Comparing the Utility of State Featuresin Spoken Dialogue Using
Reinforcement L earning

Joel R. Tetreault
University of Pittsburgh

Learning Research and Development Center
L earning Research and Development Center

Pittsburgh PA, 15260, USA
tetreaul @itt. edu

Abstract

Recent work in designing spoken dialogue
systems has focused on using Reinforce-
ment Learning to automatically learn the
best action for a system to take at any
point in the dialogue to maximize dia-
logue success. While policy development
is very important, choosing the best fea-
tures to model the user state is equally im-
portant since it impacts the actions a sys-
tem should make. In this paper, we com-
pare the relative utility of adding three fea-
tures to a model of user state in the do-
main of a spoken dialogue tutoring sys-
tem. In addition, we also look at the ef-
fects of these features on what type of a
question a tutoring system should ask at
any state and compare it with our previ-
ous work on using feedback as the system
action.

1 Introduction

A host of issues confront spoken dialogue system
designers, such as choosing the best system action to
perform given any user state, and also selecting the
right features to best represent the user state. While
recent work has focused on using Reinforcement
Learning (RL) to address the first issue (such as
(Walker, 2000), (Henderson et al., 2005), (Williams
et al., 2005a)), there has been very little empirical
work on the issue of feature selection in prior RL ap-
proaches to dialogue systems. In this paper, we use

272

Diane J. Litman
University of Pittsburgh
Department of Computer Science

Pittsburgh PA, 15260, USA
litman@s. pitt. edu

a corpus of dialogues of humans interacting with a
spoken dialogue tutoring system to show the com-
parative utility of adding the three features of con-
cept repetition, frustration level, and student perfor-
mance. These features are not just unique to the tu-
toring domain but are important to dialogue systems
in general. Our empirical results show that these fea-
tures all lead to changes in what action the system
should take, with concept repetition and frustration
having the largest effects.

This paper extends our previous work (Tetreault
and Litman, 2006) which first presented a method-
ology for exploring whether adding more complex
features to a representation of student state will ben-
eficially alter tutor actions with respect to feedback.
Here we present an empirical method of comparing
the effects of each feature while also generalizing
our findings to a different action choice of what type
of follow-up question should a tutor ask the student
(as opposed to what type of feedback should the tu-
tor give). In complex domains such as tutoring, test-
ing different policies with real or simulated students
can be time consuming and costly so it is important
to properly choose the best features before testing,
which this work allows us to do. This in turn aids
our long-term goal of improving a spoken dialogue
system that can effectively adapt to a student to max-
imize their learning.

2 Background

We follow past lines of research (such as (Levin and
Pieraccini, 1997) and (Singh et al., 1999)) for de-
scribing a dialogue d as a trajectory within a Markov
Decision Process (MDP) (Sutton and Barto, 1998).

Proceedings of the Human Language Technology Conference of the North American Chapter of,thagsS1272-279,
New York, June 20062006 Association for Computational Linguistics

A MDP has four main components: 1: states s, 2:
actions A, 3: a policy m, which specifies what is the
best action to take in a state, and 4: a reward func-
tion R which specifies the worth of the entire pro-
cess. Dialogue management is easily described us-
ing a MDP because one can consider the actions as
actions made by the system, the state as the dialogue
context (which can be viewed as a vector of features,
such as ASR confidence or dialogue act), and a re-
ward which for many dialogue systems tends to be
task completion success or dialogue length.

Another advantage of using MDP’s to model a di-
alogue space, besides the fact that the primary MDP
parameters easily map to dialogue parameters, is the
notion of delayed reward. In a MDP, since rewards
are often not given until the final states, dynamic
programming is used to propagate the rewards back
to the internal states to weight the value of each state
(called the V-value), as well as to develop an optimal
policy « for each state of the MDP. This propaga-
tion of reward is done using the policy iteration al-
gorithm (Sutton and Barto, 1998) which iteratively
updates the V-value and best action for each state
based on the values of its neighboring states.

The V-value of each state is important for our pur-
poses not only because it describes the relative worth
of a state within the MDP, but as more data is added
when building the MDP, the V-values should stabi-
lize, and thus the policies stabilize as well. Since,
in this paper, we are comparing policies in a fixed
data set it is important to show that the policies are
indeed reliable, and not fluctuating.

