
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 288–295,
New York, June 2006.c©2006 Association for Computational Linguistics

Exploring Syntactic Features for Relation Extraction using
a Convolution Tree Kernel

Min ZHANG Jie ZHANG Jian SU
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
{mzhang, zhangjie, sujian}@i2r.a-star.edu.sg

Abstract

This paper proposes to use a convolution
kernel over parse trees to model syntactic
structure information for relation extrac-
tion. Our study reveals that the syntactic
structure features embedded in a parse
tree are very effective for relation extrac-
tion and these features can be well cap-
tured by the convolution tree kernel.
Evaluation on the ACE 2003 corpus
shows that the convolution kernel over
parse trees can achieve comparable per-
formance with the previous best-reported
feature-based methods on the 24 ACE re-
lation subtypes. It also shows that our
method significantly outperforms the pre-
vious two dependency tree kernels on the
5 ACE relation major types.

1 Introduction

Relation extraction is a subtask of information ex-
traction that finds various predefined semantic re-
lations, such as location, affiliation, rival, etc.,
between pairs of entities in text. For example, the
sentence “George Bush is the president of the
United States.” conveys the semantic relation
“President” between the entities “George Bush”
(PER) and “the United States” (GPE: a Geo-Political
Entity --- an entity with land and a government (ACE, 2004)).

Prior feature-based methods for this task
(Kambhatla 2004; Zhou et al., 2005) employed a
large amount of diverse linguistic features, varying
from lexical knowledge, entity mention informa-
tion to syntactic parse trees, dependency trees and
semantic features. Since a parse tree contains rich
syntactic structure information, in principle, the

features extracted from a parse tree should contrib-
ute much more to performance improvement for
relation extraction. However it is reported (Zhou et
al., 2005; Kambhatla, 2004) that hierarchical struc-
tured syntactic features contributes less to per-
formance improvement. This may be mainly due to
the fact that the syntactic structure information in a
parse tree is hard to explicitly describe by a vector
of linear features. As an alternative, kernel meth-
ods (Collins and Duffy, 2001) provide an elegant
solution to implicitly explore tree structure features
by directly computing the similarity between two
trees. But to our surprise, the sole two-reported
dependency tree kernels for relation extraction on
the ACE corpus (Bunescu and Mooney, 2005; Cu-
lotta and Sorensen, 2004) showed much lower per-
formance than the feature-based methods. One
may ask: are the syntactic tree features very useful
for relation extraction? Can tree kernel methods
effectively capture the syntactic tree features and
other various features that have been proven useful
in the feature-based methods?

In this paper, we demonstrate the effectiveness
of the syntactic tree features for relation extraction
and study how to capture such features via a con-
volution tree kernel. We also study how to select
the optimal feature space (e.g. the set of sub-trees
to represent relation instances) to optimize the sys-
tem performance. The experimental results show
that the convolution tree kernel plus entity features
achieves slightly better performance than the pre-
vious best-reported feature-based methods. It also
shows that our method significantly outperforms
the two dependency tree kernels (Bunescu and
Mooney, 2005; Culotta and Sorensen, 2004) on the
5 ACE relation types.

The rest of the paper is organized as follows. In
Section 2, we review the previous work. Section 3
discusses our tree kernel based learning algorithm.

288

Section 4 shows the experimental results and com-
pares our work with the related work. We conclude
our work in Section 5.

2 Related Work

The task of relation extraction was introduced as a
part of the Template Element task in MUC6 and
formulated as the Template Relation task in MUC7
(MUC, 1987-1998).

Miller et al. (2000) address the task of relation
extraction from the statistical parsing viewpoint.
They integrate various tasks such as POS tagging,
NE tagging, template extraction and relation ex-
traction into a generative model. Their results es-
sentially depend on the entire full parse tree.

 Kambhatla (2004) employs Maximum Entropy
models to combine diverse lexical, syntactic and
semantic features derived from the text for relation
extraction. Zhou et al. (2005) explore various fea-
tures in relation extraction using SVM. They con-
duct exhaustive experiments to investigate the
incorporation and the individual contribution of
diverse features. They report that chunking infor-
mation contributes to most of the performance im-
provement from the syntactic aspect.

