labeling

The semantic role labeling task (Carreras and
Màrques, 2004) involves choosing instantiations of
verb arguments from a sentence for a given verb.
The verb and its arguments form aproposition. We
use data from the CoNLL-2004 shared task—the
PropBank (Palmer et al., 2005) annotations of the
Penn Treebank (Marcus et al., 1993), with sections
15–18 as the training set and section 20 as the de-
velopment set. Unless otherwise specified, all mea-
surements are made on the development set.

We follow Roth and Yih (2005) exactly, in order
to compare system runtimes. They, in turn, follow
Hacioglu et al. (2004) and others in labeling only
the heads of syntactic chunks rather than all words.
We label only the core arguments (A0–A5), treating

425

(a)
0

?

1A0

A0

2?

?

(b)

0 1

O

A0

A1

A2
A3

A4

A5

2O

(verb position)

A1
A2
A3
A4
A5

O
A0

(c)
0

O
A0
A1
A2
A3

Figure 4: Automata expressing NO DUPLICATE A0 (? matches
anything butA0), KNOWN VERB POSITION[2], and DISALLOW
ARGUMENTS[A4,A5].

adjuncts and references asO.
Figure 3 shows an example sentence from the

shared task. It is marked with an IOB phrase chunk-
ing, the heads of the phrases, and the correct seman-
tic role labeling. Heads are taken to be the rightmost
words of chunks. On average, there are 18.8 phrases
per proposition, vs. 23.5 words per sentence. Sen-
tences may contain multiple propositions. There are
4305 propositions in section 20.

5.1 Constraints

Roth and Yih use five global constraints on label se-
quences for the semantic role labeling task. We ex-
press these constraints as FSAs. The first two are
general, and the seven automata encoding them can
be constructed offline:

• NO DUPLICATE ARGUMENT LABELS

(Fig. 4(a)) requires that each verb have at
most one argument of each type in a given
sentence. We separate this into six individual
constraints, one for each core argument type.
Thus, we have constraints called NO DUPLI-
CATE A0, NO DUPLICATE A1, etc. Each of
these is represented as a three-state FSA.

• AT LEAST ONE ARGUMENT(Fig. 1) simply re-
quires that the label sequence is notO∗. This is
a two-state automaton as described in§2.

The last three constraints require information
about the example, and the automata must be con-
structed on a per-example basis:

• ARGUMENT CANDIDATES (Fig. 5) encodes a
set of position spans each of which must re-
ceive only a single label type. These spans were
proposed using a high-recall heuristic (Xue and
Palmer, 2004).

• KNOWN VERB POSITION (Fig. 4(b)) simply
encodes the position of the verb in question,
which must be labeledO.

• DISALLOW ARGUMENTS (Fig. 4(c)) specifies
argument types that are compatible with the
verb in question, according to PropBank.

5.2 Experiments

We implemented our hard constraint relaxation al-
gorithm, using the FSA toolkit (Kanthak and Ney,
2004) for finite-state operations. FSA is an open-
source C++ library providing a useful set of algo-
rithms on weighted finite-state acceptors and trans-
ducers. For each example we decoded, we chose a
random order in which to apply the constraints.

Lattices are generated from what amounts to a
unigram model—the voted perceptron classifier of
Roth and Yih. The features used are a subset of those
commonly applied to the task.

Our system produces output identical to that of
Roth and Yih. Table 1 shows F-measure on the core
arguments. Table 2 shows a runtime comparison.
The ILP runtime was provided by the authors (per-
sonal communication). Because the systems were
run under different conditions, the times are not di-
rectly comparable. However, constraint relaxation is
more than sixteen times faster than ILP despite run-
ning on a slower platform.

5.2.1 Comparison to an ILP solver

Roth and Yih’s linear program has two kinds of
numeric constraints. Some encode the shortest path
problem structure; the others encode the global con-
straints of§5.1. The ILP solver works by relaxing
to a (real-valued) linear program, which may obtain
a fractional solution that represents a path mixture
instead of a path. It then uses branch-and-bound to
seek the optimal rounding of this fractional solution
to an integer solution (Gúeret et al., 2002) that repre-
sents a single path satisfying the global constraints.