For this study, we used the MDP infrastructure de-
signed in our previous work which allows the user
to easily set state, action, and reward parameters. It
then performs policy iteration to generate a policy
and V-values for each state. In the following sec-
tions, we discuss our corpus, methodology, and re-
sults.

3 Corpus

For our study, we used an annotated corpus of
20 human-computer spoken dialogue tutoring ses-
sions (for our work we use the ITSPOKE system
(Litman and Silliman, 2004) which uses the text-
based Why2-ATLAS dialogue tutoring system as its
“back-end” (VanLehn et al., 2002)). The content

273

Values

Certain (cer)
Uncertain (unc)
Neutral (neu)
Frustrated (F)

Neutral (N),

Correct (C)

Partially Correct (PC)
Incorrect (1)

50-100% (H)igh
0-49% (L)ow
Concept is new (0)
Concept is repeated (R)

State Feature
Certainty

Frustration

Correctness

Percent Correct

Concept Repetition

Table 1: Potential Student State Features in MDP

of the system, and all possible dialogue paths, were
authored by physics experts. Each session consists
of an interaction with one student over 5 different
college-level physics problems, for a total of 100 di-
alogues. Before each session, the student is asked to
read physics material for 30 minutes and then take a
pretest based on that material. Each problem begins
with the student writing out a short essay response
to the question posed by the computer tutor. The
fully-automated system assesses the essay for poten-
tial flaws in the reasoning and then starts a dialogue
with the student, asking questions to help the stu-
dent understand the confused concepts. The tutor’s
response and next question is based only on the cor-
rectness of the student’s last answer. Informally, the
dialogue follows a question-answer format. Once
the student has successfully completed the dialogue
section, he is asked to correct the initial essay. Each
of the dialogues takes on average 20 minutes and 60
turns. Finally, the student is given a posttest simi-
lar to the pretest, from which we can calculate their
normalized learning gain: NLG = eestterioprerest,

Prior to our study, the corpus was annotated for
Tutor Moves, which can be viewed as Dialogue Acts
(Forbes-Riley et al., 2005) * and consisted of Tutor
Feedback, Question and State Acts. In this corpus, a
turn can consist of multiple utterances and thus can
be labeled with multiple moves. For example, a tutor
can give positive feedback and then ask a question in
the same turn. What type of question to ask will be
the action choice addressed in this paper.

As for features to include in the student state, we
annotated five features as shown in Table 1. Two

The Dialogue Act annotation had a Kappa of 0.67.

Action | Example Turn
SAQ “Good. What is the direction of that force relative to your fist?”
CAQ “What is the definition of Newton’s Second Law?”
Mix “Good. If it doesn’t hit the center of the pool what do you know about the magnitude of
its displacement from the center of the pool when it lands? Can it be zero? Can it be nonzero?”
NoQ “So you can compare it to my response...”

Table 2: Tutor Actions for MDP

emotion related features, certainty and frustration,
were annotated manually prior to this study (Forbes-
Riley and Litman, 2005) 2. Certainty describes
how confident a student seemed to be in his answer,
while frustration describes how frustrated the stu-
dent seemed to be when he responded. We include
three other automatically extracted features for the
Student state: (1) Correctness: whether the student
was correct or not; (2) Percent Correct: percentage
of correctly answered questions so far for the cur-
rent problem; (3) Concept Repetition: whether the
system is forced to cover a concept again which re-
flects an area of difficulty for the student.

4 Experimental Method

The goal of this study is to quantify the utility of
adding a feature to a baseline state space. We use
the following four step process: (1) establish an
action set and reward function to be used as con-
stants throughout the test since the state space is the
one MDP parameter that will be changed during the
tests; (2) establish a baseline state and policy, and
(3) add a new feature to that state and test if adding
the feature results in policy changes. Every time
we create a new state, we make sure that the gen-
erated V-values converge. Finally, (4), we evaluate
the effects of adding a new feature by using three
metrics: (1) number of policy changes (diffs), (2)
% policy change, and (3) Expected Cumulative Re-
ward. These three metrics are discussed in more de-
tail in Section 5.2. In this section we focus on the
first three steps of the methodology.

