
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 296–303,
New York, June 2006.c©2006 Association for Computational Linguistics

Integrating Probabilistic Extraction Models and Data Mining
to Discover Relations and Patterns in Text

Aron Culotta

University of Massachusetts

Amherst, MA 01003

culotta@cs.umass.edu

Andrew McCallum

University of Massachusetts

Amherst, MA 01003

mccallum@cs.umass.edu

Jonathan Betz

Google, Inc.

New York, NY 10018

jtb@google.com

Abstract

In order for relation extraction systems

to obtain human-level performance, they

must be able to incorporate relational pat-

terns inherent in the data (for example,

that one’s sister is likely one’s mother’s

daughter, or that children are likely to

attend the same college as their par-

ents). Hand-coding such knowledge can

be time-consuming and inadequate. Addi-

tionally, there may exist many interesting,

unknown relational patterns that both im-

prove extraction performance and provide

insight into text. We describe a probabilis-

tic extraction model that provides mutual

benefits to both “top-down” relational pat-

tern discovery and “bottom-up” relation

extraction.

1 Introduction

Consider these four sentences:

1. George W. Bush’s father is George H. W. Bush.

2. George H. W. Bush’s sister is Nancy Bush Ellis.

3. Nancy Bush Ellis’s son is John Prescott Ellis.

4. John Prescott Ellis analyzed George W. Bush’s

campaign.

We would like to build an automated system to

extract the set of relations shown in Figure 1.

cousin

Nancy Ellis Bush
sibling

George HW Bush

George W Bush

son

John Prescott Ellis

son

Figure 1: Bush family tree

State of the art extraction algorithms may be able

to detect the son and sibling relations from local lan-

guage clues. However, the cousin relation is only

implied by the text and requires additional knowl-

edge to be extracted. Specifically, the system re-

quires knowledge of familial relation patterns.

One could imagine a system that accepts such

rules as input (e.g. cousin = father’s sister’s son)

and applies them to extract implicit relations. How-

ever, exhaustively enumerating all possible rules can

be tedious and incomplete. More importantly, many

relational patterns unknown a priori may both im-

prove extraction accuracy and uncover informative

trends in the data (e.g. that children often adopt the

religion of their parents). Indeed, the goal of data

mining is to learn such patterns from database reg-

ularities. Since these patterns will not always hold,

we would like to handle them probabilistically.

We propose an integrated supervised machine

learning method that learns both contextual and re-

lational patterns to extract relations. In particular,

we construct a linear-chain conditional random field

(Lafferty et al., 2001; Sutton and McCallum, 2006)

to extract relations from biographical texts while si-

multaneously discovering interesting relational pat-

terns that improve extraction performance.
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2 Related Work

This work can be viewed as a step toward the in-

tegration of information extraction and data mining

technology, a direction of growing interest. Nahm

and Mooney (2000) present a system that mines as-

sociation rules from a database constructed from au-

tomatically extracted data, then applies these learned

rules to improve data field recall without revisiting

the text. Our work attempts to more tightly inte-

grate the extraction and mining tasks by learning

relational patterns that can be included probabilis-

tically into extraction to improve its accuracy; also,

our work focuses on mining from relational graphs,

rather than single-table databases.

McCallum and Jensen (2003) argue the theoreti-

cal benefits of an integrated probabilistic model for

extraction and mining, but do not construct such a

system. Our work is a step in the direction of their

proposal, using an inference procedure based on a

closed-loop iteration between extraction and rela-

tional pattern discovery.

Most other work in this area mines raw text, rather

than a database automatically populated via extrac-

tion (Hearst, 1999; Craven et al., 1998).

This work can also be viewed as part of a trend

to perform joint inference across multiple language

processing tasks (Miller et al., 2000; Roth and tau

Yih, 2002; Sutton and McCallum, 2004).

Finally, using relational paths between entities is

also examined in (Richards and Mooney, 1992) to

escape local maxima in a first-order learning system.

