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Abstract 

This paper proposes to use a convolution 
kernel over parse trees to model syntactic 
structure information for relation extrac-
tion. Our study reveals that the syntactic 
structure features embedded in a parse 
tree are very effective for relation extrac-
tion and these features can be well cap-
tured by the convolution tree kernel. 
Evaluation on the ACE 2003 corpus 
shows that the convolution kernel over 
parse trees can achieve comparable per-
formance with the previous best-reported 
feature-based methods on the 24 ACE re-
lation subtypes. It also shows that our 
method significantly outperforms the pre-
vious two dependency tree kernels on the 
5 ACE relation major types. 

1 Introduction 

Relation extraction is a subtask of information ex-
traction that finds various predefined semantic re-
lations, such as location, affiliation, rival, etc., 
between pairs of entities in text. For example, the 
sentence “George Bush is the president of the 
United States.” conveys the semantic relation 
“President” between the entities “George Bush” 
(PER) and “the United States” (GPE: a Geo-Political 
Entity --- an entity with land and a government (ACE, 2004)). 

Prior feature-based methods for this task 
(Kambhatla 2004; Zhou et al., 2005) employed a 
large amount of diverse linguistic features, varying 
from lexical knowledge, entity mention informa-
tion to syntactic parse trees, dependency trees and 
semantic features. Since a parse tree contains rich 
syntactic structure information, in principle, the 

features extracted from a parse tree should contrib-
ute much more to performance improvement for 
relation extraction. However it is reported (Zhou et 
al., 2005; Kambhatla, 2004) that hierarchical struc-
tured syntactic features contributes less to per-
formance improvement. This may be mainly due to 
the fact that the syntactic structure information in a 
parse tree is hard to explicitly describe by a vector 
of linear features. As an alternative, kernel meth-
ods (Collins and Duffy, 2001) provide an elegant 
solution to implicitly explore tree structure features 
by directly computing the similarity between two 
trees. But to our surprise, the sole two-reported 
dependency tree kernels for relation extraction on 
the ACE corpus (Bunescu and Mooney, 2005; Cu-
lotta and Sorensen, 2004) showed much lower per-
formance than the feature-based methods. One 
may ask: are the syntactic tree features very useful 
for relation extraction? Can tree kernel methods 
effectively capture the syntactic tree features and 
other various features that have been proven useful 
in the feature-based methods? 

In this paper, we demonstrate the effectiveness 
of the syntactic tree features for relation extraction 
and study how to capture such features via a con-
volution tree kernel. We also study how to select 
the optimal feature space (e.g. the set of sub-trees 
to represent relation instances) to optimize the sys-
tem performance. The experimental results show 
that the convolution tree kernel plus entity features 
achieves slightly better performance than the pre-
vious best-reported feature-based methods. It also 
shows that our method significantly outperforms 
the two dependency tree kernels (Bunescu and 
Mooney, 2005; Culotta and Sorensen, 2004) on the 
5 ACE relation types. 

The rest of the paper is organized as follows. In 
Section 2, we review the previous work. Section 3 
discusses our tree kernel based learning algorithm. 
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Section 4 shows the experimental results and com-
pares our work with the related work. We conclude 
our work in Section 5.   

2 Related Work 

The task of relation extraction was introduced as a 
part of the Template Element task in MUC6 and 
formulated as the Template Relation task in MUC7 
(MUC, 1987-1998). 

Miller et al. (2000) address the task of relation 
extraction from the statistical parsing viewpoint. 
They integrate various tasks such as POS tagging, 
NE tagging, template extraction and relation ex-
traction into a generative model. Their results es-
sentially depend on the entire full parse tree. 

 Kambhatla (2004) employs Maximum Entropy 
models to combine diverse lexical, syntactic and 
semantic features derived from the text for relation 
extraction. Zhou et al. (2005) explore various fea-
tures in relation extraction using SVM. They con-
duct exhaustive experiments to investigate the 
incorporation and the individual contribution of 
diverse features. They report that chunking infor-
mation contributes to most of the performance im-
provement from the syntactic aspect.  

