
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 359–366,
New York, June 2006.c©2006 Association for Computational Linguistics

Aggregation via Set Partitioning for Natural Language Generation

Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
regina@csail.mit.edu

Mirella Lapata
School of Informatics

University of Edinburgh
mlap@inf.ed.ac.uk

Abstract

The role of aggregation in natural lan-
guage generation is to combine two or
more linguistic structures into a single
sentence. The task is crucial for generat-
ing concise and readable texts. We present
an efficient algorithm for automatically
learning aggregation rules from a text and
its related database. The algorithm treats
aggregation as a set partitioning problem
and uses a global inference procedure to
find an optimal solution. Our experiments
show that this approach yields substan-
tial improvements over a clustering-based
model which relies exclusively on local
information.

1 Introduction

Aggregation is an essential component of many nat-
ural language generation systems (Reiter and Dale,
2000). The task captures a mechanism for merg-
ing together two or more linguistic structures into
a single sentence. Aggregated texts tend to be more
concise, coherent, and more readable overall (Dalia-
nis, 1999; Cheng and Mellish, 2000). Compare,
for example, sentence (2) in Table 1 and its non-
aggregated counterpart in sentences (1a)–(1d). The
difference between the fluent aggregated sentence
and its abrupt and redundant alternative is striking.

The benefits of aggregation go beyond making
texts less stilted and repetitive. Researchers in psy-
cholinguistics have shown that by eliminating re-

(1) a. Holocomb had an incompletion in the
first quarter.

b. Holocomb had another incompletion in
the first quarter.

c. Davis was among four San Francisco
defenders.

d. Holocomb threw to Davis for a leaping
catch.

(2) After two incompletions in the first quar-
ter, Holcomb found Davis among four San
Francisco defenders for a leaping catch.

Table 1: Aggregation example (in boldface) from a
corpus of football summaries

dundancy, aggregation facilitates text comprehen-
sion and recall (see Yeung (1999) and the references
therein). Furthermore, Di Eugenio et al. (2005)
demonstrate that aggregation can improve learning
in the context of an intelligent tutoring application.

In existing generation systems, aggregation typi-
cally comprises two processes: semantic grouping
and sentence structuring (Wilkinson, 1995). The
first process involves partitioning semantic content
(usually the output of a content selection compo-
nent) into disjoint sets, each corresponding to a sin-
gle sentence. The second process is concerned with
syntactic or lexical decisions that affect the realiza-
tion of an aggregated sentence.

To date, this task has involved human analysis of a
domain-relevant corpus and manual development of
aggregation rules (Dalianis, 1999; Shaw, 1998). The
corpus analysis and knowledge engineering work in
such an approach is substantial, prohibitively so in

359



large domains. But since corpus data is already used
in building aggregation components, an appealing
alternative is to try and learn the rules of semantic
grouping directly from the data. Clearly, this would
greatly reduce the human effort involved and ease
porting generation systems to new domains.

In this paper, we present an automatic method for
performing the semantic grouping task. We address
the following problem: given an aligned parallel cor-
pus of sentences and their underlying semantic rep-
resentations, how can we learn grouping constraints
automatically? In our case the semantic content cor-
responds to entries from a database; however, our
algorithm could be also applied to other representa-
tions such as propositions or sentence plans.

We formalize semantic grouping as a set parti-
tioning problem, where each partition corresponds
to a sentence. The strength of our approach lies in
its ability to capture global partitioning constraints
by performing collective inference over local pair-
wise assignments. This design allows us to inte-
grate important constraints developed in symbolic
approaches into an automatic aggregation frame-
work. At a local level, pairwise constraints cap-
ture the semantic compatibility between pairs of
database entries. For example, if two entries share
multiple attributes, then they are likely to be aggre-
gated. Local constraints are learned using a binary
classifier that considers all pairwise combinations
attested in our corpus. At a global level, we search
for a semantic grouping that maximally agrees with
the pairwise preferences while simultaneously sat-
isfying constraints on the partitioning as a whole.
Global constraints, for instance, could prevent the
creation of overly long sentences, and, in general,
control the compression rate achieved during aggre-
gation. We encode the global inference task as an
integer linear program (ILP) that can be solved us-
ing standard optimization tools.