Our method avoids fractional solutions: a relaxed
solution is always a true single path, which either

426

Mr. Turner said the test will be shipped in 45 days to hospitals and clinical laboratories .
B-NP I-NP B-VP B-NP I-NP B-VP I-VP I-VP B-PP B-NP I-NP B-PP B-NP O B-NP I-NP O

Turner said test shipped in days to hospitals and laboratories .
A0 O A1 A1 A1 A1 A1 A1 A1 A1 O

Figure 3: Example sentence, with phrase tags and heads, and core argument labels. TheA1 argument of “said” is a long clause.

0 1

O

A0

A1

A2
A3

A4

A5

2

A2

A3

A4

A5

O

A0

A1

4

O

10
A0

16
A1

22A2

28

A3

34

A4

40

A5

5O

11A0

17A1

23A2

29A3

35A4

41A5 42A5 43A5 44A5 45A5

3

A5

46

O

A0

A1

A2
A3

A4

A5

O
A0
A1
A2
A3
A4
A5

36A4 37A4 38A4 39A4

A430A3 31A3 32A3 33A3

A3
24A2 25A2 26A2 27A2 A2

18A1 19A1 20A1
21

A1
A1

12A0 13A0 14A0
15

A0

A0

6O 7O 8O
9

O

O

Figure 5: An automaton expressing ARGUMENT CANDIDATES.

Argument Count F-measure
A0 2849 79.27
A1 4029 75.59
A2 943 55.68
A3 149 46.41
A4 147 81.82
A5 4 25.00
All 8121 74.51

Table 1: F-measure on core arguments.

satisfies or violates each global constraint. In effect,
we are using two kinds of domain knowledge. First,
we recognize that this is a graph problem, and insist
on true paths so we can use Viterbi decoding. Sec-
ond, we choose to relax only domain-specific con-
straints that are likely to be satisfied anyway (in our
domain), in contrast to the meta-constraint of inte-
grality relaxed by ILP. Thus it is cheaper on aver-
age for us to repair a relaxed solution. (Our repair
strategy—finite-state intersection in place of branch-
and-bound search—remains expensive in the worst
case, as the problem is NP-hard.)

5.2.2 Constraint violations

The y∗0s, generated with onlylocal information,
satisfy most of the global constraints most of the
time. Table 3 shows the violations by type.

The majority of best labelings according to the
local model don’t violateany global constraints—
a fact especially remarkable because there areno
label sequence features in Roth and Yih’s unigram

Constraint Violations Fraction
ARGUMENT CANDIDATES 1619 0.376
NO DUPLICATE A1 899 0.209
NO DUPLICATE A0 348 0.081
NO DUPLICATE A2 151 0.035
AT LEAST ONE ARGUMENT 108 0.025
DISALLOW ARGUMENTS 48 0.011
NO DUPLICATE A3 13 0.003
NO DUPLICATE A4 3 0.001
NO DUPLICATE A5 1 0.000
KNOWN VERB POSITION 0 0.000

Table 3: Violations of constraints byy∗0 .

model. This confirms our intuition that natural lan-
guage structure is largely apparent locally. Table 4
shows the breakdown. The majority of examples are
very efficient to decode, because they don’t require
intersection of the lattice with any constraints—y∗0
is extracted and is good enough. Those examples
where constraintsareviolated are still relatively effi-
cient because they only require a small number of in-
tersections. In total, the average number of intersec-
tions needed, even with the naive randomized con-
straint ordering, was only 0.65. The order doesn’t
matter very much, since 75% of examples have one
violation or fewer.

