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Abstract

In this paper, we present a rule based
model for morphological disambiguation
of Turkish. The rules are generated by a
novel decision list learning algorithm us-
ing supervised training. Morphological
ambiguity (e.g. lives = live+s or life+s)
is a challenging problem for agglutinative
languages like Turkish where close to half
of the words in running text are morpho-
logically ambiguous. Furthermore, it is
possible for a word to take an unlimited
number of suffixes, therefore the number
of possible morphological tags is unlim-
ited. We attempted to cope with these
problems by training a separate model for
each of the 126 morphological features
recognized by the morphological analyzer.
The resulting decision lists independently
vote on each of the potential parses of a
word and the final parse is selected based
on our confidence on these votes. The
accuracy of our model (96%) is slightly
above the best previously reported results
which use statistical models. For compari-
son, when we train a single decision list on
full tags instead of using separate models
on each feature we get 91% accuracy.

1 Introduction

Morphological disambiguation is the task of select-
ing the correct morphological parse for a given word

in a given context. The possible parses of a word
are generated by a morphological analyzer. In Turk-
ish, close to half the words in running text are mor-
phologically ambiguous. Below is a typical word
“masalı” with three possible parses.

masal+Noun+A3sg+Pnon+Acc (= the story)
masal+Noun+A3sg+P3sg+Nom (= his story)
masa+Noun+A3sg+Pnon+NomˆDB+Adj+With

(= with tables)

Table 1: Three parses of the word “masalı”

The first two parses start with the same root,
masal (= story, fable), but the interpretation of the
following +ı suffix is the Accusative marker in one
case, and third person possessive agreement in the
other. The third parse starts with a different root,
masa (= table) followed by a derivational suffix +lı
(= with) which turns the noun into an adjective. The
symbol ˆDB represents a derivational boundary and
splits the parse into chunks called inflectional groups
(IGs).1

We will use the term feature to refer to individual
morphological features like +Acc and +With; the
term IG to refer to groups of features split by deriva-
tional boundaries (ˆDB), and the term tag to refer to
the sequence of IGs following the root.

Morphological disambiguation is a useful first
step for higher level analysis of any language but it
is especially critical for agglutinative languages like
Turkish, Czech, Hungarian, and Finnish. These lan-
guages have a relatively free constituent order, and

1See (Oflazer et al., 1999) for a detailed description of the
morphological features used in this paper.
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syntactic relations are partly determined by morpho-
logical features. Many applications including syn-
tactic parsing, word sense disambiguation, text to
speech synthesis and spelling correction depend on
accurate analyses of words.

An important qualitative difference between part
of speech tagging in English and morphological dis-
ambiguation in an agglutinative language like Turk-
ish is the number of possible tags that can be as-
signed to a word. Typical English tag sets include
less than a hundred tag types representing syntac-
tic and morphological information. The number of
potential morphological tags in Turkish is theoret-
ically unlimited. We have observed more than ten
thousand tag types in our training corpus of a mil-
lion words. The high number of possible tags poses
a data sparseness challenge for the typical machine
learning approach, somewhat akin to what we ob-
serve in word sense disambiguation.

One way out of this dilemma could be to ignore
the detailed morphological structure of the word and
focus on determining only the major and minor parts
of speech. However (Oflazer et al., 1999) observes
that the modifier words in Turkish can have depen-
dencies to any one of the inflectional groups of a
derived word. For example, in “mavi masalı oda” (=
the room with a blue table) the adjective “mavi” (=
blue) modifies the noun root “masa” (= table) even
though the final part of speech of “masalı” is an ad-
jective. Therefore, the final part of speech and in-
flection of a word do not carry sufficient information
for the identification of the syntactic dependencies
it is involved in. One needs the full morphological
analysis.

