
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 232–239,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning Pronunciation Dictionaries
Language Complexity and Word Selection Strategies

John Kominek Alan W Black
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{jkominek,awb}@cs.cmu.edu

Abstract

The speed with which pronunciation dictio-
naries can be bootstrapped depends on the ef-
ficiency of learning algorithms and on the or-
dering of words presented to the user. This pa-
per presents an active-learning word selection
strategy that is mindful of human limitations.
Learning rates approach that of an oracle sys-
tem that knows the final LTS rule set.

1 Introduction

The construction of speech-to-speech translation
systems is difficult, complex, and prohibitively ex-
pensive for all but handful of major languages. De-
veloping systems for new languages is a highly
skilled job requiring considerable effort, as is the
process of training people to acquire the necessary
technical knowledge.

Ideally, a native speaker of a (minor) language –
with the right tools – should be able to develop a
speech system with little or no technical knowl-
edge of speech recognition, machine translation,
dialog management, or speech synthesis. Rapid de-
velopment of machine translation, for example, is
the goal of (Lavie et al., 2003). Similarly, com-
bined development of speech recognition and
speech synthesis is the stated goal of (Engelbrecht
and Schultz, 2005).

Here we concentrate on lexicon creation for
synthesis and recognition tasks, with the affiliated
problem of letter-to-sound rule inference. Two
central questions of dictionary building are: what
letter-to-sound rule representation lends itself well
to incremental learning? – and which words should
be presented to the user, in what order?

In this paper we investigate various approaches
to the word ordering problem, including an active
learning algorithm. An “active learner” is a class
of machine learning algorithms that choose the or-
der in which it is exposed to training examples
(Auer, 2000). This is valuable when there isn't a
pre-existing set of training data and when the cost
of acquiring such data is high. When humans are
adding dictionary entries the time and accuracy de-
pends on the selected word (short words are easier
than long; familiar are easier than unfamiliar), and
on how quickly the learner's error rate drops (long
words are more informative than short). Also,
mindful that no answer key exists for new lan-
guages – and that humans easily become impatient
– we would like to know when a language's letter
to sound rule system is, say, 90% complete. This
turns out to be surprising elusive to pin down.

The next section outlines our working assump-
tions and issues we seek to address. Section 3 de-
scribes our LTS learning framework, an elabora-
tion of (Davel and Barnard, 2003). The learning
behavior on multiple test languages is documented
in Section 4, followed in Section 5 by a compari-
son of several word selection strategies.

2 Assumptions and Issues

In designing language technology development
tools we find it helpful to envision our target user,
whom may be characterized as “non-technical.”
Such a person speaks, reads, and writes the target
language, is able to enumerate the character set of
that language, distinguish punctuation from
whitespace, numerals, and regular letters or
graphemes, and specify if the language distin-
guishes upper and lower casing. When presented

232

with the pronunciation of a word (as a synthesized
wavefile), the user can say whether it is right or
wrong. In addition, such a person has basic com-
puter fluency, can record sound files, and can navi-
gate the HTML interface of our software tools. If
these latter requirements present a barrier then we
assume the availability of a field agent to config-
ure the computer, familiarize the user, plus trans-
late the English instructions, if necessary.

Ideally, our target user need not have explicit
knowledge of their own language's phoneme set,
nor even be aware that a word can be transcribed
as a sequence of phonemes (differently from let-
ters). The ability to reliably discover a workable
phoneme set from an unlabeled corpus of speech
is not yet at hand, however. Instead we elicit a lan-
guage's phoneme set during an initialization stage
by presenting examples of IPA wavefiles (Wells
and House, 1995).

Currently, pronunciations are spelled out using
a romanized phonetic alphabet. Following the rec-
ommendation of (Davel and Barnard, 2005) a can-
didate pronunciation is accompanied with a wave-
file generated from a phoneme-concatenation syn-
thesizer. Where possible, more than one pronunci-
ation is generated for each word presented, under
that assumption that it is easier for a listener to se-
lect from among a small number of choices than
correct a wrong prediction.