5.2.3 Effects on lattice size

Figure 6 shows the effect of intersection with vi-
olated constraints on the average size of lattices,
measured in arcs. The vertical bars atk = 0,
k = 1, . . . show the number of examples where con-

427

Method Total Time Per Example Platform
Brute Force Finite-State 37m25.290s 0.522s Pentium III, 1.0 GHz
ILP 11m39.220s 0.162s Xeon, 3.x GHz
Constraint Relaxation 39.700s 0.009s Pentium III, 1.0 GHz

Table 2: A comparison of runtimes for constrained decoding with ILP and FSA.

Violations Labelings Fraction Cumulative
0 2368 0.550 0.550
1 863 0.200 0.750
2 907 0.211 0.961
3 156 0.036 0.997
4 10 0.002 0.999
5 1 0.000 1.000
6–10 0 0.000 1.000

Table 4: Number ofy∗0 with each violation count.

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5

Verbs
Mean Arcs with Relaxation

Mean Arcs with Brute Force

Figure 6: Mean lattice size (measured in arcs) throughout de-
coding. Vertical bars show the number of examples over which
each mean is computed.

straint relaxation had to intersectk contraints (i.e.,
y∗ ≡ y∗k). The trajectory ending at (for example)
k = 3 shows how the average lattice size for that
subset of examples evolved over the3 intersections.
TheXatk = 3 shows the final size of the brute-force
lattice on thesamesubset of examples.

For the most part, our lattices do stay much
smaller than those produced by the brute-force algo-
rithm. (The uppermost curve,k = 5, is an obvious
exception; however, that curve describes only the
seven hardest examples.) Note that plotting only the
final size of the brute-force lattice obscures the long
trajectory of its construction, which involves 10 in-
tersections and, like the trajectories shown, includes
larger intermediate automata.2 This explains the far

2The final brute-force lattice is especially shrunk by its in-

Constraint Violations Fraction
ARGUMENT CANDIDATES 90 0.0209
AT LEAST ONE ARGUMENT 27 0.0063
NO DUPLICATE A2 3 0.0007
NO DUPLICATE A0 2 0.0005
NO DUPLICATE A1 2 0.0005
NO DUPLICATE A3 1 0.0002
NO DUPLICATE A4 1 0.0002

Table 5: Violations of constraints bŷy, measured over the de-
velopment set.

longer runtime of the brute-force method (Table 2).
Harder examples (corresponding to longer trajec-

tories) have larger lattices, on average. This is partly
just because it is disproportionately the longer sen-
tences that are hard: they have more opportunities
for a relaxed decoding to violate global constraints.

Hard examples are rare. The left three columns,
requiring only 0–2 intersections, constitute 96% of
examples. The vast majority can be decoded without
much more than doubling the local-lattice size.

6 Soft constraints

The gold standard labelŝy occasionally violate the
hard global constraints that we are using. Counts
for the development set appear in Table 5. Counts
for violations of NO DUPLICATE A· do not include
discontinous arguments, of which there are 104 in-
stances, since we ignore them.

Because of the infrequency, the hard constraints
still help most of the time. However, on a small sub-
set of the examples, they preclude us from inferring
the correct labeling.

We can apply these constraints with weights,
rather than making them inviolable. This constitutes
a transition from hard to soft constraints. Formally,
a soft constraintC: Y∗ 7→ R− is a mapping from a
label sequence to a non-positive penalty.

Soft constraints present new difficulty for decod-

clusion of, for example, DISALLOW ARGUMENTS, which can
only remove arcs. That constraint is rarely included in the re-
laxation lattices because it is rarely violated (see Table 3).

428

SOFT-CONSTRAIN-LATTICE(L, C):
1. (y∗, Score(y∗)) := (empty,−∞)
2. branches := [(L, C, 0)]
3. while (L, C, penalty) := Dequeue(branches):
4. L := Prune(L, Score(y∗)− penalty)
5. unlessEmpty(L):
6. y := Best-Path(L)
7. for C ∈ C:
8. if C(y) < 0: (* so C(y) = wC *)
9. C := C − {C}
10. Enqueue(branches, (L ∩ C, C, penalty))
11. penalty := penalty + C(y)
12. if Score(y∗) < L(y) + penalty:
13. (y∗, Score(y∗)) := (y, L(y) + penalty)
14. return y∗

Figure 7: Soft constraints decoding algorithm

ing, because instead of eliminating paths ofL from
contention, they just reweight them.