Our approach to the data sparseness problem is
to consider each morphological feature separately.
Even though the number of potential tags is un-
limited, the number of morphological features is
small: The Turkish morphological analyzer we use
(Oflazer, 1994) produces tags that consist of 126
unique features. For each unique feature f , we take
the subset of the training data in which one of the
parses for each instance contain f . We then split this
subset into positive and negative examples depend-
ing on whether the correct parse contains the feature
f . These examples are used to learn rules using the
Greedy Prepend Algorithm (GPA), a novel decision
list learner.

To predict the tag of an unknown word, first the
morphological analyzer is used to generate all its
possible parses. The decision lists are then used to
predict the presence or absence of each of the fea-
tures contained in the candidate parses. The results
are probabilistically combined taking into account
the accuracy of each decision list to select the best
parse. The resulting tagging accuracy is 96% on a
hand tagged test set.

A more direct approach would be to train a single
decision list using the full tags as the target classifi-
cation. Given a word in context, such a decision list
assigns a complete morphological tag instead of pre-
dicting individual morphological features. As such,
it does not need the output of a morphological ana-
lyzer and should be considered a tagger rather than
a disambiguator. For comparison, such a decision
list was built, and its accuracy was determined to be
91% on the same test set.

The main reason we chose to work with decision
lists and the GPA algorithm is their robustness to ir-
relevant or redundant features. The input to the deci-
sion lists include the suffixes of all possible lengths
and character type information within a five word
window. Each instance ends up with 40 attributes on
average which are highly redundant and mostly irrel-
evant. GPA is able to sort out the relevant features
automatically and build a fairly accurate model. Our
experiments with Naive Bayes resulted in a signif-
icantly worse performance. Typical statistical ap-
proaches include the tags of the previous words as
inputs in the model. GPA was able to deliver good
performance without using the previous tags as in-
puts, because it was able to extract equivalent infor-
mation implicit in the surface attributes. Finally, un-
like most statistical approaches, the resulting models
of GPA are human readable and open to interpreta-
tion as Section 3.1 illustrates.

The next section will review related work. Sec-
tion 3 introduces decision lists and the GPA training
algorithm. Section 4 presents the experiments and
the results.

2 Related Work

There is a large body of work on morphological dis-
ambiguation and part of speech tagging using a va-
riety of rule-based and statistical approaches. In the
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rule-based approach a large number of hand crafted
rules are used to select the correct morphological
parse or POS tag of a given word in a given context
(Karlsson et al., 1995; Oflazer and Tür, 1997). In
the statistical approach a hand tagged corpus is used
to train a probabilistic model which is then used to
select the best tags in unseen text (Church, 1988;
Hakkani-Tür et al., 2002). Examples of statisti-
cal and machine learning approaches that have been
used for tagging include transformation based learn-
ing (Brill, 1995), memory based learning (Daele-
mans et al., 1996), and maximum entropy models
(Ratnaparkhi, 1996). It is also possible to train sta-
tistical models using unlabeled data with the ex-
pectation maximization algorithm (Cutting et al.,
1992). Van Halteren (1999) gives a comprehensive
overview of syntactic word-class tagging.

Previous work on morphological disambiguation
of inflectional or agglutinative languages include
unsupervised learning for of Hebrew (Levinger
et al., 1995), maximum entropy modeling for Czech
(Hajič and Hladká, 1998), combination of statistical
and rule-based disambiguation methods for Basque
(Ezeiza et al., 1998), transformation based tagging
for Hungarian (Megyesi, 1999).

Early work on Turkish used a constraint-based ap-
proach with hand crafted rules (Oflazer and Kuruöz,
1994). A purely statistical morphological disam-
biguation model was recently introduced (Hakkani-
Tür et al., 2002). To counter the data sparseness
problem the morphological parses are split across
their derivational boundaries and certain indepen-
dence assumptions are made in the prediction of
each inflectional group.

A combination of three ideas makes our approach
unique in the field: (1) the use of decision lists and
a novel learning algorithm that combine the statis-
tical and rule based techniques, (2) the treatment of
each individual feature separately to address the data
sparseness problem, and (3) the lack of dependence
on previous tags and relying on surface attributes
alone.