The features used in Kambhatla (2004) and 
Zhou et al. (2005) have to be selected and carefully 
calibrated manually. Kambhatla (2004) use the 
path of non-terminals connecting two mentions in 
a parse tree as the parse tree features. Besides, 
Zhou et al. (2005) introduce additional chunking 
features to enhance the parse tree features. How-
ever, the hierarchical structured information in the 
parse trees is not well preserved in their parse tree-
related features.  

As an alternative to the feature-based methods, 
kernel methods (Haussler, 1999) have been pro-
posed to implicitly explore features in a high di-
mensional space by employing a kernel function to 
calculate the similarity between two objects di-
rectly. In particular, the kernel methods could be 
very effective at reducing the burden of feature 
engineering for structured objects in NLP research 
(Culotta and Sorensen, 2004). This is because a 
kernel can measure the similarity between two dis-
crete structured objects directly using the original 
representation of the objects instead of explicitly 
enumerating their features. 

Zelenko et al. (2003) develop a tree kernel for 
relation extraction. Their tree kernel is recursively 

defined in a top-down manner, matching nodes 
from roots to leaf nodes. For each pair of matching 
nodes, a subsequence kernel on their child nodes is 
invoked, which matches either contiguous or 
sparse subsequences of node. Culotta and Sorensen 
(2004) generalize this kernel to estimate similarity 
between dependency trees. One may note that their 
tree kernel requires the matchable nodes must be at 
the same depth counting from the root node. This 
is a strong constraint on the matching of syntax so 
it is not surprising that the model has good preci-
sion but very low recall on the ACE corpus (Zhao 
and Grishman, 2005). In addition, according to the 
top-down node matching mechanism of the kernel, 
once a node is not matchable with any node in the 
same layer in another tree, all the sub-trees below 
this node are discarded even if some of them are 
matchable to their counterparts in another tree. 

Bunescu and Mooney (2005) propose a shortest 
path dependency kernel for relation extraction. 
They argue that the information to model a rela-
tionship between entities is typically captured by 
the shortest path between the two entities in the 
dependency graph. Their kernel is very straight-
forward. It just sums up the number of common 
word classes at each position in the two paths. We 
notice that one issue of this kernel is that they limit 
the two paths must have the same length, otherwise 
the kernel similarity score is zero. Therefore, al-
though this kernel shows non-trivial performance 
improvement than that of Culotta and Sorensen 
(2004), the constraint makes the two dependency 
kernels share the similar behavior: good precision 
but much lower recall on the ACE corpus. 

Zhao and Grishman (2005) define a feature-
based composite kernel to integrate diverse fea-
tures. Their kernel displays very good performance 
on the 2004 version of ACE corpus. Since this is a 
feature-based kernel, all the features used in the 
kernel have to be explicitly enumerated. Similar 
with the feature-based method, they also represent 
the tree feature as a link path between two entities. 
Therefore, we wonder whether their performance 
improvement is mainly due to the explicitly incor-
poration of diverse linguistic features instead of the 
kernel method itself. 

The above discussion suggests that the syntactic 
features in a parse tree may not be fully utilized in 
the previous work, whether feature-based or ker-
nel-based. We believe that the syntactic tree fea-
tures could play a more important role than that 
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reported in the previous work. Since convolution 
kernels aim to capture structural information in 
terms of sub-structures, which providing a viable 
alternative to flat features, in this paper, we pro-
pose to use a convolution tree kernel to explore 
syntactic features for relation extraction. To our 
knowledge, convolution kernels have not been ex-
plored for relation extraction1.  

3 Tree Kernels for Relation Extraction  

In this section, we discuss the convolution tree 
kernel associated with different relation feature 
spaces. In Subsection 3.1, we define seven differ-
ent relation feature spaces over parse trees. In Sub-
section 3.2, we introduce a convolution tree kernel 
for relation extraction. Finally we compare our 
method with the previous work in Subsection 3.3. 