2.1 Four Questions to Address

1. What is our measure of success? Ultimately,
the time to build a lexicon of a certain coverage
and correctness. As a proxy for time we use the
number of characters presented. (Not words, as
is typically the case, since long words contain
more information than short, and yet are harder
for a human to verify.)

2. For a given language, how many words (let-
ters) are needed to learn its LTS rule system?
The true, yet not too useful answer is “it de-
pends.” The complexity of the relation be-
tween graphemic representation and acoustic
realization varies greatly across languages. That
being the case, we seek a useful measure of a
language's degree of complexity.

3. Can the asymptote of the LTS system be esti-
mated, so that one can determine when the
learned rules are 90 or 95% complete? In Sec-
tion 4 we present evidence that this may not be

possible. The fall-back position is percentage
coverage of the supplied corpus.

4. Which words should be presented to the user,
and in what order? Each additional word
should maximize the marginal information gain
to the system. However, short words are easier
for humans to contend with than long. Thus a
length-based weighting needs to be considered.

3 LTS Algorithm Basics

A wide variety of approaches have been applied to
the problem of letter-to-sound rule induction. Due
to simplicity of representation and ease of manipu-
lation, our LTS rule learner follows the Default &
Refine algorithm of Davel (Davel and Barnard,
2004). In this framework, each letter c is assigned
a default production p1-p2... denoting the sequence
of zero or more phonemes most often associated
with that letter. Any exceptions to a letter's default
rule is explained in terms of the surrounding con-
text of letters. The default rules have a context
width of one (the letter itself), while each addition-
al letter increases the width of the context window.
For example, if we are considering the first occur-
rence of 's' in the word basics, the context win-
dows are as listed in Table 1. By convention, the
underscore character denotes the predicted posi-
tion, while the hash represents word termination.

width context sets ordered by increasing width
1 {_}

2 {a_ , _i}

3 {ba_ , a_i , _ic}

4 (#ba_ , ba_i , a_ic , _ics}

5 {#ba_i , ba_ic , a_ics , _ics#}

6 {#ba_ic , ba_ics , a_ics#}

7 {#ba_ics , ba_ics#}

8 {#ba_ics#}
Table 1. Letter contexts for the first 's' in basics.

In this position there are 20 possible explanatory
contexts. The order in which they are visited de-
fines an algorithm's search strategy. In the class of
algorithms knows as “dynamically expanding con-
text (DEC)”, contexts are considered top-down as
depicted in Table 1. Within one row, some algo-
rithms follow a fixed order (e.g. center, left, right).
Another variant tallies the instances of productions

233

associated with a candidate context and chooses
the one with the largest count. For example, in
Spanish the letter 'c' may generate K (65%), or TH
when followed by e or i (32%), or CH when fol-
lowed by h (3%). These are organized by frequen-
cy into a “rule chain.”

Rule rank RHS Context Frequency
1 K _ 65.1%

2 TH _i 23.6%

3 TH _e 8.5%

4 CH _h 2.8%
If desired, rules 2 and 3 in this example can be
condensed into 'c' → TH /_{i,e}, but in general are
left separated for sake of simplicity.

In our variant, before adding a new rule all pos-
sible contexts of all lengths are considered when
selecting the best one. Thus the rule chains do not
obey a strict order of expanding windows, though
shorter contexts generally precede longer ones in
the rule chains.

One limitation of our representation is that it
does not support gaps in the letter context. Consid-
er the word pairs tom/tome, top/tope, tot/tote. A
CART tree can represent this pattern with the rule:
if (c-1 = 't' and c0='o' and c2='e') then ph=OW. In prac-
tice, the inability to skip letters is not a handicap.

3.1 Multiple Pronunciation Predictions

Given a word, finding the predicted pronunciation
is easy. Rule chains are indexed by the letter to be
predicted, and possible contexts are scanned start-
ing from the most specific until a match is found.
Continuing our example, the first letter in the
Spanish word ciento fails rule 4, fails rule 3, then
matches rule 2 to yield TH. For additional pronun-
ciations the search continues until another match is
found: here, the default rule 'c' → K /_. This proce-
dure is akin to predicting from progressively
smoother models. In a complex language such as
English, a ten letter word can readily generate
dozens of alternate pronunciations, necessitating
an ordering policy to keep the total manageable.