3 Decision Lists

We introduce a new method for morphological dis-
ambiguation based on decision lists. A decision list
is an ordered list of rules where each rule consists

of a pattern and a classification (Rivest, 1987). In
our application the pattern specifies the surface at-
tributes of the words surrounding the target such as
suffixes and character types (e.g. upper vs. lower
case, use of punctuation, digits). The classification
indicates the presence or absence of a morphological
feature for the center word.

3.1 A Sample Decision List

We will explain the rules and their patterns using the
sample decision list in Table 2 trained to identify the
feature +Det (determiner).

Rule Class Pattern
1 1 W=˜çok R1=+DA
2 1 L1=˜pek
3 0 W=+AzI
4 0 W=˜çok
5 1 –

Table 2: A five rule decision list for +Det

The value in the class column is 1 if word W
should have a +Det feature and 0 otherwise. The
pattern column describes the required attributes of
the words surrounding the target word for the rule
to match. The last (default) rule has no pattern,
matches every instance, and assigns them +Det.
This default rule captures the behavior of the ma-
jority of the training instances which had +Det in
their correct parse. Rule 4 indicates a common
exception: the frequently used word “çok” (mean-
ing very) should not be assigned +Det by default:
“çok” can be also used as an adjective, an adverb,
or a postposition. Rule 1 introduces an exception to
rule 4: if the right neighbor R1 ends with the suffix
+DA (the locative suffix) then “çok” should receive
+Det. The meanings of various symbols in the pat-
terns are described below.

When the decision list is applied to a window of
words, the rules are tried in the order from the most
specific (rule 1) to the most general (rule 5). The first
rule that matches is used to predict the classification
of the center word. The last rule acts as a catch-all;
if none of the other rules have matched, this rule as-
signs the instance a default classification. For exam-
ple, the five rule decision list given above classifies
the middle word in “pek çok alanda” (matches rule
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W target word A [ae]
L1, L2 left neighbors I [ıiuü]
R1, R2 right neighbors D [dt]
== exact match B [bp]
=˜ case insensitive match C [cç]
=+ is a suffix of K [kgğ]

Table 3: Symbols used in the rule patterns. Capital
letters on the right represent character groups useful
in identifying phonetic variations of certain suffixes,
e.g. the locative suffix +DA can surface as +de, +da,
+te, or +ta depending on the root word ending.

1) and “pek çok insan” (matches rule 2) as +Det,
but “insan çok daha” (matches rule 4) as not +Det.

One way to interpret a decision list is as a se-
quence of if-then-else constructs familiar from pro-
gramming languages. Another way is to see the last
rule as the default classification, the previous rule as
specifying a set of exceptions to the default, the rule
before that as specifying exceptions to these excep-
tions and so on.

3.2 The Greedy Prepend Algorithm (GPA)

To learn a decision list from a given set of training
examples the general approach is to start with a de-
fault rule or an empty decision list and keep adding
the best rule to cover the unclassified or misclassi-
fied examples. The new rules can be added to the
end of the list (Clark and Niblett, 1989), the front of
the list (Webb and Brkic, 1993), or other positions
(Newlands and Webb, 2004). Other design decisions
include the criteria used to select the “best rule” and
how to search for it.

The Greedy Prepend Algorithm (GPA) is a variant
of the PREPEND algorithm (Webb and Brkic, 1993).
It starts with a default rule that matches all instances
and classifies them using the most common class in
the training data. Then it keeps prepending the rule
with the maximum gain to the front of the grow-
ing decision list until no further improvement can be
made. The algorithm can be described as follows:

GPA(data)

1 dlist ← NIL

2 default -class ← MOST-COMMON-CLASS(data)
3 rule ← [if TRUE then default -class ]
4 while GAIN(rule , dlist , data) > 0
5 do dlist ← prepend(rule , dlist)
6 rule ← MAX-GAIN-RULE(dlist , data)
7 return dlist

The gain of a candidate rule in GPA is defined
as the increase in the number of correctly classified
instances in the training set as a result of prepend-
ing the rule to the existing decision list. This is
in contrast with the original PREPEND algorithm
which uses the less direct Laplace preference func-
tion (Webb and Brkic, 1993; Clark and Boswell,
1991).