3.1 Relation Feature Spaces 

In order to study which relation feature spaces (i.e., 
which portion of parse trees) are optimal for rela-
tion extraction, we define seven different relation 
feature spaces as follows (as shown in Figure 1): 

 

(1) Minimum Complete Tree (MCT):  
It is the complete sub-tree rooted by the node of 

the nearest common ancestor of the two entities 
under consideration.  

 

(2) Path-enclosed Tree (PT): 
It is the smallest common sub-tree including the 

two entities. In other words, the sub-tree is en-
closed by the shortest path linking the two entities 
in the parse tree (this path is also typically used as 
the path tree features in the feature-based meth-
ods). 

 

(3) Chunking Tree (CT): 
It is the base phrase list extracted from the PT. 

We prune out all the internal structures of the PT 
and only keep the root node and the base phrase 
list for generating the chunking tree. 
                                                           
1 Convolution kernels were proposed as a concept of kernels 
for a discrete structure by Haussler (1999) in machine learning 
study. This framework defines a kernel between input objects 
by applying convolution “sub-kernels” that are the kernels for 
the decompositions (parts) of the objects. Convolution kernels 
are abstract concepts, and the instances of them are deter-
mined by the definition of “sub-kernels”. The Tree Kernel 
(Collins and Duffy, 2001), String Subsequence Kernel (SSK) 
(Lodhi et al., 2002) and Graph Kernel (HDAG Kernel) (Su-
zuki et al., 2003) are examples of convolution kernels in-
stances in the NLP field.  

(4) Context-Sensitive Path Tree (CPT): 
It is the PT extending with the 1st left sibling of 

the node of entity 1 and the 1st right sibling of the 
node of entity 2. If the sibling is unavailable, then 
we move to the parent of current node and repeat 
the same process until the sibling is available or 
the root is reached. 
(5) Context-Sensitive Chunking Tree (CCT): 

It is the CT extending with the 1st left sibling of 
the node of entity 1 and the 1st right sibling of the 
node of entity 2. If the sibling is unavailable, the 
same process as generating the CPT is applied. 
Then we do a further pruning process to guarantee 
that the context structures of the CCT is still a list 
of base phrases.  
(6) Flattened  PT (FPT): 

We define two criteria to flatten the PT in order 
to generate the Flattened Parse tree: if the in and 
out arcs of a non-terminal node (except POS node) 
are both single, the node is to be removed; if a 
node has the same phrase type with its father node, 
the node is also to be removed. 
(7) Flattened CPT (FCPT): 

We use the above two criteria to flatten the CPT 
tree to generate the Flattened CPT.  

Figure 1 in the next page illustrates the different 
sub-tree structures for a relation instance in sen-
tence “Akyetsu testified he was powerless to stop 
the merger of an estimated 2000 ethnic Tutsi's in 
the district of Tawba.”. The relation instance is an 
example excerpted from the ACE corpus, where an 
ACE-defined relation “AT.LOCATED” exists be-
tween the entities “Tutsi's” (PER) and “district” 
(GPE).  

We use Charniak’s parser (Charniak, 2001) to 
parse the example sentence. Due to space limita-
tion, we do not show the whole parse tree of the 
entire sentence here. Tree T1 in Figure 1 is the 
MCT of the relation instance example, where the 
sub-structure circled by a dashed line is the PT. 
For clarity, we re-draw the PT as in T2. The only 
difference between the MCT and the PT lies in 
that the MCT does not allow the partial production 
rules. For instance, the most-left two-layer sub-tree 
[NP [DT … E1-O-PER]] in T1 is broken apart in 
T2. By comparing the performance of T1 and T2, we 
can test whether the sub-structures with partial 
production rules as in T2 will decrease perform-
ance. T3 is the CT. By comparing the performance 
of T2 and T3, we want to study whether the chunk-
ing information or the parse tree is more effective 
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for relation extraction. T4 is the CPT, where the 
two structures circled by dashed lines are the so-
called context structures. T5 is the CCT, where the 
additional context structures are also circled by 
dashed lines. We want to study if the limited con-
text information in the CPT and the CCT can help 
boost performance. Moreover, we illustrate the 
other two flattened trees in T6 and T7. The two cir-
cled nodes in T2 are removed in the flattened trees. 
We want to study if the eliminated small structures 
are noisy features for relation extraction.  