4.1 Establishing Actions and Rewards

We use questions as our system action A in our
MDP. The action size is 4 (tutor can ask a simple
answer question (SAQ), a complex answer question

2In a preliminary agreement study, a second annotator la-

beled the entire corpus for uncertain versus other, yielding 90%
inter-annotator agreement (0.68 Kappa).

274

(CAQ), or a combination of the two (Mix), or not
ask a question (NoQ)). Examples from our corpus
can be seen in Table 2. We selected this as the action
because what type of question a tutor should ask is
of great interest to the Intelligent Tutoring Systems
community, and it generalizes to dialogue systems
since asking users questions of varying complexity
can elicit different responses.

For the dialogue reward function R we did a me-
dian split on the 20 students based on their normal-
ized learning gain, which is a standard evaluation
metric in the Intelligent Tutoring Systems commu-
nity. So 10 students and their respective 5 dialogues
were assigned a positive reward of 100 (high learn-
ers), and the other 10 students and their respective
5 dialogues were assigned a negative reward of -100
(low learners). The final student turns in each di-
alogue were marked as either a positive final state
(for a high learner) or a negative final state (for a low
learner). The final states allow us to propagate the
reward back to the internal states. Since no action is
taken from the final states, their V-values remain the
same throughout policy iteration.

4.2 Establishing a Baseline State and Policy

Currently, our tutoring system’s response to a stu-
dent depends only on whether or not the student an-
swered the last question correctly, so we use correct-
ness as the sole feature in our baseline dialogue state.
A student can either be correct, partially correct, or
incorrect. Since partially correct responses occur in-
frequently compared to the other two, we reduced
the state size to two by combining Incorrect and Par-
tially Correct into one state (IPC) and keeping Cor-
rect (C).

With the actions, reward function, and baseline
state all established, we use our MDP tool to gener-
ate a policy for both states (see Table 3). The second
column shows the states, the third, the policy deter-
mined by our MDP toolkit (i.e. the optimal action to

take in that state with respect to the final reward) and
finally how many times the state occurs in our data
(state size). So if a student is correct, the best action
is to give something other than a question immedi-
ately, such as feedback. If the student is incorrect,
the best policy is to ask a combination of short and
complex answer questions.

| State | Policy | State Size
11C NoQ 1308
2 | IPC Mix 872

Table 3: Baseline Policy

The next step in our experiment is to test whether
the policies generated are indeed reliable. Normally,
the best way to verify a policy is to conduct exper-
iments and see if the new policy leads to a higher
reward for new dialogues. In our context, this would
entail running more subjects with the augmented di-
alogue manager, which could take months. So, in-
stead we check if the polices and values for each
state are indeed converging as we add data to our
MDP model. The intuition here is that if both of
those parameters were varying between a corpus of
19 students versus one of 20 students, then we can’t
assume that our policy is stable, and hence is not re-
liable.

To test this out, we made 20 random orderings of
our students to prevent any one ordering from giving
a false convergence. Each ordering was then passed
to our MDP infrastructure such that we started with
a corpus of just the first student of the ordering and
then determined a MDP policy for that cut, then in-
crementally added one student at a time until we had
added all 20 students. So at the end, 20 random or-
derings with 20 cuts each provides 400 MDP trials.
Finally, we average each cut across the 20 random
orderings. The first graph in Figure 1 shows a plot of
the average V-values against a cut. The state with the
plusses is the positive final state, and the one at the
bottom is the negative final state. However, we are
most concerned with how the non-final states con-
verge. The plot shows that the V-values are fairly
stable after a few initial cuts, and we also verified
that the policies remained stable over the 20 students
as well (see our prior work (Tetreault and Litman,
2006) for details of this method). Thus we can be
sure that our baseline policy is indeed reliable for

275

our corpus.

5 Reaults

In this section, we investigate whether adding more
information to our student state will lead to inter-
esting policy changes. First, we add certainty to
our baseline of correctness because prior work (such
as (Bhatt et al., 2004), (Liscombe et al., 2005) and
(Forbes-Riley and Litman, 2005)) has shown the im-
portance of considering certainty in tutoring sys-
tems. We then compare this new baseline’s pol-
icy (henceforth Baseline 2) with the policies gener-
ated when frustration, concept repetition, and per-
cent correctness are included.