3 Relation Extraction as Sequence

Labeling

Relation extraction is the task of discovering seman-

tic connections between entities. In text, this usu-

ally amounts to examining pairs of entities in a doc-

ument and determining (from local language cues)

whether a relation exists between them. Common

approaches to this problem include pattern match-

ing (Brin, 1998; Agichtein and Gravano, 2000),

kernel methods (Zelenko et al., 2003; Culotta and

Sorensen, 2004; Bunescu and Mooney, 2006), lo-

gistic regression (Kambhatla, 2004), and augmented

parsing (Miller et al., 2000).

The pairwise classification approach of kernel

methods and logistic regression is commonly a two-

phase method: first the entities in a document are

identified, then a relation type is predicted for each

pair of entities. This approach presents at least

two difficulties: (1) enumerating all pairs of enti-

ties, even when restricted to pairs within a sentence,

results in a low density of positive relation exam-

ples; and (2) errors in the entity recognition phase

can propagate to errors in the relation classification

stage. As an example of the latter difficulty, if a per-

son is mislabeled as a company, then the relation

classifier will be unsuccessful in finding a brother

relation, despite local evidence.

We avoid these difficulties by restricting our in-

vestigation to biographical texts, e.g. encyclopedia

articles. A biographical text mostly discusses one

entity, which we refer to as the principal entity. We

refer to other mentioned entities as secondary enti-

ties. For each secondary entity, our goal is to predict

what relation, if any, it has to the principal entity.

This formulation allows us to treat relation ex-

traction as a sequence labeling task such as named-

entity recognition or part-of-speech tagging, and we

can now apply models that have been successful on

those tasks. By anchoring one argument of relations

to be the principal entity, we alleviate the difficulty

of enumerating all pairs of entities in a document.

By converting to a sequence labeling task, we fold

the entity recognition step into the relation extrac-

tion task. There is no initial pass to label each entity

as a person or company. Instead, an entity’s label is

its relation to the principal entity. Below is an exam-

ple of a labeled article:

George W. Bush

George is the son of George H. W. Bush
︸ ︷︷ ︸

father
and Barbara Bush

︸ ︷︷ ︸

mother

.

Additionally, by using a sequence model we can

capture the dependence between adjacent labels. For

example, in our data it is common to see phrases

such as “son of the Republican president George H.

W. Bush” for which the labels politicalParty, jobTi-

tle, and father occur consecutively. Sequence mod-

els are specifically designed to handle these kinds

of dependencies. We now discuss the details of our

extraction model.
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3.1 Conditional Random Fields

We build a model to extract relations using linear-

chain conditional random fields (CRFs) (Lafferty

et al., 2001; Sutton and McCallum, 2006). CRFs

are undirected graphical models (i.e. Markov net-

works) that are discriminatively-trained to maximize

the conditional probability of a set of output vari-

ables y given a set of input variables x. This condi-

tional distribution has the form

pΛ(y|x) =
1

Zx

∏

c∈C

φc(yc,xc; Λ) (1)

where φ are potential functions parameterized by Λ
and Zx =

∑

y

∏

c∈C φ(yc,xc) is a normalization

factor. Assuming φc factorizes as a log-linear com-

bination of arbitrary features computed over clique

c, then φc(yc,xc; Λ) = exp (
∑

k λkfk(yc,xc)),
where f is a set of arbitrary feature functions over

the input, each of which has an associate model

parameter λk. Parameters Λ = {λk} are a set

of real-valued weights typically estimated from la-

beled training data by maximizing the data likeli-

hood function using gradient ascent.

In these experiments, we make a first-order

Markov assumption on the dependencies among y,

resulting in a linear-chain CRF.

4 Relational Patterns

The modeling flexibility of CRFs permits the fea-

ture functions to be complex, overlapping features of

the input without requiring additional assumptions

on their inter-dependencies. In addition to common

language features (e.g. neighboring words and syn-

tactic information), in this work we explore features

that cull relational patterns from a database of enti-

ties.

As described in the introductory example (Figure

1), context alone is often insufficient to extract re-

lations. Even in simpler examples, it may be the

case that modeling relational patterns can improve

extraction accuracy.