To find the next rule with the maximum gain, GPA
uses a heuristic search algorithm. Candidate rules
are generated by adding a single new attribute to the
pattern of each rule already in the decision list. The
candidate with the maximum gain is prepended to
the decision list and the process is repeated until no
more positive gain rules can be found. Note that if
the best possible rule has more than one extra at-
tribute compared to the existing rules in the decision
list, a suboptimal rule will be selected. The origi-
nal PREPEND uses an admissible search algorithm,
OPUS, which is guaranteed to find the best possible
candidate (Webb, 1995), but we found OPUS to be
too slow to be practical for a problem of this scale.

We picked GPA for the morphological disam-
biguation problem because we find it to be fast and
fairly robust to the existence of irrelevant or redun-
dant attributes. The average training instance has
40 attributes describing the suffixes of all possible
lengths and character type information in a five word
window. Most of this information is redundant or
irrelevant to the problem at hand. The number of
distinct attributes is on the order of the number of
distinct word-forms in the training set. Nevertheless
GPA is able to process a million training instances
for each of the 126 unique morphological features
and produce a model with state of the art accuracy
in about two hours on a regular desktop PC.2

2Pentium 4 CPU 2.40GHz
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4 Experiments and Results

In this section we present the details of the data,
the training and testing procedures, the surface at-
tributes used, and the accuracy results.

4.1 Training Data

documents 2383
sentences 50673

tokens 948404
parses 1.76 per token

IGs 1.33 per parse
features 3.29 per IG

unique tokens 111467
unique tags 11084
unique IGs 2440

unique features 126
ambiguous tokens 399223 (42.1%)

Table 4: Statistics for the training data

Our training data consists of about 1 million
words of semi-automatically disambiguated Turkish
news text. For each one of the 126 unique morpho-
logical features, we used the subset of the training
data in which instances have the given feature in at
least one of their generated parses. We then split this
subset into positive and negative examples depend-
ing on whether the correct parse contains the given
feature. A decision list specific to that feature is cre-
ated using GPA based on these examples.

Some relevant statistics for the training data are
given in Table 4.

4.2 Input Attributes
Once the training data is selected for a particular
morphological feature, each instance is represented
by surface attributes of five words centered around
the target word. We have tried larger window sizes
but no significant improvement was observed. The
attributes computed for each word in the window
consist of the following:

1. The exact word string (e.g. W==Ali’nin)

2. The lowercase version (e.g. W=˜ali’nin) Note:
all digits are replaced by 0’s at this stage.

3. All suffixes of the lowercase version (e.g.
W=+n, W=+In, W=+nIn, W=+’nIn, etc.) Note:

certain characters are replaced with capital let-
ters representing character groups mentioned in
Table 3. These groups help the algorithm rec-
ognize different forms of a suffix created by the
phonetic rules of Turkish: for example the loca-
tive suffix +DA can surface as +de, +da, +te, or
+ta depending on the ending of the root word.

4. Attributes indicating the types of characters at
various positions of the word (e.g. Ali’nin
would be described with W=UPPER-FIRST,
W=LOWER-MID, W=APOS-MID, W=LOWER-
LAST)

Each training instance is represented by 40 at-
tributes on average. The GPA procedure is responsi-
ble for picking the attributes that are relevant to the
decision. No dictionary information is required or
used, therefore the models are fairly robust to un-
known words. One potentially useful source of at-
tributes is the tags assigned to previous words which
we plan to experiment with in future work.