We’ll first discuss the new baseline state. There
are three types of certainty: certain (cer), uncertain
(unc), and neutral (neu). Adding these to our state
representation increases state size from 2 to 6. The
new policy is shown in Table 4. The second and
third columns show the original baseline states and
their policies. The next column shows the new pol-
icy when splitting the original state into the three
new states based on certainty (with the policies that
differ from the baseline shown in bold). The final
column shows the size of each new state. So the
first row indicates that if the student is correct and
certain, one should give a combination of a complex
and short answer question; if the student is correct
and neutral, just ask a SAQ; and else if the student is
correct and uncertain, give a Mix. The overall trend
of adding the certainty feature is that if the student
exhibits some emotion (either they are certain or un-
certain), the best response is Mix, but for neutral do
something else.

| State | Baseline | Baseline 2 B2 State Size

1]C NoQ certain:C Mix 663
neutral:C SAQ 480
uncertain:C Mix 165

2 | IPC Mix certain:IPC Mix 251
neutral:IPC NoQ 377
uncertain:IPC Mix | 244

Table 4: Baseline 2 Policy

We assume that if a feature is important to include
in a state representation it should change the poli-
cies of the old states. For example, if certainty did
not impact how well students learned (as deemed by
the MDP) then the policies for certainty, uncertainty,

1001

80 +

60

40

—20}

—a0}

—60}

_go}

o 2 a4 s 8 10 12 14 16 18 20
of students

1001
80 //
60

40

201

—20}

—a0}

—60}

_go}

o 2 a4 s 8 10 12 14 16 18 20
of students

Figure 1. Baseline 1 and 2 Convergence Plots

and neutral would be the same as the original policy
for Correct (C) or Incorrect (IPC). However, the fig-
ures show otherwise. When certainty is added to the
state, only two new states (incorrect while being cer-
tain or uncertain) retain the old policy of having the
tutor give a mix of SAQ and CAQ. The right graph
in Figure 1 shows that for Baseline 2, V-values tend
to converge around 10 cuts.

Next, we add Concept Repetition, Frustration,
and Percent Correct features individually to Base-
line 2. For each of the three features we repeated
the reliability check of plotting the V-value con-
vergence and found that the graphs showed conver-
gence around 15 students.

5.1 Feature Addition Results

Policies for the three new features are shown in Ta-
ble 5 with the policies that differ from Baseline 2’s
shown in bold. The numbers in parentheses refer to
the size of the new state (so for the first +Concept
state, there are 487 instances in the data of a student
being correct, certain after hearing a new concept).
Concept Repetition Feature As shown in col-
umn 4, the main trend of incorporating concept rep-
etition usually is to give a complex answer question
after a concept has been repeated, and especially if
the student is correct when addressing a question
about the repeated concept. This is intuitive be-
cause one would expect that if a concept has been
repeated, it signals that the student did not grasp the
concept initially and a clarification dialogue was ini-
tiated to help the student learn the concept. Once
the student answers the repeated concept correctly, it
signals that the student understands the concept and
that the tutor can once again ask more difficult ques-

276

tions to challenge the student. Given the amount of
differences in the new policy and the original policy
(10 out of 12 possible), including concept repetition
as a state feature has a significant impact on the pol-
icy generated.

Frustration Feature Our results show that
adding frustration changes the policies the most
when the student is frustrated, but when the student
isn’t frustrated (neutral) the policy stays the same
as the baseline with the exception of when the stu-
dent is Correct and Certain (state 1), and Incorrect
and Uncertain (state 6). It should be noted that for
states 2 through 6, that frustration occurs very in-
frequently so the policies generated (CAQ) may not
have enough data to be totally reliable. However in
state 1, the policy when the student is confident and
correct but also frustrated is to simply give a hint or
some other form of feedback. In short, adding the
frustration feature results in a change in 8 out of 12
policies.