The features used in Kambhatla (2004) and
Zhou et al. (2005) have to be selected and carefully
calibrated manually. Kambhatla (2004) use the
path of non-terminals connecting two mentions in
a parse tree as the parse tree features. Besides,
Zhou et al. (2005) introduce additional chunking
features to enhance the parse tree features. How-
ever, the hierarchical structured information in the
parse trees is not well preserved in their parse tree-
related features.

As an alternative to the feature-based methods,
kernel methods (Haussler, 1999) have been pro-
posed to implicitly explore features in a high di-
mensional space by employing a kernel function to
calculate the similarity between two objects di-
rectly. In particular, the kernel methods could be
very effective at reducing the burden of feature
engineering for structured objects in NLP research
(Culotta and Sorensen, 2004). This is because a
kernel can measure the similarity between two dis-
crete structured objects directly using the original
representation of the objects instead of explicitly
enumerating their features.

Zelenko et al. (2003) develop a tree kernel for
relation extraction. Their tree kernel is recursively

defined in a top-down manner, matching nodes
from roots to leaf nodes. For each pair of matching
nodes, a subsequence kernel on their child nodes is
invoked, which matches either contiguous or
sparse subsequences of node. Culotta and Sorensen
(2004) generalize this kernel to estimate similarity
between dependency trees. One may note that their
tree kernel requires the matchable nodes must be at
the same depth counting from the root node. This
is a strong constraint on the matching of syntax so
it is not surprising that the model has good preci-
sion but very low recall on the ACE corpus (Zhao
and Grishman, 2005). In addition, according to the
top-down node matching mechanism of the kernel,
once a node is not matchable with any node in the
same layer in another tree, all the sub-trees below
this node are discarded even if some of them are
matchable to their counterparts in another tree.

Bunescu and Mooney (2005) propose a shortest
path dependency kernel for relation extraction.
They argue that the information to model a rela-
tionship between entities is typically captured by
the shortest path between the two entities in the
dependency graph. Their kernel is very straight-
forward. It just sums up the number of common
word classes at each position in the two paths. We
notice that one issue of this kernel is that they limit
the two paths must have the same length, otherwise
the kernel similarity score is zero. Therefore, al-
though this kernel shows non-trivial performance
improvement than that of Culotta and Sorensen
(2004), the constraint makes the two dependency
kernels share the similar behavior: good precision
but much lower recall on the ACE corpus.

Zhao and Grishman (2005) define a feature-
based composite kernel to integrate diverse fea-
tures. Their kernel displays very good performance
on the 2004 version of ACE corpus. Since this is a
feature-based kernel, all the features used in the
kernel have to be explicitly enumerated. Similar
with the feature-based method, they also represent
the tree feature as a link path between two entities.
Therefore, we wonder whether their performance
improvement is mainly due to the explicitly incor-
poration of diverse linguistic features instead of the
kernel method itself.

The above discussion suggests that the syntactic
features in a parse tree may not be fully utilized in
the previous work, whether feature-based or ker-
nel-based. We believe that the syntactic tree fea-
tures could play a more important role than that

289

reported in the previous work. Since convolution
kernels aim to capture structural information in
terms of sub-structures, which providing a viable
alternative to flat features, in this paper, we pro-
pose to use a convolution tree kernel to explore
syntactic features for relation extraction. To our
knowledge, convolution kernels have not been ex-
plored for relation extraction1.

3 Tree Kernels for Relation Extraction

In this section, we discuss the convolution tree
kernel associated with different relation feature
spaces. In Subsection 3.1, we define seven differ-
ent relation feature spaces over parse trees. In Sub-
section 3.2, we introduce a convolution tree kernel
for relation extraction. Finally we compare our
method with the previous work in Subsection 3.3.

3.1 Relation Feature Spaces

In order to study which relation feature spaces (i.e.,
which portion of parse trees) are optimal for rela-
tion extraction, we define seven different relation
feature spaces as follows (as shown in Figure 1):

(1) Minimum Complete Tree (MCT):
It is the complete sub-tree rooted by the node of

the nearest common ancestor of the two entities
under consideration.

(2) Path-enclosed Tree (PT):
It is the smallest common sub-tree including the

two entities. In other words, the sub-tree is en-
closed by the shortest path linking the two entities
in the parse tree (this path is also typically used as
the path tree features in the feature-based meth-
ods).