We evaluate our approach in a sports domain rep-
resented by large real-world databases containing
a wealth of interrelated facts. Our aggregation al-
gorithm model achieves an 11% F-score increase
on grouping entry pairs over a greedy clustering-
based model which does not utilize global informa-
tion for the partitioning task. Furthermore, these re-
sults demonstrate that aggregation is amenable to an
automatic treatment that does not require human in-

volvement.
In the following section, we provide an overview

of existing work on aggregation. Then, we define the
learning task and introduce our approach to content
grouping. Next, we present our experimental frame-
work and data. We conclude the paper by presenting
and discussing our results.

2 Related Work

Due to its importance in producing coherent and flu-
ent text, aggregation has been extensively studied in
the text generation community.1 Typically, semantic
grouping and sentence structuring are interleaved in
one step, thus enabling the aggregation component
to operate over a rich feature space. The common
assumption is that other parts of the generation sys-
tem are already in place during aggregation, and thus
the aggregation component has access to discourse,
syntactic, and lexical constraints.

The interplay of different constraints is usually
captured by a set of hand-crafted rules that guide
the aggregation process (Scott and de Souza, 1990;
Hovy, 1990; Dalianis, 1999; Shaw, 1998). Al-
ternatively, these rules can be learned from a cor-
pus. For instance, Walker et al. (2001) propose
an overgenerate-and-rank approach to aggregation
within the context of a spoken dialog application.
Their system relies on a preference function for se-
lecting an appropriate aggregation among multiple
alternatives and assumes access to a large feature
space expressing syntactic and pragmatic features of
the input representations. The preference function
is learned from a corpus of candidate aggregations
marked with human ratings. Another approach is put
forward by Cheng and Mellish (2000) who use a ge-
netic algorithm in combination with a hand-crafted
preference function to opportunistically find a text
that satisfies aggregation and planning constraints.

Our approach differs from previous work in two
important respects. First, our ultimate goal is a gen-
eration system which can be entirely induced from
a parallel corpus of sentences and their correspond-
ing database entries. This means that our generator
will operate over more impoverished representations
than are traditionally assumed. For example we do

1The approaches are too numerous to list; we refer the inter-
ested reader to Reiter and Dale (2000) and Reape and Mellish
(1999) for comprehensive overviews.

360



Passing
PLAYER CP/AT YDS AVG TD INT
Cundiff 22/37 237 6.4 1 1
Carter 23/47 237 5.0 1 4
. . . . . . . . . . . . . . . . . .

Rushing
PLAYER REC YDS AVG LG TD
Hambrick 13 33 2.5 10 1
. . . . . . . . . . . . . . . . . .

1 (Passing (Cundiff 22/37 237 6.4 1 1))
(Passing (Carter 23/47 237 5.0 1 4))

2 (Interception (Lindell 1 52 1))
(Kicking (Lindell 3/3 100 38 1/1 10))

3 (Passing (Bledsoe 17/34 104 3.1 0 0))
4 (Passing (Carter 15/32 116 3.6 1 0))
5 (Rushing (Hambrick 13 33 2.5 10 1))
6 (Fumbles (Bledsoe 2 2 0 0 0))

Table 2: Excerpt of database and (simplified) example of aggregated entries taken from a football domain.
This fragment will give rise to 6 sentences in the final text.

not presume to know all possible ways in which our
database entries can be lexicalized, nor do we pre-
sume to know which semantic or discourse relations
exist between different entries. In this framework,
aggregation is the task of grouping semantic content
without making any decisions about sentence struc-
ture or its surface realization. Second, we strive for
an approach to the aggregation problem which is as
domain- and representation-independent as possible.

3 Problem Formulation

We formulate aggregation as a supervised partition-
ing task, where the goal is to find a clustering of
input items that maximizes a global utility func-
tion. The input to the model consists of a set E

of database entries selected by a content planner.
The output of the model is a partition S = {Si} of
nonempty subsets such that each element of E ap-
pears in exactly one subset.2 In the context of aggre-
gation, each partition represents entries that should
be verbalized in the same sentence. An example of a
partitioning is illustrated in the right side of Table 2
where eight entries are partitioned into six clusters.