Percent Correctness Feature Finally, the last
column, shows the new policy generated for incor-
porating a simple model of current student perfor-
mance within the dialog. The main trend is to give
a Mix of SAQ and CAQ’s. Since the original policy
was to give a lot of Mix’s in the first place, adding
this feature does not result in a large policy change,
only 4 differences.

5.2 Feature Comparison

To compare the utility of each of the features, we
use three metrics: (1) Diff’s (2) % Policy Change,
and (3) Expected Cumulative Reward. # of Diff’s
are the number of states whose policy differs from
the baseline policy, The second column of Table 6

State Baseline 2 | +Concept +Frustration + % Correctness
certain:C Mix (663) | 0: CAQ (487) | N: SAQ (558) | H: Mix (650)
R: CAQ (176) | F: NoQ (105) | L: Mix (13)
certain:IPC Mix (251) | 0: SAQ (190) | N: Mix (215) H: Mix (217)
R:NoQ (61) | F:CAQ (36) | L:Mix (34)
neutral:C SAQ (480) | 0: CAQ (328) | N: SAQ (466) | H: Mix (468)
R: CAQ (152) | F:CAQ (14) | L:Mix (12)
neutral:IPC NoQ (377) | 0: NoQ (289) | N: NoQ (364) | H: NoQ (320)
R: Mix (88) F: CAQ (13) | L:Mix (57)
uncertain:C Mix (165) | 0: Mix (127) N: Mix (151) H: Mix (156)
R:CAQ(38) | F:CAQ(14) | L:Mix(9)
uncertain:IPC | Mix (244) | 0: SAQ (179) | N: CAQ (209) | H: CAQ (182)
R: CAQ(65) | F:CAQ(35) | L:Mix (62)
Table 5: Question Policies
summarizes the amount of Diff’s for each new fea- | StateFeature | #Diff’s | %PC. | ECR
. .- Concept Repetition | 10 80.2% | 39.52
ture compared to Baseline 2. Concept Repetition has —grstration 8 66.4% 13130
the largest number of differences: 10, followed by Percent Correctness | 4 443% | 28.17

Frustration, and then Percent Correctness. However,
counting the number of differences does not com-
pletely describe the effect of the feature on the pol-
icy. For example, it is possible that a certain feature
may impact the policy for several states that occur
infrequently, resulting in a lot of differences but the
overall impact may actually be lower than a certain
feature that only impacts one state, since that state
occurs a majority of the time in the data. So we
weight each difference by the number of times that
state-action sequence actually occurs in the data and
then divide by the total number of state-action se-
quences. This weighting, % Policy Change (or %
P.C.), allows us to more accurately depict the impact
of adding the new feature. The third columns shows
the weighted figures of % Policy Change. As an
additional confirmation of the ranking, we use Ex-
pected Cumulative Reward (E.C.R.). One issue with
% Policy Change is that it is possible that frequently
occurring states have very low V-values so the ex-
pected utility from starting the dialogue could poten-
tially be lower than a state feature with low % Policy
Change. E.C.R. is calculated by normalizing the V-
value of each state by the number of times it occurs
as a start state in a dialogue and then summing over
all states. The upshot of both metrics is the ranking
of the three features remains the same with Concept
Repetition effecting the greatest change in what a
tutoring system should do; Percent Correctness has
the least effect.

We also added a random feature to Baseline 2

277

Table 6: Question Act Results

State Feature #Diff's | % P.C. | ECR
Concept Repetition | 4 34.6% | 43.43
Frustration 3 6.0% 25.80
Percent Correctness | 3 10.3% | 26.41

Table 7: Feedback Act Results

with one of two values (0 and 1) to serve as a base-
line for the # of Diff’s. In a MDP with a large
enough corpus to explore, a random variable would
not alter the policy, however with a smaller corpus
it is possible for such a variable to alter policies.
We found that by testing a random feature 40 times
and averaging the diffs from each test, resulted in an
average diff of 5.1. This means that Percent Cor-
rectness effects a smaller amount of change than
this random baseline and thus is fairly useless as a
feature to add since the random feature is probably
capturing some aspect of the data that is more use-
ful. However, the Concept Repetition and Frustra-
tion cause more change in the policies than the ran-
dom feature baseline so one can view them as fairly
useful still.