(3) Chunking Tree (CT):
It is the base phrase list extracted from the PT.

We prune out all the internal structures of the PT
and only keep the root node and the base phrase
list for generating the chunking tree.

1 Convolution kernels were proposed as a concept of kernels
for a discrete structure by Haussler (1999) in machine learning
study. This framework defines a kernel between input objects
by applying convolution “sub-kernels” that are the kernels for
the decompositions (parts) of the objects. Convolution kernels
are abstract concepts, and the instances of them are deter-
mined by the definition of “sub-kernels”. The Tree Kernel
(Collins and Duffy, 2001), String Subsequence Kernel (SSK)
(Lodhi et al., 2002) and Graph Kernel (HDAG Kernel) (Su-
zuki et al., 2003) are examples of convolution kernels in-
stances in the NLP field.

(4) Context-Sensitive Path Tree (CPT):
It is the PT extending with the 1st left sibling of

the node of entity 1 and the 1st right sibling of the
node of entity 2. If the sibling is unavailable, then
we move to the parent of current node and repeat
the same process until the sibling is available or
the root is reached.
(5) Context-Sensitive Chunking Tree (CCT):

It is the CT extending with the 1st left sibling of
the node of entity 1 and the 1st right sibling of the
node of entity 2. If the sibling is unavailable, the
same process as generating the CPT is applied.
Then we do a further pruning process to guarantee
that the context structures of the CCT is still a list
of base phrases.
(6) Flattened PT (FPT):

We define two criteria to flatten the PT in order
to generate the Flattened Parse tree: if the in and
out arcs of a non-terminal node (except POS node)
are both single, the node is to be removed; if a
node has the same phrase type with its father node,
the node is also to be removed.
(7) Flattened CPT (FCPT):

We use the above two criteria to flatten the CPT
tree to generate the Flattened CPT.

Figure 1 in the next page illustrates the different
sub-tree structures for a relation instance in sen-
tence “Akyetsu testified he was powerless to stop
the merger of an estimated 2000 ethnic Tutsi's in
the district of Tawba.”. The relation instance is an
example excerpted from the ACE corpus, where an
ACE-defined relation “AT.LOCATED” exists be-
tween the entities “Tutsi's” (PER) and “district”
(GPE).

We use Charniak’s parser (Charniak, 2001) to
parse the example sentence. Due to space limita-
tion, we do not show the whole parse tree of the
entire sentence here. Tree T1 in Figure 1 is the
MCT of the relation instance example, where the
sub-structure circled by a dashed line is the PT.
For clarity, we re-draw the PT as in T2. The only
difference between the MCT and the PT lies in
that the MCT does not allow the partial production
rules. For instance, the most-left two-layer sub-tree
[NP [DT … E1-O-PER]] in T1 is broken apart in
T2. By comparing the performance of T1 and T2, we
can test whether the sub-structures with partial
production rules as in T2 will decrease perform-
ance. T3 is the CT. By comparing the performance
of T2 and T3, we want to study whether the chunk-
ing information or the parse tree is more effective

290

for relation extraction. T4 is the CPT, where the
two structures circled by dashed lines are the so-
called context structures. T5 is the CCT, where the
additional context structures are also circled by
dashed lines. We want to study if the limited con-
text information in the CPT and the CCT can help
boost performance. Moreover, we illustrate the
other two flattened trees in T6 and T7. The two cir-
cled nodes in T2 are removed in the flattened trees.
We want to study if the eliminated small structures
are noisy features for relation extraction.

3.2 The Convolution Tree Kernel

Given the relation instances defined in the previous
section, we use the same convolution tree kernel as
the parse tree kernel (Collins and Duffy, 2001) and
the semantic kernel (Moschitti, 2004). Generally,
we can represent a parse tree T by a vector of inte-
ger counts of each sub-tree type (regardless of its
ancestors):

()Tφ = (# of sub-trees of type 1, …, # of sub-
trees of type i, …, # of sub-trees of type n)

This results in a very high dimensionality since the
number of different sub-trees is exponential in its
size. Thus it is computational infeasible to directly
use the feature vector ()Tφ . To solve the compu-

T1): MCT
T2): PT

T3): CT T4):CPT

T5):CCT

T6):FPT

T7):FCPT

Figure 1. Relation Feature Spaces of the Example Sentence “…… to stop the merger of an estimated
2000 ethnic Tutsi's in the district of Tawba.”, where the phrase type “E1-O-PER” denotes
that the current phrase is the 1st entity, its entity type is “PERSON” and its mention level is
“NOMIAL”, and likewise for the other two phrase types “E2-O-GPE” and “E-N-GPE”.