3.2 The Convolution Tree Kernel 

Given the relation instances defined in the previous 
section, we use the same convolution tree kernel as 
the parse tree kernel (Collins and Duffy, 2001) and 
the semantic kernel (Moschitti, 2004). Generally, 
we can represent a parse tree T by a vector of inte-
ger counts of each sub-tree type (regardless of its 
ancestors): 

 

( )Tφ = (# of sub-trees of type 1, …, # of sub-
trees of type i, …, # of sub-trees of type n) 

 

This results in a very high dimensionality since the 
number of different sub-trees is exponential in its 
size. Thus it is computational infeasible to directly 
use the feature vector ( )Tφ . To solve the compu-

 

T1): MCT 
T2): PT

T3): CT T4):CPT 

T5):CCT 

T6):FPT 

T7):FCPT

Figure 1. Relation Feature Spaces of the Example Sentence “…… to stop the merger of an estimated 
2000 ethnic Tutsi's in the district of Tawba.”, where the phrase type “E1-O-PER” denotes 
that the current phrase is the 1st entity, its entity type is “PERSON” and its mention level is 
“NOMIAL”, and likewise for the other two phrase types “E2-O-GPE” and “E-N-GPE”. 
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tational issue, we introduce the tree kernel function 
which is able to calculate the dot product between 
the above high dimensional vectors efficiently. The 
kernel function is defined as follows: 

 

1 1 2 2

1 2 1 2 1 2

1 2

( , ) ( ), ( ) ( )[ ], ( )[ ]

( ) ( )
i

i in N n N i

K T T T T T i T i

I n I n

φ φ φ φ

∈ ∈

=< >=

= ∗

∑
∑ ∑ ∑

 

where N1 and N2 are the sets of all nodes in trees T1 
and T2, respectively, and Ii(n) is the indicator func-
tion that is 1 iff a sub-tree of type i occurs with 
root at node n and zero otherwise. Collins and 
Duffy (2002) show that 1 2( , )K T T  is an instance of 
convolution kernels over tree structures, and which 
can be computed in 1 2(| | | |)O N N×  by the follow-
ing recursive definitions (Let 1 2( , )n n∆ =  

1 2( ) ( )i ii
I n I n∗∑ ):  

(1) if 1n  and 2n  do not have the same syntactic tag 
or their children are different then 1 2( , ) 0n n∆ = ; 
(2) else if their children are leaves (POS tags), then 

1 2( , ) 1n n λ∆ = × ; 

(3) else 
1( )

1 2 1 2
1

( , ) (1 ( ( , ), ( , )))
nc n

j

n n ch n j ch n jλ
=

∆ = +∆∏ , 

where 1( )nc n is the number of the children of 1n , 
( , )ch n j  is the jth child of node n  and 

λ ( 0 1λ< < ) is the decay factor in order to make 
the kernel value less variable with respect to the 
tree sizes. 

3.3 Comparison with Previous Work 

It would be interesting to review the differences 
between our method and the feature-based meth-
ods. The basic difference between them lies in the 
relation instance representation and the similarity 
calculation mechanism. A relation instance in our 
method is represented as a parse tree while it is 
represented as a vector of features in the feature-
based methods. Our method estimates the similar-
ity between two relation instances by only count-
ing the number of sub-structures that are in 
common while the feature methods calculate the 
dot-product between the feature vectors directly. 
The main difference between them is the different 
feature spaces. By the kernel method, we implicitly 
represent a parse tree by a vector of integer counts 
of each sub-structure type. That is to say, we con-

sider the entire sub-structure types and their occur-
ring frequencies. In this way, on the one hand, the 
parse tree-related features in the flat feature set2 
are embedded in the feature space of our method: 
“Base Phrase Chunking” and “Parse Tree” fea-
tures explicitly appear as substructures of a parse 
tree. A few of entity-related features in the flat fea-
ture set are also captured by our feature space: “en-
tity type” and “mention level” explicitly appear as 
phrase types in a parse tree. On the other hand, the 
other features in the flat feature set, such as “word 
features”, “bigram word features”, “overlap” and 
“dependency tree” are not contained in our feature 
space. From the syntactic viewpoint, the tree repre-
sentation in our feature space is more robust than 
“Parse Tree Path” feature in the flat feature set 
since the path feature is very sensitive to the small 
changes of parse trees (Moschitti, 2004) and it also 
does not maintain the hierarchical information of a 
parse tree. Due to the extensive exploration of syn-
tactic features by kernel, our method is expected to 
show better performance than the previous feature-
based methods. 