To capture this evidence, we compute features

from a database to indicate relational connections

between entities, similar to the relational path-

finding performed in Richards and Mooney (1992).

Imagine that the four sentence example about the

Bush family is included in a training set, and the en-

cousin
father son

X Y

sibling

Figure 2: A feature template for the cousin relation.

tities are labeled with their correct relations. In this

case, the cousin relation in sentence 4 would also be

labeled. From this data, we can create a relational

database that contains the relations in Figure 1.

Assume sentence 4 comes from a biography about

John Ellis. We calculate a feature for the entity

George W. Bush that indicates the path from John

Ellis to George W. Bush in the database, annotat-

ing each edge in the path with its relation label; i.e.

father-sibling-son. By abstracting away the actual

entity names, we have created a cousin template fea-

ture, as shown in Figure 2.

By adding these relational paths as features to

the model, we can learn interesting relational pat-

terns that may have low precision (e.g. “people are

likely to be friends with their classmates”) without

hampering extraction performance. This is in con-

trast to the system described in Nahm and Mooney

(2000), in which patterns are induced from a noisy

database and then applied directly to extraction. In

our system, since each learned path has an associ-

ated weight, it is simply another piece of evidence

to help the extractor. Low precision patterns may

have lower weights than high precision patterns, but

they will still influence the extractor.

A nice property of this approach is that examin-

ing highly weighted patterns can provide insight into

regularities of the data.

4.1 Feature Induction

During CRF training, weights are learned for each

relational pattern. Patterns that increase extraction

performance will receive higher weights, while pat-

terns that have little effect on performance will re-

ceive low weights.

We can explore the space of possible conjunctions

of these patterns using feature induction for CRFs,

as described in McCallum (2003). Search through

the large space of possible conjunctions is guided
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by adding features that are estimated to increase the

likelihood function most.

When feature induction is used with relational

patterns, we can view this as a type of data mining,

in which patterns are created based on their influ-

ence on an extraction model. This is similar to work

by Dehaspe (1997), where inductive logic program-

ming is embedded as a feature induction technique

for a maximum entropy classifier. Our work restricts

induced features to conjunctions of base features,

rather than using first-order clauses. However, the

patterns we learn are based on information extracted

from natural language.

4.2 Iterative Database Construction

The top-down knowledge provided by data min-

ing algorithms has the potential to improve the per-

formance of information extraction systems. Con-

versely, bottom-up knowledge generated by ex-

traction systems can be used to populate a large

database, from which more top-down knowledge

can be discovered. By carefully communicating the

uncertainty between these systems, we hope to iter-

atively expand a knowledge base, while minimizing

fallacious inferences.

In this work, the top-down knowledge consists of

relational patterns describing the database path be-

tween entities in text. The uncertainty of this knowl-

edge is handled by associating a real-valued CRF

weight with each pattern, which increases when the

pattern is predictive of other relations. Thus, the ex-

traction model can adapt to noise in these patterns.

Since we also desire to extract relations between

entities that appear in text but not in the database, we

first populate the database with relations extracted

by a CRF that does not use relational patterns. We

then do further extraction with a CRF that incorpo-

rates the relational patterns found in this automati-

cally generated database. In this manner, we create a

closed-loop system that alternates between bottom-

up extraction and top-down pattern discovery. This

approach can be viewed as a type of alternating opti-

mization, with analogies to formal methods such as

expectation-maximization.

The uncertainty in the bottom-up extraction step

is handled by estimating the confidence of each ex-

traction and pruning the database to remove en-

tries with low confidence. One of the benefits of

a probabilistic extraction model is that confidence

estimates can be straight-forwardly obtained. Cu-

lotta and McCallum (2004) describe the constrained

forward-backward algorithm to efficiently estimate

the conditional probability that a segment of text is

correctly extracted by a CRF.