291

tational issue, we introduce the tree kernel function
which is able to calculate the dot product between
the above high dimensional vectors efficiently. The
kernel function is defined as follows:

1 1 2 2

1 2 1 2 1 2

1 2

(,) (), () ()[], ()[]

() ()
i

i in N n N i

K T T T T T i T i

I n I n

φ φ φ φ

∈ ∈

=< >=

= ∗

∑
∑ ∑ ∑

where N1 and N2 are the sets of all nodes in trees T1
and T2, respectively, and Ii(n) is the indicator func-
tion that is 1 iff a sub-tree of type i occurs with
root at node n and zero otherwise. Collins and
Duffy (2002) show that 1 2(,)K T T is an instance of
convolution kernels over tree structures, and which
can be computed in 1 2(| | | |)O N N× by the follow-
ing recursive definitions (Let 1 2(,)n n∆ =

1 2() ()i ii
I n I n∗∑):

(1) if 1n and 2n do not have the same syntactic tag
or their children are different then 1 2(,) 0n n∆ = ;
(2) else if their children are leaves (POS tags), then

1 2(,) 1n n λ∆ = × ;

(3) else
1()

1 2 1 2
1

(,) (1 ((,), (,)))
nc n

j

n n ch n j ch n jλ
=

∆ = +∆∏ ,

where 1()nc n is the number of the children of 1n ,
(,)ch n j is the jth child of node n and

λ (0 1λ< <) is the decay factor in order to make
the kernel value less variable with respect to the
tree sizes.

3.3 Comparison with Previous Work

It would be interesting to review the differences
between our method and the feature-based meth-
ods. The basic difference between them lies in the
relation instance representation and the similarity
calculation mechanism. A relation instance in our
method is represented as a parse tree while it is
represented as a vector of features in the feature-
based methods. Our method estimates the similar-
ity between two relation instances by only count-
ing the number of sub-structures that are in
common while the feature methods calculate the
dot-product between the feature vectors directly.
The main difference between them is the different
feature spaces. By the kernel method, we implicitly
represent a parse tree by a vector of integer counts
of each sub-structure type. That is to say, we con-

sider the entire sub-structure types and their occur-
ring frequencies. In this way, on the one hand, the
parse tree-related features in the flat feature set2
are embedded in the feature space of our method:
“Base Phrase Chunking” and “Parse Tree” fea-
tures explicitly appear as substructures of a parse
tree. A few of entity-related features in the flat fea-
ture set are also captured by our feature space: “en-
tity type” and “mention level” explicitly appear as
phrase types in a parse tree. On the other hand, the
other features in the flat feature set, such as “word
features”, “bigram word features”, “overlap” and
“dependency tree” are not contained in our feature
space. From the syntactic viewpoint, the tree repre-
sentation in our feature space is more robust than
“Parse Tree Path” feature in the flat feature set
since the path feature is very sensitive to the small
changes of parse trees (Moschitti, 2004) and it also
does not maintain the hierarchical information of a
parse tree. Due to the extensive exploration of syn-
tactic features by kernel, our method is expected to
show better performance than the previous feature-
based methods.

It is also worth comparing our method with the
previous relation kernels. Since our method only
counts the occurrence of each sub-tree without
considering its ancestors, our method is not limited
by the constraints in Culotta and Sorensen (2004)
and that in Bunescu and Mooney (2005) as dis-
cussed in Section 2. Compared with Zhao and
Grishman’s kernel, our method directly uses the
original representation of a parse tree while they
flatten a parse tree into a link and a path. Given the
above improvements, our method is expected to
outperform the previous relation kernels.

4 Experiments

The aim of our experiment is to verify the effec-
tiveness of using richer syntactic structures and the
convolution tree kernel for relation extraction.