It is also worth comparing our method with the 
previous relation kernels. Since our method only 
counts the occurrence of each sub-tree without 
considering its ancestors, our method is not limited 
by the constraints in Culotta and Sorensen (2004) 
and that in Bunescu and Mooney (2005) as dis-
cussed in Section 2. Compared with Zhao and 
Grishman’s kernel, our method directly uses the 
original representation of a parse tree while they 
flatten a parse tree into a link and a path. Given the 
above improvements, our method is expected to 
outperform the previous relation kernels.  

4 Experiments 

The aim of our experiment is to verify the effec-
tiveness of using richer syntactic structures and the 
convolution tree kernel for relation extraction. 

4.1 Experimental Setting 

Corpus: we use the official ACE corpus for 2003 
evaluation from LDC as our test corpus. The ACE 
corpus is gathered from various newspaper, news-
wire and broadcasts. The same as previous work 

                                                           
2 For the convenience of discussion, without losing generality, 
we call the features used in Zhou et al. (2005) and Kambhatla 
(2004) flat feature set. 
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(Zhou et al., 2005), our experiments are carried out 
on explicit relations due to the poor inter-annotator 
agreement in annotation of implicit relations and 
their limited numbers. The training set consists of 
674 annotated text documents and 9683 relation 
instances. The test set consists of 97 documents 
and 1386 relation instances. The 2003 evaluation 
defined 5 types of entities: Persons, Organizations, 
Locations, Facilities and GPE. Each mention of an 
entity is associated with a mention type: proper 
name, nominal or pronoun. They further defined 5 
major relation types and 24 subtypes: AT (Base-In, 
Located…), NEAR (Relative-Location), PART 
(Part-of, Subsidiary …), ROLE (Member, Owner 
…) and SOCIAL (Associate, Parent…). As previ-
ous work, we explicitly model the argument order 
of the two mentions involved. We thus model rela-
tion extraction as a multi-class classification prob-
lem with 10 classes on the major types (2 for each 
relation major type and a “NONE” class for non-
relation (except 1 symmetric type)) and 43 classes 
on the subtypes (2 for each relation subtype and a 
“NONE” class for non-relation (except 6 symmet-
ric subtypes)). In this paper, we only measure the 
performance of relation extraction models on 
“true” mentions with “true” chaining of corefer-
ence (i.e. as annotated by LDC annotators).  
  

Classifier: we select SVM as the classifier used in 
this paper since SVM can naturally work with ker-
nel methods and it also represents the state-of-the-
art machine learning algorithm. We adopt the one 
vs. others strategy and select the one with largest 
margin as the final answer. The training parameters 
are chosen using cross-validation (C=2.4 (SVM); 
λ =0.4(tree kernel)). In our implementation, we 
use the binary SVMLight developed by Joachims 
(1998) and Tree Kernel Toolkits developed by 
Moschitti (2004). 
 

Kernel Normalization: since the size of a parse 
tree is not constant, we normalize 1 2( , )K T T by divid-

ing it by 1 1 2 2( , ) ( , )K T T K T T• .  
 

Evaluation Method: we parse the sentence using 
Charniak parser and iterate over all pair of men-
tions occurring in the same sentence to generate 
potential instances. We find the negative samples 
are 10 times more than the positive samples. Thus 
data imbalance and sparseness are potential prob-
lems. Recall (R), Precision (P) and F-measure (F) 
are adopted as the performance measure. 