4 Language Characterization

English is notorious for having a highly irregular
spelling system. Conversely, Spanish is admired
for its simplicity. Most others lie somewhere in be-
tween. To estimate how many words need to be

seen in order to acquire 90% coverage of a lan-
guage's LTS rules, it helps to have a quantitative
measure. In this section we offer a perplexity-
based measure of LTS regularity and present mea-
surements of several languages with varying cor-
pus size. These measurements establish, surpris-
ingly, that a rule system's perplexity increases
without bound as the number of training words in-
creases. This holds true whether the language is
simple or complex. In response, we resort to a
heuristic measure for positioning languages on a
scale of relative difficulty.

4.1 A Test Suite of Seven Languages

Our test suite consists of pronunciation dictionar-
ies from seven languages, with English considered
under two manifestations.

English. Version 0.6d of CMU-DICT, consid-
ered without stress (39 phones) and with two level
stress marking (58 phones). German. The Celex
dictionary of 321k entries (Burnage, 1990). Dutch.
The Fonilex dictionary of 218k entries (Mertens
and Vercammen, 1998). Fonilex defines an ab-
stract phonological level from which specific di-
alects are specified. We tested on the “standard”
dialect. Afrikaans. A 37k dictionary developed lo-
cally. Afrikaans is a language of South Africa and
is a recent derivative of Dutch. Italian. A 410k
dictionary distributed as part of a free Festival-
based Italian synthesizer (Cosi, 2000). Spanish.
Generated by applying a set of hand written rules
to a 52k lexicon. The LTS rules are a part of the
standard Festival Spanish distribution. Telugu. An
8k locally developed dictionary. In its native or-
thography, this language of India possess a highly
regular syllabic writing system. We've adopted a
version of the Itrans-3 transliteration scheme
(Kishore 2003) in which sequences of two to four
English letters map onto Telugu phonemes.

4.2 Perplexity as a Measure of Difficulty

A useful way of considering letter to sound pro-
duction is as a Markov process in which the gener-
ator passes through a sequence of states (letters),
each probabilistically emitting observation sym-
bols (phonemes) before transitioning to the next
state (following letter). For a letter c, the unpre-
dictability of phoneme emission is its entropy
H c=−∑  pi log pi or equivalently its perplexity
P c=eH c . The perplexity can be interpreted as

234

the average number of output symbols generated
by a letter. The production perplexity of the char-
acter set is the sum of each individual letter's per-
plexity weighted by its unigram probability pc.

 (1)

Continuing with our Spanish example, the letter 'c'
emits the observation symbols (K, TH, CH) with a
probability distribution of (.651, .321, .028), for a
perplexity of 2.105. This computation applies
when each letter is assigned a single probabilistic
state. The process of LTS rule discovery effective-
ly splits the state 'c' into four context-defined sub-
states: (-,c,-), (-,c,i), (-,c,e), (-,c,h). Each of these
states emits only a single symbol. Rule addition is
therefore an entropy reduction process; when the
rule set is complete the letter-to-sound system has
a perplexity of 1, i.e. it is perfectly predictable.

The “price paid” for perfect predictability is a
complex set of rule chains. To measure rule com-
plexity we again associate a single state with each
letter. But, instead of phonemes, the rules are the
emission symbols. Thus the letter 'c' emits the
symbols (K/_, TH/_i, TH/_e, CH/_h) with a distri-
bution of (.651, .236, .085, .028), for a perplexity
of 2.534. Applying equation (1) to the full set of
rules defines the LTS system's average perplexity.

4.3 Empirical Measurements

In the Default & Refine representation, the rule
chain for each letter is is initialized with its most
probably production. Additional context-depen-
dent rules are appended to cover additional letter
productions, with the rule offering the greatest in-
cremental coverage being added first. (Ties are
broken in an implementation-dependent way.)