We assume access to a relational database where
each entry has a type and a set of attributes as-
sociated with it. Table 2 (left) shows an ex-
cerpt of the database we used for our experiments.
The aggregated text in Table 2 (right) contains en-
tries of five types: Passing, Interception,
Kicking, Rushing, and Fumbles. Entries of
type Passing have six attributes — PLAYER,

2By definition, a partitioning of a set defines an equivalence
relation which is reflexive, symmetric, and transitive.

CP/AT, YDS, AVG, TD, INT, entries of type
Interception have four attributes, and so on.
We assume the existence of a non-empty set of at-
tributes that we can use for meaningful comparison
between entities of different types. In the example
above, types Passing and Rushing share the at-
tributes PLAYER,AVG (short for average), TD (short
for touchdown) and YDS (short for yards). These are
indicated in boldface in Table 2. In Section 4.1, we
discuss how a set of shared attributes can be deter-
mined for a given database.

Our training data consists of entry sets with a
known partitioning. During testing, our task is to
infer a partitioning for an unseen set of entries.

4 Modeling

Our model is inspired by research on text aggre-
gation in the natural language generation commu-
nity (Cheng and Mellish, 2000; Shaw, 1998). A
common theme across different approaches is the
notion of similarity — content elements described
in the same sentence should be related to each other
in some meaningful way to achieve conciseness and
coherence. Consider for instance the first cluster in
Table 2. Here, we have two entries of the same type
(i.e., Passing). Furthermore, the entries share the
same values for the attributes YDS and TD (i.e., 237
and 1). On the other hand, clusters 5 and 6 have
no attributes in common. This observation moti-
vates modeling aggregation as a binary classification
task: given a pair of entries, predict their aggrega-
tion status based on the similarity of their attributes.
Assuming a perfect classifier, pairwise assignments

361



will be consistent with each other and will therefore
yield a valid partitioning.

In reality, however, this approach may produce
globally inconsistent decisions since it treats each
pair of entries in isolation. Moreover, a pairwise
classification model cannot express general con-
straints regarding the partitioning as a whole. For
example, we may want to constrain the size of the
generated partitions and the compression rate of the
document, or the complexity of the generated sen-
tences.

To address these requirements, our approach re-
lies on global inference. Given the pairwise predic-
tions of a local classifier, our model finds a glob-
ally optimal assignment that satisfies partitioning-
level constraints. The computational challenge lies
in the complexity of such a model: we need to find
an optimal partition in an exponentially large search
space. Our approach is based on an Integer Linear
Programming (ILP) formulation which can be effec-
tively solved using standard optimization tools. ILP
models have been successfully applied in several
natural language processing tasks, including relation
extraction (Roth and Yih, 2004), semantic role label-
ing (Punyakanok et al., 2004) and the generation of
route directions (Marciniak and Strube, 2005).

In the following section, we introduce our local
pairwise model and afterward we present our global
model for partitioning.

4.1 Learning Pairwise Similarity

Our goal is to determine whether two database en-
tries should be aggregated given the similarity of
their shared attributes. We generate the training data
by considering all pairs 〈ei, ej〉 ∈ E × E, where E

is the set of all entries attested in a given document.
An entry pair forms a positive instance if its mem-
bers belong to the same partition in the training data.
For example, we will generate 8×7

2
unordered entry

pairs for the eight entries from the document in Ta-
ble 2. From these, only two pairs constitute positive
instances, i.e., clusters 1 and 2. All other pairs form
negative instances.

The computation of pairwise similarity is based
on the attribute set A = {Ai} shared between the
two entries in the pair. As discussed in Section 3,
the same attributes can characterize multiple entry
types, and thus form a valid basis for entry compari-

son. The shared attribute set A could be identified in
many ways. For example, using domain knowledge
or by selecting attributes that appear across multiple
types. In our experiments, we follow the second ap-
proach: we order attributes by the number of entry
types in which they appear, and select the top five3.