As a final test, we investigated the utility of each
feature by using a different tutor action - whether
or not the tutor should give simple feedback (Sim-
Feed), or a complex feedback response(ComFeed),
or a combination of the two (Mix) (Tetreault and L.it-
man, 2006). The policies and distributions for all
features from this previous work are shown in Ta-

| State Baseline 2 +Concept +Frustration + % Correctness
1 | certain:C ComFeed (663) | 0: ComFeed (487) | N: ComFeed (558) | H: ComFeed (650)
R: SimFeed (176) | F: SimFeed (105) | L: ComFeed (13)
2 | certain:IPC ComFeed (251) | 0: Mix (190) N: ComFeed (215) | H: ComFeed (217)
R: Mix (61) F: ComFeed (36) L: ComFeed (34)
3 | neutral:C SimFeed (480) | 0: Mix (328) N: SimFeed (466) | H: SimFeed (468)
R: SimFeed (152) | F: ComFeed (14) L: ComFeed (12)
4 | neutral:IPC Mix (377) 0: Mix (289) N: Mix (364) H: Mix (320)
R: Mix (88) F: ComFeed (13) L: ComFeed (57)
5 | uncertain:C ComFeed (165) | 0: ComFeed (127) | N: ComFeed (151) | H: Mix (156)
R: ComFeed (38) | F: ComFeed (14) L: ComFeed (9)
6 | uncertain:IPC | ComFeed (244) | 0: ComFeed (179) | N: ComFeed (209) | H: ComFeed (182)
R: ComFeed (65) | F: ComFeed (35) L: ComFeed (62)

Table 8: Feedback Policies (summarized from (Tetreault and Litman, 2006))

bles 7 and 8. Basically, we wanted to see if the rela-
tive rankings of the three features remained the same
for a different action set and whether different action
sets evoked different changes in policy. The result is
that although the amount of policy change is much
lower than when using Questions as the tutor action,
the relative ordering of the features is still about the
same with Concept Repetition still having the great-
est impact on the policy. Interestingly, while Frus-
tration and Percent Correctness have lower diffs, %
policy changes, and E.C.R. then their question coun-
terparts (which indicates that those features are less
important when considering what type of feedback
to give, as opposed to what type of question to give),
the E.C.R. for concept repetition with feedback is
actually higher than the question case.

6 Redated Work

RL has been applied to improve dialogue systems in
past work but very few approaches have looked at
which features are important to include in the dia-
logue state. Paek and Chickering’s (2005) work on
testing the Markov Assumption for Dialogue Sys-
tems showed how the state space can be learned
from data along with the policy. One result is that a
state space can be constrained by only using features
that are relevant to receiving a reward. Henderson et
al.’s (2005) work focused on learning the best pol-
icy by using a combination of reinforcement and su-
pervised learning techniques but also addressed state
features by using linear function approximation to
deal with large state spaces. Singh et al. (1999)
and Frampton et al. (2005) both showed the ef-
fect of adding one discourse feature to the student

278

state (dialogue length and user’s last dialogue act,
respectively) whereas in our work we compare the
worth of multiple features. Although Williams et
al.’s (2005b) work did not focus on choosing the
best state features, they did show that in a noisy
environment, Partially-Observable MDP’s could be
used to build a better model of what state the user
is in, over traditional MDP and hand-crafted meth-
ods. One major difference between all this related
work and ours is that usually the work is focused
on how to best deal with ASR errors. Although this
is also important in the tutoring domain, our work
is novel because it focuses on more semantically-
oriented questions.

7 Discussion

In this paper we showed that incorporating more in-
formation into a representation of the student state
has an impact on what actions the tutor should
take. Specifically, we proposed three metrics to
determine the relative weight of the three features.
Our empirical results indicate that Concept Repeti-
tion and Frustration are the most compelling since
adding them to the baseline resulted in major pol-
icy changes. Percent Correctness had a negligible
effect since it resulted in only minute changes to the
baseline policy. In addition, we also showed that the
relative ranking of these features generalizes across
different action sets.