4.1 Experimental Setting

Corpus: we use the official ACE corpus for 2003
evaluation from LDC as our test corpus. The ACE
corpus is gathered from various newspaper, news-
wire and broadcasts. The same as previous work

2 For the convenience of discussion, without losing generality,
we call the features used in Zhou et al. (2005) and Kambhatla
(2004) flat feature set.

292

(Zhou et al., 2005), our experiments are carried out
on explicit relations due to the poor inter-annotator
agreement in annotation of implicit relations and
their limited numbers. The training set consists of
674 annotated text documents and 9683 relation
instances. The test set consists of 97 documents
and 1386 relation instances. The 2003 evaluation
defined 5 types of entities: Persons, Organizations,
Locations, Facilities and GPE. Each mention of an
entity is associated with a mention type: proper
name, nominal or pronoun. They further defined 5
major relation types and 24 subtypes: AT (Base-In,
Located…), NEAR (Relative-Location), PART
(Part-of, Subsidiary …), ROLE (Member, Owner
…) and SOCIAL (Associate, Parent…). As previ-
ous work, we explicitly model the argument order
of the two mentions involved. We thus model rela-
tion extraction as a multi-class classification prob-
lem with 10 classes on the major types (2 for each
relation major type and a “NONE” class for non-
relation (except 1 symmetric type)) and 43 classes
on the subtypes (2 for each relation subtype and a
“NONE” class for non-relation (except 6 symmet-
ric subtypes)). In this paper, we only measure the
performance of relation extraction models on
“true” mentions with “true” chaining of corefer-
ence (i.e. as annotated by LDC annotators).

Classifier: we select SVM as the classifier used in
this paper since SVM can naturally work with ker-
nel methods and it also represents the state-of-the-
art machine learning algorithm. We adopt the one
vs. others strategy and select the one with largest
margin as the final answer. The training parameters
are chosen using cross-validation (C=2.4 (SVM);
λ =0.4(tree kernel)). In our implementation, we
use the binary SVMLight developed by Joachims
(1998) and Tree Kernel Toolkits developed by
Moschitti (2004).

Kernel Normalization: since the size of a parse
tree is not constant, we normalize 1 2(,)K T T by divid-

ing it by 1 1 2 2(,) (,)K T T K T T• .

Evaluation Method: we parse the sentence using
Charniak parser and iterate over all pair of men-
tions occurring in the same sentence to generate
potential instances. We find the negative samples
are 10 times more than the positive samples. Thus
data imbalance and sparseness are potential prob-
lems. Recall (R), Precision (P) and F-measure (F)
are adopted as the performance measure.

4.2 Experimental Results

In order to study the impact of the sole syntactic
structure information embedded in parse trees on
relation extraction, we remove the entity informa-
tion from parse trees by replacing the entity-related
phrase type (“E1-O-PER”, etc., in Figure 1) with
“NP”. Then we carry out a couple of preliminary
experiments on the test set using parse trees re-
gardless of entity information.

Feature Spaces P R F
Minimum Complete Tree 77.45 38.39 51.34
Path-enclosed Tree (PT) 72.77 53.80 61.87
Chunking Tree (CT) 75.18 44.75 56.11
Context-Sensitive PT(CPT) 77.87 42.80 55.23
Context-Sensitive CT 78.33 40.84 53.69
Flattened PT 76.86 45.69 57.31
Flattened CPT 80.60 41.20 54.53

Table 1. Performance of seven relation feature
spaces over the 5 ACE major types using parse
tree information only

Table 1 reports the performance of our defined
seven relation feature spaces over the 5 ACE major
types using parse tree information regardless of
any entity information. This preliminary experi-
ments show that:

• Overall the tree kernel over different relation
feature spaces is effective for relation extraction
since we use the parse tree information only. We
will report the detailed performance comparison
results between our method and previous work
later in this section.

• Using the PTs achieves the best performance.
This means the portion of a parse tree enclosed
by the shortest path between entities can model
relations better than other sub-trees.

• Using the MCTs get the worst performance.
This is because the MCTs introduce too much
left and right context information, which may be
noisy features, as shown in Figure 1. It suggests
that only allowing complete (not partial) produc-
tion rules in the MCTs does harm performance.

• The performance of using CTs drops by 5 in F-
measure compared with that of using the PTs.
This suggests that the middle and high-level
structures beyond chunking is also very useful
for relation extraction.