Using this algorithm, we associate a confidence

value with each relation extracted by the CRF. This

confidence value is then used to limit the noise

introduced by incorrect extractions. This differs

from Nahm and Mooney (2000) and Mooney and

Bunescu (2005), in which standard decision tree rule

learners are applied to the unfiltered output of ex-

traction.

4.3 Extracting Implicit Relations

An implicit relation is one that does not have direct

contextual evidence, for example the cousin relation

in our initial example. Implicit relations generally

require some background knowledge to be detected,

such as relational patterns (e.g. rules about familial

relations). These are the sorts of relations on which

current extraction models perform most poorly.

Notably, these are exactly the sorts of relations

that are likely to have the biggest impact on informa-

tion access. A system that can accurately discover

knowledge that is only implied by the text will dra-

matically increase the amount of information a user

can uncover, effectively providing access to the im-

plications of a corpus.

We argue that integrating top-down and bottom-

up knowledge discovery algorithms discussed in

Section 4.2 can enable this technology. By per-

forming pattern discovery in conjunction with infor-

mation extraction, we can collate facts from multi-

ple sources to infer new relations. This is an ex-

ample of cross-document fusion or cross-document

information extraction, a growing area of research

transforming raw extractions into usable knowledge

bases (Mann and Yarowsky, 2005; Masterson and

Kushmerik, 2003).

5 Experiments

5.1 Data

We sampled 1127 paragraphs from 271 articles from

the online encyclopedia Wikipedia1 and labeled a to-

1http://www.wikipedia.org
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George W. Bush

Dick Cheney

underling

Yale

education

Republican

partyPresident

jobTitle

George H. W. Bush

son

underlingHarken Energy

executive

education party

jobTitle

Prescott Bush

son

education

Bill Clinton

rival

Bob Dole

rival

education

Democrat

party

jobTitle

Hillary Clinton

husband

education

party

Halliburton

executiveeducation

Pres Medal of Freedom

awardparty

Nelson Rockefeller

award

Elizabeth Dole

wife

WWII

participant

awardparty

party

Martin Luther King, Jr.

award

Figure 3: An example of the connectivity of the entities in the data.

birthday birth year death day

death year nationality visited

birth place death place religion

job title member of cousin

friend discovered education

employer associate opus

participant influence award

brother wife supported idea

executive of political party supported person

founder son father

rival underling superior

role inventor husband

grandfather sister brother-in-law

nephew mother daughter

granddaughter grandson great-grandson

grandmother rival organization owner of

uncle descendant ancestor

great-grandfather aunt

Table 1: The set of labeled relations.

tal of 4701 relation instances. In addition to a large

set of person-to-person relations, we also included

links between people and organizations, as well as

biographical facts such as birthday and jobTitle. In

all, there are 53 labels in the training data (Table 1).

We sample articles that result in a high density

of interesting relations by choosing, for example, a

collection of related family members and associates.

Figure 3 shows a small example of the type of con-

nections in the data. We then split the data into train-

ing and testing sets (70-30 split), attempting to sep-

arate the entities into connected components. For

example, all Bush family members were placed in

the training set, while all Kennedy family members

were placed in the testing set. While there are still

occasional paths connecting entities in the training

set to those in the test set, we believe this method-

ology reflects a typical real-world scenario in which

we would like to extend an existing database to a

different, but slightly related, domain.

The structure of the Wikipedia articles somewhat

simplifies the extraction task, since important enti-

ties are hyper-linked within the text. This provides

an automated way to detect entities in the text, al-

though these entities are not classified by type. This

also allows us to easily construct database queries,

since we can reason at the entity level, rather than

the token level. (Although, see Sarawagi and Cohen

(2004) for extensions of CRFs that model the en-

tity length distribution.) The results we report here

are constrained to predict relations only for hyper-

linked entities. Note that despite this property, we

still desire to use a sequence model to capture the

dependencies between adjacent labels.

We use the MALLET CRF implementation (Mc-

Callum, 2002) with the default regularization pa-

rameters.

Based on initial experiments, we restrict relational

path features to length two or three. Paths of length

one will learn trivial paths and can lead to over-

fitting. Paths longer than three can increase compu-

tational costs without adding much new information.