While these features may appear unique to tutor-
ing systems they also have analogs in other dialogue
systems as well. Repeating a concept (whether it be
a physics term or travel information) is important be-
cause it is an implicit signal that there might be some

confusion and a different action is needed when the
concept is repeated. Frustration can come from dif-
ficulty of questions or from the more frequent prob-
lem for any dialogue system, speech recognition er-
rors, so the manner in dealing with it will always
be important. Percent Correctness can be viewed
as a specific instance of tracking user performance
such as if they are continuously answering ques-
tions properly or are confused by what the system
requests.

With respect to future work, we are annotating
more human-computer dialogue data and will triple
the size of our test corpus allowing us to create more
complicated states since more states will have been
explored, and test out more complex tutor actions,
such as when to give Hints and Restatements. In
the short term, we are investigating whether other
metrics such as entropy and confidence bounds can
better indicate the usefulness of a feature. Finally,
it should be noted that the certainty and frustration
feature scores are based on a manual annotation. We
are investigating how well an automated certainty
and frustration detection algorithm will impact the
% Policy Change. Previous work such as (Liscombe
et al., 2005) has shown that certainty can be auto-
matically generated with accuracy as high as 79% in
comparable human-human dialogues. In our corpus,
we achieve an accuracy of 60% in automatically pre-
dicting certainty.

8 Acknowledgments

We would like to thank the ITSPOKE and Pitt NLP
groups, Pam Jordan, James Henderson, and the three
anonymous reviewers for their comments. Sup-
port for this research was provided by NSF grants
#0325054 and #0328431.

References

K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged re-
sponses and expressions of affect in human/human and
human computer tutorial interactions. In Proc. Cogni-
tive Science.

K. Forbes-Riley and D. Litman. 2005. Using bigrams
to identify relationships between student certainness
states and tutor responses in a spoken dialogue corpus.
In SIGDial.

279

K. Forbes-Riley, D. Litman, A. Huettner, and A. Ward.
2005. Dialogue-learning correlations in spoken dia-
logue tutoring. In Artificial Intelligence in Education.

M. Frampton and O. Lemon. 2005. Reinforcement learn-
ing of dialogue strategies using the user’s last dialogue
act. In IJCAI Wkshp. on K&R in Practical Dialogue
Systems.

J. Henderson, O. Lemon, and K. Georgila. 2005. Hybrid
reinforcement/supervised learning for dialogue poli-
cies from communicator data. In 1JCAI Wkshp. on
K&R in Practical Dialogue Systems.

E. Levin and R. Pieraccini. 1997. A stochastic model of
computer-human interaction for learning dialogues. In
Proc. of EUROSPEECH ’97.

J. Liscombe, J. Hirschberg, and J. Venditti. 2005. De-
tecting certainness in spoken tutorial dialogues. In In-
terspeech.

D. Litman and S. Silliman. 2004. Itspoke: An intelligent
tutoring spoken dialogue system. In HLT/NAACL.

T. Paek and D. Chickering. 2005. The markov assump-
tion in spoken dialogue management. In 6th SIGDial
Workshop on Discourse and Dialogue.

S. Singh, M. Kearns, D. Litman, and M. Walker. 1999.
Reinforcement learning for spoken dialogue systems.
In Proc. NIPS "99.

R. Sutton and A. Barto. 1998. Reinforcement Learning.
The MIT Press.

J. Tetreault and D. Litman. 2006. Using reinforcement
learning to build a better model of dialogue state. In
EACL.

K. VanLehn, P. Jordan, C. Rosé, D. Bhembe, M. Bottner,
A. Gaydos, M Makatchev, U. Pappuswamy, M. Rin-
genberg, A. Roque, S. Siler, R. Srivastava, and R. Wil-
son. 2002. The archictecture of why2-atlas: A coach
for qualitative physics essay writing. In Intelligent Tu-
toring Systems.

M. Walker. 2000. An application of reinforcement learn-
ing to dialogue strategy selection in a spoken dialogue
system for email. JAIR, 12.

J. Williams, P. Poupart, and S. Young. 2005a. Fac-
tored partially observable markov decision processes
for dialogue management. In IJCAI Wkshp. on K&R
in Practical Dialogue Systems.

J. Williams, P. Poupart, and S. Young. 2005b. Partially
obervable markov decision processes with continuous
observations for dialogue management. In SIGDial.