293

• The context-sensitive trees show lower perform-
ance than the corresponding original PTs and
CTs. In some cases (e.g. in sentence “the merge
of company A and company B….”, “merge” is
the context word), the context information is
helpful. However the effective scope of context
is hard to determine.

• The two flattened trees perform worse than the
original trees, but better than the corresponding
context-sensitive trees. This suggests that the
removed structures by the flattened trees con-
tribute non-trivial performance improvement.

In the above experiments, the path-enclosed tree
displays the best performance among the seven
feature spaces when using the parse tree structural
information only. In the following incremental ex-
periments, we incorporate more features into the
path-enclosed parse trees and it shows significant
performance improvement.

Path-enclosed Tree (PT) P R F

Parse tree structure in-
formation only

72.77 53.80 61.87

+Entity information 76.14 62.85 68.86
+Semantic features 76.32 62.99 69.02

Table 2. Performance of Path-enclosed Trees
with different setups over the 5 ACE major types

Table 2 reports the performance over the 5 ACE
major types using Path-enclosed trees enhanced
with more features in nodes. The 1st row is the
baseline performance using structural information
only. We then integrate entity information, includ-
ing Entity type and Mention level features, into the
corresponding nodes as shown in Figure 1. The 2nd
row in Table 2 reports the performance of this
setup. Besides the entity information, we further
incorporate the semantic features used in Zhou et
al. (2005) into the corresponding leaf nodes. The
3rd row in Table 2 reports the performance of this
setup. Please note that in the 2nd and 3rd setups, we
still use the same tree kernel function with slight
modification on the rule (2) in calculating

1 2(,)n n∆ (see subsection 3.2) to make it consider
more features associated with each individual
node: 1 2(,) n n feature weight λ∆ = × . From Table
2, we can see that the basic feature of entity infor-
mation is quite useful, which largely boosts per-
formance by 7 in F-measure. The final

performance of our tree kernel method for relation
extraction is 76.32/62.99/69.02 in preci-
sion/recall/F-measure over the 5 ACE major types.

Methods P R F
Ours: convolution kernel
over parse trees

76.32
(64.6)

62.99
(50.76)

69.02
(56.83)

Kambhatla (2004):
feature-based ME

-
(63.5)

-
(45.2)

-
(52.8)

Zhou et al. (2005):
feature-based SVM

77.2
(63.1)

60.7
(49.5)

68.0
(55.5)

Culotta and Sorensen
(2004): dependency kernel

67.1
(-)

35.0
(-)

45.8
(-)

Bunescu and Mooney
(2005): shortest path de-
pendency kernel

65.5
(-)

43.8
(-)

52.5
(-)

Table 3. Performance comparison, the numbers in
parentheses report the performance over the 24
ACE subtypes while the numbers outside paren-
theses is for the 5 ACE major types

Table 3 compares the performance of different
methods on the ACE corpus3. It shows that our
method achieves the best-reported performance on
both the 24 ACE subtypes and the 5 ACE major
types. It also shows that our tree kernel method
significantly outperform the previous two depend-
ency kernel algorithms by 16 in F-measure on the
5 ACE relation types4. This may be due to two rea-
sons: one reason is that the dependency tree lacks
the hierarchical syntactic information, and another
reason is due to the two constraints of the two de-
pendency kernels as discussed in Section 2 and
Subsection 3.3. The performance improvement by
our method suggests that the convolution tree ker-
nel can explore the syntactic features (e.g. parse
tree structures and entity information) very effec-
tively and the syntactic features are also particu-

3 Zhao and Grishman (2005) also evaluated their algorithm on
the ACE corpus and got good performance. But their experi-
mental data is for 2004 evaluation, which defined 7 entity
types with 44 entity subtypes, and 7 relation major types with
27 subtypes, so we are not ready to compare with each other.
4 Bunescu and Mooney (2005) used the ACE 2002 corpus,
including 422 documents, which is known to have many in-
consistencies than the 2003 version. Culotta and Sorensen
(2004) used an ACE corpus including about 800 documents,
and they did not specify the corpus version. Since the testing
corpora are in different sizes and versions, strictly speaking, it
is not ready to compare these methods exactly and fairly. Thus
Table 3 is only for reference purpose. We just hope that we
can get a few clues from this table.