4.3 The Decision Lists
At the conclusion of the training, 126 decision lists
are produced of the form given in Table 2. The num-
ber of rules in each decision list range from 1 to
6145. The longer decision lists are typically for part
of speech features, e.g. distinguishing nouns from
adjectives, and contain rules specific to lexical items.
The average number of rules is 266. To get an esti-
mate on the accuracy of each decision list, we split
the one million word data into training, validation,
and test portions using the ratio 4:1:1. The train-
ing set accuracy of the decision lists is consistently
above 98%. The test set accuracies of the 126 deci-
sion lists range from 80% to 100% with the average
at 95%. Table 5 gives the six worst features with test
set accuracy below 89%; these are the most difficult
to disambiguate.

4.4 Correct Tag Selection
To evaluate the candidate tags, we need to combine
the results of the decision lists. We assume that the
presence or absence of each feature is an indepen-
dent event with a probability determined by the test
set accuracy of the corresponding decision list. For
example, if the +P3pl decision list predicts YES,
we assume that the +P3pl feature is present with
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87.89% +Acquire To acquire (noun)
86.18% +PCIns Postposition subcat.
85.11% +Fut Future tense
84.08% +P3pl 3. plural possessive
80.79% +Neces Must
79.81% +Become To become (noun)

Table 5: The six features with the worst test set ac-
curacy.

probability 0.8408 (See Table 5). If the +Fut deci-
sion list predicts NO, we assume the +Fut feature is
present with probability 1 − 0.8511 = 0.1489. To
avoid zero probabilities we cap the test set accura-
cies at 99%.

Each candidate tag indicates the presence of cer-
tain features and the absence of others. The prob-
ability of the tag being correct under our indepen-
dence assumption is the product of the probabilities
for the presence and absence of each of the 126 fea-
tures as determined by our decision lists. For effi-
ciency, one can neglect the features that are absent
from all the candidate tags because their contribu-
tion will not effect the comparison.

4.5 Results
The final evaluation of the model was performed on
a test data set of 958 instances. The possible parses
for each instance were generated by the morpholog-
ical analyzer and the correct one was picked manu-
ally. 40% of the instances were ambiguous, which
on the average had 3.9 parses. The disambiguation
accuracy of our model was 95.82%. The 95% confi-
dence interval for the accuracy is [0.9457, 0.9708].

An analysis of the mistakes in the test data show
that at least some of them are due to incorrect tags
in our training data. The training data was semi-
automatically generated and thus contained some er-
rors. Based on hand evaluation of the differences be-
tween the training data tags and the GPA generated
tags, we estimate the accuracy of the training data to
be below 95%. We ran two further experiments to
see if we could improve on the initial results.

In our first experiment we used our original model
to re-tag the training data. The re-tagged training
data was used to construct a new model. The result-
ing accuracy on the test set increased to 96.03%, not
a statistically significant improvement.

In our second experiment we used only unam-
biguous instances for training. Decision list training
requires negative examples, so we selected random
unambiguous instances for positive and negative ex-
amples for each feature. The accuracy of the result-
ing model on the test set was 82.57%. The problem
with selecting unambiguous instances is that certain
common disambiguation decisions are never repre-
sented during training. More careful selection of
negative examples and a sophisticated bootstrapping
mechanism may still make this approach workable.

Finally, we decided to see if our decision lists
could be used for tagging rather than disambigua-
tion, i.e. given a word in a context decide on the full
tag without the help of a morphological analyzer.
Even though the number of possible tags is unlim-
ited, the most frequent 1000 tags cover about 99%
of the instances. A single decision list trained with
the full tags was able to achieve 91.23% accuracy
using 10000 rules. This is a promising result and
will be explored further in future work.

5 Contributions

We have presented an automated approach to learn
morphological disambiguation rules for Turkish us-
ing a novel decision list induction algorithm, GPA.
The only input to the rules are the surface attributes
of a five word window. The approach can be gener-
alized to other agglutinative languages which share
the common challenge of a large number of poten-
tial tags. Our approach for resolving the data sparse-
ness problem caused by the large number of tags is
to generate a separate model for each morphologi-
cal feature. The predictions for individual features
are probabilistically combined based on the accu-
racy of each model to select the best tag. We were
able to achieve an accuracy around 96% using this
approach.
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