A pair of entries is represented by a binary fea-
ture vector {xi} in which coordinate xi indicates
whether two entries have the same value for at-
tribute i. The feature vector is further expanded by
conjuctive features that explicitly represent overlap
in values of multiple attributes up to size k. The
parameter k controls the cardinality of the maximal
conjunctive set and is optimized on the development
set.

To illustrate our feature generation process, con-
sider the pair (Passing (Quincy Carter 15/32 116 3.6
1 0)) and (Rushing (Troy Hambrick 13 33 2.5 10 1))
from Table 2. Assuming A = {Player,Yds,TD}
and k = 2, the similarity between the two en-
tries will be expressed by six features, three rep-
resenting overlap in individual attributes and three
representing overlap when considering pairs of at-
tributes. The resulting feature vector has the form
〈0, 0, 1, 0, 0, 0〉.

Once we define a mapping from database entries
to features, we employ a machine learning algorithm
to induce a classifier on the feature vectors generated
from the training documents. In our experiments, we
used a publicly available maximum entropy classi-
fier4 for this task.

4.2 Partitioning with ILP

Given the pairwise predictions of the local classifier,
we wish to find a valid global partitioning for the
entries in a single document. We thus model the in-
teraction between all pairwise aggregation decisions
as an optimization problem.

Let c〈ei,ej〉 be the probability of seeing entry pair
〈ei, ej〉 aggregated (as computed by the pairwise
classifier). Our goal is to find an assignment that
maximizes the sum of pairwise scores and forms a
valid partitioning. We represent an assignment us-
ing a set of indicator variables x〈ei,ej〉 that are set

3Selecting a larger number of attributes for representing sim-
ilarity would result in considerably sparser feature vectors.

4The software can be downloaded from http://www.
isi.edu/˜hdaume/megam/index.html.

362



to 1 if 〈ei, ej〉 is aggregated, and 0 otherwise. The
score of a global assignment is the sum of its pair-
wise scores:

∑

〈ei,ej〉∈E×E

c〈ei,ej〉x〈ei,ej〉+(1−c〈ei,ej〉)(1−x〈ei,ej〉)

(1)
Our inference task is solved by maximizing the

overall score of pairs in a given document:

argmax
∑

〈ei,ej〉∈E×E

c〈ei,ej〉x〈ei,ej〉+(1−c〈ei,ej〉)(1−x〈ei ,ej〉)

(2)
subject to:

x〈ei,ej〉 ∈ {0, 1} ∀ ei, ej ∈ E ×E (3)

We augment this basic formulation with two types
of constraints. The first type of constraint ensures
that pairwise assignments lead to a consistent parti-
tioning, while the second type expresses global con-
straints on partitioning.

Transitivity Constraints We place constraints
that enforce transitivity in the label assignment: if
x〈ei,ej〉 = 1 and x〈ej ,ek〉 = 1, then x〈ei,ek〉 = 1.
A pairwise assignment that satisfies this constraint
defines an equivalence relation, and thus yields a
unique partitioning of input entries (Cormen et al.,
1992).

We implement transitivity constraints by intro-
ducing for every triple ei, ej , ek (i 6= j 6= k) an
inequality of the following form:

x〈ei,ek〉 ≥ x〈ei,ej〉 + x〈ej ,ek〉 − 1 (4)

If both x〈ei,ej〉 and x〈ej ,ek〉 are set to one, then
x〈ei,ek〉 also has to be one. Otherwise, x〈ei,ek〉 can
be either 1 or 0.

Global Constraints We also want to consider
global document properties that influence aggrega-
tion. For example, documents with many database
entries are likely to exhibit different compression
rates during aggregation when compared to docu-
ments that contain only a few.

Our first global constraint controls the number
of aggregated sentences in the document. This is
achieved by limiting the number of entry pairs with
positive labels for each document:

∑

〈ei,ej〉∈E×E

x〈ei,ej〉 ≤ m (5)

Notice that the number m is not known in ad-
vance. However, we can estimate this parameter
from our development data by considering docu-
ments of similar size (as measured by the number
of corresponding entry pairs.) For example, texts
with thousand entry pairs contain on average 70 pos-
itive labels, while documents with 200 pairs have
around 20 positive labels. Therefore, we set m sep-
arately for every document by taking the average
number of positive labels observed in the develop-
ment data for the document size in question.