In addition to the relational pattern features de-

scribed in Section 4, the list of local features in-

cludes context words (such as the token identity

within a 6 word window of the target token), lexi-

cons (such as whether a token appears in a list of

cities, people, or companies), regular expressions

(such as whether the token is capitalized or contains

digits or punctuation), part-of-speech (predicted by

a CRF that was trained separately for part of speech

tagging), prefix/suffix (such as whether a word ends

in -ed or begins with ch-), and offset conjunctions

(combinations of adjacent features within a window

of size six).

300



ME CRF0 CRFr CRFr0.9 CRFr0.5 CRFt CRFt0.5

F1 .5489 .5995 .6100 .6008 .6136 .6791 .6363

P .6475 .7019 .6799 .7177 .7095 .7553 .7343

R .4763 .5232 .5531 .5166 .5406 .6169 .5614

Table 2: Results comparing the relative benefits of using relational patterns in extraction.

5.2 Extraction Results

We evaluate performance by calculating the preci-

sion (P) and recall (R) of extracted relations, as well

as the F1 measure, which is the harmonic mean of

precision and recall.

CRF0 is the conditional random field constructed

without relational features. Results for CRF0 are

displayed in the second column of Table 2. ME is

a maximum entropy classifier trained on the same

feature set as CRF0. The difference between these

two models is that CRF0 models the dependence of

relations that appear consecutively in the text. The

superior performance of CRF0 suggests that this de-

pendence is important to capture.

The remaining models incorporate the relational

patterns described in Section 4. We compare three

different confidence thresholds for the construction

of the initial testing database, as described in Sec-

tion 4.2. CRFr uses no threshold, while CRFr0.9
and CRFr0.5 restrict the database to extractions with

confidence greater than 0.9 and 0.5, respectively.

As shown by comparing CRF0 and CRFr in Ta-

ble 2, the relational features constructed from the

database with no confidence threshold provides a

considerable boost in recall (reducing error by 7%),

at the cost of a decrease in precision. Here we see

the effect of making fallacious inferences on a noisy

database.

In column four, we see the opposite effect for

the overly conservative threshold of CRFr0.9. Here,

precision improves slightly over CRF0, and consid-

erably over CRFr (12% error reduction), but this is

accompanied by a drop in recall (8% reduction).

Finally, in column five, a confidence of 0.5 results

in the best F1 measure (a 3.5% error reduction over

CRF0). CRFr0.5 also obtains better recall and preci-

sion than CRF0, reducing recall error by 3.6%, pre-

cision error by 2.5%.

Comparing the performance on different relation

types, we find that the biggest increase from CRF0

to CRFr0.5 is on the memberOf relation, for which

the F1 score improves from 0.4211 to 0.6093. We

conjecture that the reason for this is that the patterns

most useful for the memberOf label contain relations

that are well-detected by the first-pass CRF. Also,

the local language context seems inadequate to prop-

erly extract this relation, given the low performance

of CRF0.

To better gauge how much relational pattern fea-

tures are affected by errors in the database, we run

two additional experiments for which the relational

features are fixed to be correct. That is, imagine that

we construct a database from the true labeling of the

testing data, and create the relational pattern features

from this database. Note that this does not trivialize

the problem, since there are no relational path fea-

tures of length one (e.g., if X is the wife of Y, there

will be no feature indicating this).

We construct two experiments under this scheme,

one where the entire test database is used (CRFt),

and another where only half the relations are in-

cluded in the test database, selected uniformly at

random (CRFt0.5).

Column six shows the improvements enabled by

using the complete testing database. More inter-

estingly, column seven shows that even with only

half the database accurately known, performance

improves considerably over both CRF and CRFr0.5.

A realistic scenario for CRFt0.5 is a semi-automated

system, in which a partially-filled database is used to

bootstrap extraction.