In what follows, we consider only binary soft
constraints—they are either satisfied or violated, and
the same penalty is assessed whenever a violation
occurs. That is,∀C ∈ C,∃wC < 0 such that
∀y, C(y) ∈ {0, wC}.

6.1 Soft constraint relaxation

The decoding algorithm for soft constraints is a gen-
eralization of that for hard constraints. The differ-
ence is that, whereas with hard constraints a vio-
lation meant disqualification, here violation simply
means a penalty. We therefore must find and com-
pare two labelings: the best that satisfies the con-
straint, and the best that violates it.

We present a branch-and-bound algorithm
(Lawler and Wood, 1966), with pseudocode in
Figure 7. At line 9, we process and eliminate a
currently violated constraintC ∈ C by considering
two cases. On the first branch, we insist thatC be
satisfied, enqueuingL ∩ C for later exploration. On
the second branch, we assumeC is violated by all
paths, and so continue consideringL unmodified,
but accept a penalty for doing so; we immediately
explore the second branch by returning to the start
of thefor loop.3

Not every branch needs to be completely ex-
plored. Bounding is handled by the PRUNE func-
tion at line 4, which shrinksL by removing some

3It is possible that a future best path on the second branch
will notactually violateC, in which case we have overpenalized
it, but in that case we will also find it with correct penalty on the
first branch.

or all paths that cannot score better than Score(y∗),
the score of the best path found on any branch so
far. Our experiments used almost the simplest possi-
ble PRUNE: replaceL by the empty lattice if the best
path falls below the bound, else leaveL unchanged.4

A similar bounding would be possible in the im-
plicit branches. If, during thefor loop, we find that
the test at line 12 would fail, we can quit thefor
loop and immediately move to the next branch in
the queue at line 3.

There are two factors in this algorithm that con-
tribute to avoiding consideration ofall of the expo-
nential number of leaves corresponding to the power
set of constraints. First, bounding stops evaluation
of subtrees. Second, onlyviolated constraints re-
quire branching. If a lattice’s best path satisifies a
constraint, then the best path that violates it can be
no better since, by assumption,∀y, C(y) ≤ 0.

6.2 Runtime experiments

Using the ten constraints from§5.1, weighted
naively by their log odds of violation, the soft con-
straint relaxation algorithm runs in a time of 58.40
seconds. It is, as expected, slower than hard con-
straint relaxation, but only by a factor of about two.

As a side note, softening these particular con-
straints in this particular way did not improve de-
coding quality in this case. It might help to jointly
train the relative weights of these constraints and
the local model—e.g., using a perceptron algorithm
(Freund and Schapire, 1998), which repeatedly ex-
tracts the best global path (using our algorithm),
compares it to the gold standard, and adjusts the con-
straint weights. An obvious alternative is maximum-
entropy training, but the partition function would
have to be computed using the large brute-force lat-
tices, or else approximated by a sampling method.

7 Future work

For a given task, we may be able to obtain further
speedups by carefully choosing the order in which
to test and apply the constraints. We might treat this
as a reinforcement learning problem (Sutton, 1988),

4Partial pruning is also possible: by running the Viterbi ver-
sion of the forward-backward algorithm, one can discover for
each edge the weight of the best path on which it appears. One
can then remove all edges that do not appear on any sufficiently
good path.

429

where an agent will obtain rewards by findingy∗

quickly. In the hard-constraint algorithm, for ex-
ample, the agent’s possible moves are to test some
constraint for violation by the current best path, or
to intersect some constraint with the current lattice.
Several features can help the agent choose the next
move. How large is the current lattice, which con-
straints does it already incorporate, and which re-
maining constraints are already known to be satis-
fied or violated by its best path? And what were the
answers to those questions at previous stages?