The second set of constraints controls the length
of the generated sentences. We expect that there is
an upper limit on the number of pairs that can be
clustered together. This restriction can be expressed
in the following form:

∀ ei

∑

ej∈E

x〈ei,ej〉 ≤ k (6)

This constraint ensures that there can be at most k

positively labeled pairs for any entry ei. In our
corpus, for instance, at most nine entries can be
aggregated in a sentence. Again k is estimated
from the development data by taking into account
the average number of positively labeled pairs for
every entry type (see Table 2). We therefore
indirectly capture the fact that some entry types
(e.g., Passing) are more likely to be aggregated
than others (e.g., Kicking).

Solving the ILP In general, solving an integer lin-
ear program is NP-hard (Cormen et al., 1992). For-
tunately, there exist several strategies for solving
ILPs. In our study, we employed lp solve, an ef-
ficient Mixed Integer Programming solver5 which
implements the Branch-and-Bound algorithm. We
generate and solve an ILP for every document we
wish to aggregate. Documents of average size (ap-
proximately 350 entry pairs) take under 30 minutes
on a 450 MHz Pentium III machine.

5The software is available from http://www.
geocities.com/lpsolve/

363



5 Evaluation Set-up

The model presented in the previous section was
evaluated in the context of generating summary re-
ports for American football games. In this section
we describe the corpus used in our experiments, our
procedure for estimating the parameters of our mod-
els, and the baseline method used for comparison
with our approach.

Data For training and testing our algorithm, we
employed a corpus of football game summaries col-
lected by Barzilay and Lapata (2005). The corpus
contains 468 game summaries from the official site
of the American National Football League6 (NFL).
Each summary has an associated database contain-
ing statistics about individual players and events. In
total, the corpus contains 73,400 database entries,
7.1% of which are verbalized; each entry is charac-
terized by a type and a set of attributes (see Table 2).
Database entries are automatically aligned with their
corresponding sentences in the game summaries by
a procedure that considers anchor overlap between
entity attributes and sentence tokens. Although the
alignment procedure is relatively accurate, there is
unavoidably some noise in the data.

The distribution of database entries per sentence
is shown in Figure 1. As can be seen, most aggre-
gated sentences correspond to two or three database
entries. Each game summary contained 14.3 entries
and 9.1 sentences on average. The training and test
data were generated as described in Section 4.1. We
used 96,434 instances (300 summaries) for training,
59,082 instances (68 summaries) for testing, and
53,776 instances (100 summaries) for development
purposes.

Parameter Estimation As explained in Section 4,
we infer a partitioning over a set of database en-
tries in a two-stage process. We first determine how
likely all entry pairs are to be aggregated using a lo-
cal classifier, and then infer a valid global partition-
ing for all entries. The set of shared attributes A
consists of five features that capture overlap in play-
ers, time (measured by game quarters), action type,
outcome type, and number of yards. The maximum
cardinality of the set of conjunctive features is five.

6See http://www.nfl.com/scores.

Figure 1: Distribution of aggregated sentences in the
NFL corpus

Overall, our local classifier used 28 features, includ-
ing 23 conjunctive ones. The maximum entropy
classifier was trained for 100 iterations. The global
constraints for our ILP models are parametrized (see
equations (5) and (6)) by m and k which are esti-
mated separately for every test document. The val-
ues of m ranged from 2 to 130 and for k from 2 to 9.

Baseline Clustering is a natural baseline model for
our partitioning problem. In our experiments, we
a employ a single-link agglomerative clustering al-
gorithm that uses the scores returned by the maxi-
mum entropy classifier as a pairwise distance mea-
sure. Initially, the algorithm creates a separate clus-
ter for each sentence. During each iteration, the two
closest clusters are merged. Again, we do not know
in advance the appropriate number of clusters for a
given document. This number is estimated from the
training data by averaging the number of sentences
in documents of the same size.