4.2 Experimental Results  

In order to study the impact of the sole syntactic 
structure information embedded in parse trees on 
relation extraction, we remove the entity informa-
tion from parse trees by replacing the entity-related 
phrase type (“E1-O-PER”, etc., in Figure 1) with 
“NP”. Then we carry out a couple of preliminary 
experiments on the test set using parse trees re-
gardless of entity information.  

 
Feature Spaces P R F 
Minimum Complete Tree 77.45 38.39 51.34 
Path-enclosed Tree (PT) 72.77 53.80 61.87 
Chunking Tree (CT) 75.18 44.75 56.11 
Context-Sensitive PT(CPT) 77.87 42.80 55.23 
Context-Sensitive CT 78.33 40.84 53.69 
Flattened PT 76.86 45.69 57.31 
Flattened CPT 80.60 41.20 54.53 

 
Table 1. Performance of seven relation feature 
spaces over the 5 ACE major types using parse 
tree information only 

 
Table 1 reports the performance of our defined 
seven relation feature spaces over the 5 ACE major 
types using parse tree information regardless of 
any entity information. This preliminary experi-
ments show that:  

 
 

• Overall the tree kernel over different relation 
feature spaces is effective for relation extraction 
since we use the parse tree information only. We 
will report the detailed performance comparison 
results between our method and previous work 
later in this section. 

• Using the PTs achieves the best performance. 
This means the portion of a parse tree enclosed 
by the shortest path between entities can model 
relations better than other sub-trees. 

• Using the MCTs get the worst performance. 
This is because the MCTs introduce too much 
left and right context information, which may be 
noisy features, as shown in Figure 1. It suggests 
that only allowing complete (not partial) produc-
tion rules in the MCTs does harm performance. 

• The performance of using CTs drops by 5 in F-
measure compared with that of using the PTs. 
This suggests that the middle and high-level 
structures beyond chunking is also very useful 
for relation extraction. 
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• The context-sensitive trees show lower perform-
ance than the corresponding original PTs and 
CTs. In some cases (e.g. in sentence “the merge 
of company A and company B….”, “merge” is 
the context word), the context information is 
helpful. However the effective scope of context 
is hard to determine. 

• The two flattened trees perform worse than the 
original trees, but better than the corresponding 
context-sensitive trees. This suggests that the 
removed structures by the flattened trees con-
tribute non-trivial performance improvement.  

 

In the above experiments, the path-enclosed tree 
displays the best performance among the seven 
feature spaces when using the parse tree structural 
information only. In the following incremental ex-
periments, we incorporate more features into the 
path-enclosed parse trees and it shows significant 
performance improvement. 

 

Path-enclosed Tree (PT) P R F 

Parse tree structure in-
formation only 

72.77 53.80 61.87 

+Entity information  76.14 62.85 68.86 
+Semantic features 76.32 62.99 69.02 

 

Table 2. Performance of Path-enclosed Trees 
with different setups over the 5 ACE major types 

 

Table 2 reports the performance over the 5 ACE 
major types using Path-enclosed trees enhanced 
with more features in nodes. The 1st row is the 
baseline performance using structural information 
only. We then integrate entity information, includ-
ing Entity type and Mention level features, into the 
corresponding nodes as shown in Figure 1. The 2nd 
row in Table 2 reports the performance of this 
setup. Besides the entity information, we further 
incorporate the semantic features used in Zhou et 
al. (2005) into the corresponding leaf nodes. The 
3rd row in Table 2 reports the performance of this 
setup. Please note that in the 2nd and 3rd setups, we 
still use the same tree kernel function with slight 
modification on the rule (2) in calculating 

1 2( , )n n∆  (see subsection 3.2) to make it consider 
more features associated with each individual 
node: 1 2( , )  n n feature weight λ∆ = × . From Table 
2, we can see that the basic feature of entity infor-
mation is quite useful, which largely boosts per-
formance by 7 in F-measure. The final 

performance of our tree kernel method for relation 
extraction is 76.32/62.99/69.02 in preci-
sion/recall/F-measure over the 5 ACE major types.   