Our constraint relaxation method should be tested
on problems other than semantic role labeling. For
example, information extraction from bibliography
entries, as discussed in§1, has about 13 fields to ex-
tract, and interesting hard and soft global constraints
on co-occurrence, order, and adjacency. The method
should also be evaluated on a task with longer se-
quences: though the finite-state operations we use
do scale up linearly with the sequence length, longer
sequences have more chance of violating a global
constraint somewhere in the sequence, requiring us
to apply that constraint explicitly.

8 Conclusion

Roth and Yih (2005) showed that global constraints
can improve the output of sequence labeling models
for semantic role labeling. In general, decoding un-
der such constraints is NP-complete. We exhibited
a practical approach, finite-state constraint relax-
ation, that greatly sped up decoding on this NLP task
by using familiar finite-state operations—weighted
FSA intersection and best-path extraction—rather
than integer linear programming.

We have also given a constraint relaxation algo-
rithm for binary soft constraints. This allows incor-
poration of constraints akin to reranking features, in
addition to inviolable constraints.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant No.
0347822. We thank Scott Yih for kindly providing
both the voted-perceptron classifier and runtime re-
sults for decoding with ILP, and the reviewers for
helpful comments.

References
Xavier Carreras and Lluı́s Màrques. 2004. Introduction to the

CoNLL-2004 shared task: Semantic role labeling. InProc.
of CoNLL, pp. 89–97.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning.
2005. Incorporating non-local information into information
extraction systems by Gibbs sampling. InProc. of ACL, pp.
363–370.

Yoav Freund and Robert E. Schapire. 1998. Large margin clas-
sification using the perceptron algorithm. InProc. of COLT,
pp. 209–217, New York. ACM Press.

Christelle Gúeret, Christian Prins, and Marc Sevaux. 2002.Ap-
plications of optimization with Xpress-MP. Dash Optimiza-
tion. Translated and revised by Susanne Heipcke.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H. Mar-
tin, and Daniel Jurafsky. 2004. Semantic role labeling by
tagging syntactic chunks. InProc. of CoNLL, pp. 110–113.

Stephan Kanthak and Hermann Ney. 2004. FSA: An efficient
and flexible C++ toolkit for finite state automata using on-
demand computation. InProc. of ACL, pp. 510–517.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette,
and Anne Schiller. 1996. Regular expressions for lan-
guage engineering.Journal of Natural Language Engineer-
ing, 2(4):305–328.

Kimmo Koskenniemi. 1990. Finite-state parsing and disam-
biguation. InProc. of COLING, pp. 229–232.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProc. of ICML, pp.
282–289.

Eugene L. Lawler and David E. Wood. 1966. Branch-and-
bound methods: A survey.Operations Research, 14(4):699–
719.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Linguistics,
19:313–330.

Mehryar Mohri, Fernando Pereira, and Michael Riley. 1996.
Weighted automata in text and speech processing. In A. Ko-
rnai, editor,Proc. of the ECAI 96 Workshop, pp. 46–50.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The
Proposition Bank: An annotated corpus of semantic roles.
Computational Linguistics, 31(1):71–106.

Fuchun Peng and Andrew McCallum. 2004. Accurate informa-
tion extraction from research papers using conditional ran-
dom fields. InProc. of HLT-NAACL, pp. 329–336.

Dan Roth and Wen-tau Yih. 2005. Integer linear programming
inference for conditional random fields. InProc. of ICML,
pp. 737–744.

Richard S. Sutton. 1988. Learning to predict by the methods of
temporal differences.Machine Learning, 3(1):9–44.

Nathan Vaillette. 2004.Logical Specification of Finite-State
Transductions for Natural Language Processing. Ph.D. the-
sis, Ohio State University.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProc. of EMNLP, pp. 88–94.

430