Evaluation Measures We evaluate the perfor-
mance of the ILP and clustering models by mea-
suring F-score over pairwise label assignments. We
compute F-score individually for each document and
report the average. In addition, we compute partition
accuracy in order to determine how many sentence-
level aggregations our model predicts correctly.

364



Clustering Precision Recall F-score
Mean 57.7 66.9 58.4
Min 0.0 0.0 0.0
Max 100.0 100.0 100.0
StDev 28.2 23.9 23.1

ILP Model Precision Recall F-score
Mean 82.2 65.4 70.3
Min 37.5 28.6 40.0
Max 100.0 100.0 100.0
StDev 19.2 20.3 16.6

Table 3: Results on pairwise label assignment (pre-
cision, recall, and F-score are averaged over doc-
uments); comparison between clustering and ILP
models

6 Results

Our results are summarized in Table 3. As can
be seen, the ILP model outperforms the clustering
model by a wide margin (11.9% F-score). The two
methods yield comparable recall; however, the clus-
tering model lags considerably behind as far as pre-
cision is concerned (the difference is 24.5 %).7

Precision is more important than recall in the con-
text of our aggregation application. Incorrect aggre-
gations may have detrimental effects on the coher-
ence of the generated text. Choosing not to aggre-
gate may result in somewhat repetitive texts; how-
ever, the semantic content of the underlying text re-
mains intact. In the case of wrong aggregations, we
may group together facts that are not compatible,
and even introduce implications that are false.

We also consider how well our model performs
when evaluated on total partition accuracy. Here,
we are examining the partitioning as a whole and
ask the following question: how many clusters of
size 1, 2 . . . n did the algorithm get right? This eval-
uation measure is stricter than F-score which is com-

7Unfortunately we cannot apply standard statistical tests
such as the t-test on F-scores since they violate assumptions
about underlying normal distributions. It is not possible to use
an assumptions-free test like χ

2 either, since F-score is not a
frequency-based measure. We can, however, use χ

2 on pre-
cision and recall, since these measures are estimated from fre-
quency data. We thus find that the ILP model is significantly
better than the clustering model on precision (χ2 = 16.39,
p < 0.01); the two models are not significantly different in
terms of recall (χ2 = 0.02, p < 0.89).

Figure 2: Partition accuracy for sentences of differ-
ent size

puted over pairwise label assignments. The partition
accuracy for entry groups of varying size is shown in
Figure 2. As can be seen, in all cases the ILP outper-
forms the clustering baseline. Both models are fairly
accurate at identifying singletons, i.e., database en-
tries which are not aggregated. Performance is natu-
rally worse when considering larger clusters. Inter-
estingly, the difference between the two models be-
comes more pronounced for partition sizes 4 and 5
(see Figure 2). The ILP’s accuracy increases by 24%
for size 4 and 8% for size 5.

These results empirically validate the impor-
tance of global inference for the partitioning task.
Our formulation allows us to incorporate important
document-level constraints as well as consistency
constraints which cannot be easily represented in a
vanilla clustering model.

7 Conclusions and Future Work

In this paper we have presented a novel data-driven
method for aggregation in the context of natural lan-
guage generation. A key aspect of our approach is
the use of global inference for finding aggregations
that are maximally consistent and coherent. We have
formulated our inference problem as an integer lin-
ear program and shown experimentally that it out-
performs a baseline clustering model by a wide mar-
gin. Beyond generation, the approach holds promise
for other NLP tasks requiring the accurate partition-
ing of items into equivalence classes (e.g., corefer-
ence resolution).

365



Currently, semantic grouping is carried out in our
model sequentially. First, a local classifier learns
the similarity of entity pairs and then ILP is em-
ployed to infer a valid partitioning. Although such a
model has advantages in the face of sparse data (re-
call that we used a relatively small training corpus
of 300 documents) and delivers good performance,
it effectively decouples learning from inference. An
appealing future direction lies in integrating learning
and inference in a unified global framework. Such
a framework would allow us to incorporate global
constraints directly into the learning process.

Another important issue, not addressed in this
work, is the interaction of our aggregation method
with content selection and surface realization. Using
an ILP formulation may be an advantage here since
we could use feedback (in the form of constraints)
from other components and knowlegde sources (e.g.,
discourse relations) to improve aggregation or in-
deed the generation pipeline as a whole (Marciniak
and Strube, 2005).