5.3 Mining Results

Comparing the impact of discovered patterns on ex-

traction is a way to objectively measure mining per-

formance. We now give a brief subjective evaluation

of the learned patterns. By examining relational pat-

terns with high weights for a particular label, we can

glean some regularities from our dataset. Examples

of such patterns are in Table 3.
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Relation Relational Path Feature

mother father → wife

cousin mother → husband → nephew

friend education → student

education father → education

boss boss → son

memberOf grandfather → memberOf

rival politicalParty → member → rival

Table 3: Examples of highly weighted relational pat-

terns.

From the familial relations in our training data, we

are able to discover many equivalences for mothers,

cousins, grandfathers, and husbands. In addition to

these high precision patterns, the system also gener-

ates interesting, low precision patterns. Row 3-7 of

Table 3 can be summarized by the following gener-

alizations: friends tend to be classmates; children of

alumni often attend the same school as their parents;

a boss’ child often becomes the boss; grandchildren

are often members of the same organizations as their

grandparents; and rivals of a person from one polit-

ical party are often rivals of other members of the

same political party. While many of these patterns

reflect the high concentration of political entities and

familial relations in our training database, many will

have applicability across domains.

5.4 Implicit Relations

It is difficult to measure system performance on im-

plicit relations, since our labeled data does not dis-

tinguish between explicit and implicit relations. Ad-

ditionally, accurately labeling all implicit relations

is challenging even for a human annotator.

We perform a simple exploratory analysis to de-

termine how relational patterns can help discover

implicit relations. We construct a small set of syn-

thetic sentences for which CRF0 successfully ex-

tracts relations using contextual features. We then

add sentences with slightly more ambiguous lan-

guage and measure whether CRFr can overcome this

ambiguity using relational pattern features.

For example, we create an article about an en-

tity named “Bob Smith” that includes the sentences

“His brother, Bill Smith, was a biologist” and “His

companion, Bill Smith, was a biologist.” CRF0 suc-

cessfully returns the brother relation in the first sen-

tence, but not the second. After a fact is added to

the database that says Bob and Bill have a brother in

common named John, CRFr is able to correctly label

the second sentence in spite of the ambiguous word

“companion,” because CRF0 has a highly-weighted

relational pattern feature for brother.

Similar behavior is observed for low precision

patterns like “associates tend to win the same

awards.” A synthetic article for the entity “Tom

Jones” contains the sentences “He was awarded the

Pulitzer Prize in 1998” and “Tom got the Pulitzer

Prize in 1998.” Because CRF0 is highly-reliant on

the presence of the verb “awarded” or “won” to indi-

cate a prize fact, it fails to label the second sentence

correctly. After the database is augmented to include

the fact that Tom’s associate Jill received the Pulitzer

Prize, CRFr labels the second sentence correctly.

However, we also observed that CRFr still re-

quires some contextual clues to extract implicit re-

lations. For example, if the Tom Jones article in-

stead contains the sentence “The Pulitzer Prize was

awarded to him in 1998,” neither CRF labels the

prize fact correctly, since this passive construction

is rarely seen in the training data.

We conclude from this brief analysis that rela-

tional patterns used by CRFr can help extract im-

plicit relations when (1) the database contains ac-

curate relational information, and (2) the sentence

contains limited contextual clues. Since relational

patterns are treated only as additional features by

CRFr, they are generally not powerful enough to

overcome a complete absence of contextual clues.

From this perspective, relational patterns can be seen

as enhancing the signal from contextual clues. This

differs from deterministically applying learned rules

independent of context, which may boost recall at

the cost of precision.

6 Conclusions and Future Work

We have shown that integrating pattern discovery

with relation extraction can lead to improved per-

formance on each task.

In the future, we wish to explore extending this

methods to larger datasets, where we expect rela-

tional patterns to be even more interesting. Also,

we plan to improve upon iterative database construc-

tion by performing joint inference among distant
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relations in an article. Inference in these highly-

connected models will likely require approximate

methods. Additionally, we wish to focus on extract-

ing implicit relations, dealing more formally with

the precision-recall trade-off inherent in applying

noisy rules to improve extraction.
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