 

Methods P R F 
Ours: convolution kernel 
over parse trees 

76.32 
(64.6) 

62.99 
(50.76)

69.02 
(56.83)

Kambhatla (2004):  
feature-based ME 

- 
(63.5) 

- 
(45.2) 

- 
(52.8) 

Zhou et al. (2005):  
feature-based SVM 

77.2 
(63.1) 

60.7 
(49.5) 

68.0 
(55.5)

Culotta and Sorensen 
(2004): dependency kernel 

67.1 
(-) 

35.0 
(-) 

45.8 
(-) 

Bunescu and Mooney 
(2005): shortest path de-
pendency kernel 

65.5 
(-) 

43.8 
(-) 

52.5 
(-) 

 

Table 3. Performance comparison, the numbers in 
parentheses report the performance over the 24 
ACE subtypes while the numbers outside paren-
theses is for the 5 ACE major types 

 

Table 3 compares the performance of different 
methods on the ACE corpus3. It shows that our 
method achieves the best-reported performance on 
both the 24 ACE subtypes and the 5 ACE major 
types. It also shows that our tree kernel method 
significantly outperform the previous two depend-
ency kernel algorithms by 16 in F-measure on the 
5 ACE relation types4. This may be due to two rea-
sons: one reason is that the dependency tree lacks 
the hierarchical syntactic information, and another 
reason is due to the two constraints of the two de-
pendency kernels as discussed in Section 2 and 
Subsection 3.3. The performance improvement by 
our method suggests that the convolution tree ker-
nel can explore the syntactic features (e.g. parse 
tree structures and entity information) very effec-
tively and the syntactic features are also particu-

                                                           
3 Zhao and Grishman (2005) also evaluated their algorithm on 
the ACE corpus and got good performance. But their experi-
mental data is for 2004 evaluation, which defined 7 entity 
types with 44 entity subtypes, and 7 relation major types with 
27 subtypes, so we are not ready to compare with each other. 
4 Bunescu and Mooney (2005) used the ACE 2002 corpus, 
including 422 documents, which is known to have many in-
consistencies than the 2003 version. Culotta and Sorensen 
(2004) used an ACE corpus including about 800 documents, 
and they did not specify the corpus version. Since the testing 
corpora are in different sizes and versions, strictly speaking, it 
is not ready to compare these methods exactly and fairly. Thus 
Table 3 is only for reference purpose. We just hope that we 
can get a few clues from this table. 
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larly effective for the task of relation extraction. In 
addition, we observe from Table 1 that the feature 
space selection (the effective portion of a parse 
tree) is also critical to relation extraction. 

  

Error Type # of error instance 
False Negative 414 
False Positive 173 
Cross Type 97 

 

Table 4. Error Distribution 
 

Finally, Table 4 reports the error distribution in 
the case of the 3rd experiment in Table 2. It shows 
that 85.9% (587/684) of the errors result from rela-
tion detection and only 14.1% (97/684) of the er-
rors result from relation characterization. This is 
mainly due to the imbalance of the posi-
tive/negative instances and the sparseness of some 
relation types on the ACE corpus. 

5 Conclusion and Future Work 

In this paper, we explore the syntactic features us-
ing convolution tree kernels for relation extraction. 
We conclude that: 1) the relations between entities 
can be well represented by parse trees with care-
fully calibrating effective portions of parse trees; 
2) the syntactic features embedded in a parse tree 
are particularly effective for relation extraction; 3) 
the convolution tree kernel can effectively capture 
the syntactic features for relation extraction. 

The most immediate extension of our work is to 
improve the accuracy of relation detection. We 
may adopt a two-step method (Culotta and Soren-
sen, 2004) to separately model the relation detec-
tion and characterization issues. We may integrate 
more features (such as head words or WordNet 
semantics) into nodes of parse trees. We can also 
benefit from the learning algorithm to study how to 
solve the data imbalance and sparseness issues 
from the learning algorithm viewpoint. In the fu-
ture, we would like to test our algorithm on the 
other version of the ACE corpus and to develop 
fast algorithm (Vishwanathan and Smola, 2002) to 
speed up the training and testing process of convo-
lution kernels.  
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