Acknowledgments

The authors acknowledge the support of the National Science

Foundation (Barzilay; CAREER grant IIS-0448168 and grant

IIS-0415865) and EPSRC (Lapata; grant GR/T04540/01).

Thanks to Eli Barzilay, Michael Collins, David Karger, Frank

Keller, Yoong Keok Lee, Igor Malioutov, Johanna Moore,

Kevin Simler, Ben Snyder, Bonnie Webber and the anonymous

reviewers for helpful comments and suggestions. Any opinions,

findings, and conclusions or recommendations expressed above

are those of the authors and do not necessarily reflect the views

of the NSF or EPSRC.

References

R. Barzilay, M. Lapata. 2005. Collective content se-
lection for concept-to-text generation. In Proceedings
of the Human Language Technology Conference and
the Conference on Empirical Methods in Natural Lan-
guage Processing, 331–338, Vancouver.

H. Cheng, C. Mellish. 2000. Capturing the interaction
between aggregation and text planning in two genera-
tion systems. In Proceedings of the 1st International
Natural Language Generation Conference, 186–193,
Mitzpe Ramon, Israel.

T. H. Cormen, C. E. Leiserson, R. L. Rivest. 1992. Into-
duction to Algorithms. The MIT Press.

H. Dalianis. 1999. Aggregation in natural language gen-
eration. Computational Intelligence, 15(4):384–414.

B. Di Eugenio, D. Fossati, D. Yu. 2005. Aggregation im-
proves learning: Experiments in natural language gen-
eration for intelligent tutoring systems. In Proceed-
ings of the 43rd Annual Meeting of the Association for
Computational Linguistics, 50–57, Ann Arbor, MI.

E. H. Hovy. 1990. Unresolved issues in paragraph plan-
ning. In R. Dale, C. Mellish, M. Zock, eds., Cur-
rent Research in Natural Language Generation, 17–
41. Academic Press, New York.

T. Marciniak, M. Strube. 2005. Beyond the pipeline:
Discrete optimization in NLP. In Proceedings of the
Annual Conference on Computational Natural Lan-
guage Learning, 136–143, Ann Arbor, MI.

V. Punyakanok, D. Roth, W. Yih, D. Zimak. 2004. Se-
mantic role labeling via integer linear programming
inference. In Proceedings of the International Con-
ference on Computational Linguistics, 1346–1352,
Geneva, Switzerland.

M. Reape, C. Mellish. 1999. Just what is aggrega-
tion anyway? In Proceedings of the 7th European
Workshop on Natural Language Generation, 20–29,
Toulouse, France.

E. Reiter, R. Dale. 2000. Building Natural Language
Generation Systems. Cambridge University Press,
Cambridge.

D. Roth, W. Yih. 2004. A linear programming formula-
tion for global inference in natural language tasks. In
Proceedings of the Annual Conference on Computa-
tional Natural Language Learning, 1–8, Boston, MA.

D. Scott, C. S. de Souza. 1990. Getting the mes-
sage across in RST-based text generation. In R. Dale,
C. Mellish, M. Zock, eds., Current Research in Nat-
ural Language Generation, 47–73. Academic Press,
New York.

J. Shaw. 1998. Clause aggregation using linguis-
tic knowledge. In Proceedings of 9th International
Workshop on Natural Language Generation, 138–147,
Niagara-on-the-Lake, Ontario, Canada.

M. A. Walker, O. Rambow, M. Rogati. 2001. Spot:
A trainable sentence planner. In Proceedings of the
2nd Annual Meeting of the North American Chapter
of the Association for Computational Linguistics, 17–
24, Pittsburgh, PA.

J. Wilkinson. 1995. Aggregation in natural language
generation: Another look. Technical report, Computer
Science Department, University of Waterloo, 1995.

A. S. Yeung. 1999. Cognitive load and learner expertise:
Split-attention and redundancy effects in reading com-
prehension tasks with vocabulary definitions. Journal
of Experimental Education, 67(3):197–218.

366