294

larly effective for the task of relation extraction. In
addition, we observe from Table 1 that the feature
space selection (the effective portion of a parse
tree) is also critical to relation extraction.

Error Type # of error instance
False Negative 414
False Positive 173
Cross Type 97

Table 4. Error Distribution

Finally, Table 4 reports the error distribution in
the case of the 3rd experiment in Table 2. It shows
that 85.9% (587/684) of the errors result from rela-
tion detection and only 14.1% (97/684) of the er-
rors result from relation characterization. This is
mainly due to the imbalance of the posi-
tive/negative instances and the sparseness of some
relation types on the ACE corpus.

5 Conclusion and Future Work

In this paper, we explore the syntactic features us-
ing convolution tree kernels for relation extraction.
We conclude that: 1) the relations between entities
can be well represented by parse trees with care-
fully calibrating effective portions of parse trees;
2) the syntactic features embedded in a parse tree
are particularly effective for relation extraction; 3)
the convolution tree kernel can effectively capture
the syntactic features for relation extraction.

The most immediate extension of our work is to
improve the accuracy of relation detection. We
may adopt a two-step method (Culotta and Soren-
sen, 2004) to separately model the relation detec-
tion and characterization issues. We may integrate
more features (such as head words or WordNet
semantics) into nodes of parse trees. We can also
benefit from the learning algorithm to study how to
solve the data imbalance and sparseness issues
from the learning algorithm viewpoint. In the fu-
ture, we would like to test our algorithm on the
other version of the ACE corpus and to develop
fast algorithm (Vishwanathan and Smola, 2002) to
speed up the training and testing process of convo-
lution kernels.

Acknowledgements: We would like to thank Dr.
Alessandro Moschitti for his great help in using his
Tree Kernel Toolkits and fine-tuning the system.
We also would like to thank the three anonymous
reviewers for their invaluable suggestions.

References
ACE. 2004. The Automatic Content Extraction (ACE)

Projects. http://www.ldc.upenn.edu/Projects/ACE/

Bunescu R. C. and Mooney R. J. 2005. A Shortest Path
Dependency Kernel for Relation Extraction.
EMNLP-2005

Charniak E. 2001. Immediate-head Parsing for Lan-
guage Models. ACL-2001

Collins M. and Duffy N. 2001. Convolution Kernels for
Natural Language. NIPS-2001

Culotta A. and Sorensen J. 2004. Dependency Tree Ker-
nel for Relation Extraction. ACL-2004

Haussler D. 1999. Convolution Kernels on Discrete
Structures. Technical Report UCS-CRL-99-10, Uni-
versity of California, Santa Cruz.

Joachims T. 1998. Text Categorization with Support
Vecor Machine: learning with many relevant fea-
tures. ECML-1998

Kambhatla Nanda. 2004. Combining lexical, syntactic
and semantic features with Maximum Entropy mod-
els for extracting relations. ACL-2004 (poster)

Lodhi H., Saunders C., Shawe-Taylor J., Cristianini N.
and Watkins C. 2002. Text classification using string
kernel. Journal of Machine Learning Research,
2002(2):419-444

Miller S., Fox H., Ramshaw L. and Weischedel R. 2000.
A novel use of statistical parsing to extract informa-
tion from text. NAACL-2000

Moschitti Alessandro. 2004. A Study on Convolution
Kernels for Shallow Semantic Parsing. ACL-2004

MUC. 1987-1998. The nist MUC website: http:
//www.itl.nist.gov/iaui/894.02/related_projects/muc/

Suzuki J., Hirao T., Sasaki Y. and Maeda E. 2003. Hi-
erarchical Directed Acyclic Graph Kernel: Methods
for Structured Natural Language Data. ACL-2003

Vishwanathan S.V.N. and Smola A.J. 2002. Fast ker-
nels for String and Tree Matching. NIPS-2002

Zelenko D., Aone C. and Richardella A. 2003. Kernel
Methods for Relation Extraction. Journal of Machine
Learning Research. 2003(2):1083-1106

Zhao Shubin and Grishman Ralph. 2005. Extracting
Relations with Integrated Information Using Kernel
Methods. ACL-2005

Zhou Guodong, Su Jian, Zhang Jie and Zhang Min.
2005. Exploring Various Knowledge in Relation Ex-
traction. ACL-2005

295