Figure 1 uses Spanish to illustrate a characteris-
tic pattern: the increase in coverage as rules are
added one at a time. Since the figure of merit is
letter-based, the upper curve (% letters correct) in-
creases monotonically, while the middle curve (%
words correct) can plateau or decrease briefly.

In the lower curve of Figure 1 the growth proce-
dure is constrained such that all width 1 rules are
added before width 2 rules, which in turn must be
exhausted before width 3 rules are considered.
This constraint leads to its distinctive scalloped
shape. The upper limit of the W=1 region shows
the performance of the unaided default rules (68%
words correct).

Figure 1. Coverage of Spanish (52k corpus) as a
function of rule size. For the lower curve, W indi-
cates the rule context window width. The middle
(blue) curve tracks near-optimal performance im-
provement with the introduction of new rules.

For more complex languages the majority of rules
have a context width in the range of 3 to 6. This is
seen in Figure 2 for English, Dutch, Afrikaans, and
Italian. However, a larger rule set does not mean
that the average context width is greater. In Table
2, below, compare Italian to Dutch.

Language Number of Rules Average Width
English 40k 19231 5.06

Dutch 40k 10071 4.35

Afrikaans 37k 5993 4.66

Italian 40k 3385 4.78

Spanish 52k 76 1.66
Table 2. Number of LTS rules for five language
and their average context width.

Figure 2. Distribution of LTS rules by context
window width for four languages: English, Dutch,
Afrikaans, and Italian.

Perave=∑
c

pc e
−∑

i
pi log pi

Window Width

2 4 6 8 10

N
u
m

b
e
r

o
f
R
u
le

s

0

1000

2000

3000

4000

5000

6000
LTS Rule Count vs Window Width

Legend

English 40k
Dutch 40k
Afrikaans 37k
Italian 40k

Legend

Chars Correct
Words Correct
Words Correct

Number of Rules

0 10 20 30 40 50 60

P
e
rc

e
n
t

C
o
rr

ec
t

0

20

40

60

80

100
Spanish LTS Ruleset Performance

W=3W=2W=1

235

Beyond a window width of 7, rule growth tapers
off considerably. In this region most new rules
serve to identify particular words of irregular
spelling, as it is uncommon for long rules to gener-
alize beyond a single instance. Thus when training
a smoothed LTS rule system it is fair to ignore
contexts larger than 7, as is done for example in
the Festival synthesis system (Black, 1998).

Figure 2 contrasts four languages with training
data of around 40k words, but says nothing of how
rule sets grow as the corpus size increases. Figure
3 summarizes measurements taken on eight encod-
ings of seven languages (English twice, with and
without stress marking), tested from a range of 100
words to over 100,000. Words were subsampled
from each alphabetized lexicon at equal spacings.
The results are interesting, and for us, unexpected.

Figure 3. Rule system growth as the corpus size is
increased, for seven languages. From top to bot-
tom: English (twice), Dutch, German, Afrikaans,
Italian, Telugu, Spanish. The Telugu lexicon uses
an Itrans-3 encoding into roman characters, not the
native script, which is a nearly perfect syllabic
transcription. The context window has a maximum
width of 9 in these experiments.

Within this experimental range none of the lan-
guages reach an asymptotic limit, though some
hint at slowed growth near the upper end. A
straight line on a log-log graph is characteristic of
geometric growth, to which a power law function
y=axb+c is an appropriate parametric fit. For diffi-
cult languages the growth rates (power exponent
b) vary between 0.5 and 0.9, as summarized in Ta-
ble 3. The language with the fastest growth is En-
glish, followed, not by Dutch, but Italian. Italian is
nonetheless the simpler of these two, as indicated
by the smaller multiplicative factor a.

Language a b
English (stressed) 2.97 0.88

English (plain) 3.27 0.85

Dutch 12.6 0.64

German 39.86 0.49

 Afrikaans 15.34 0.57

Italian 2.16 0.69
Table 3. Parameters a and b for the power law fit
y=axb+c to the growth of LTS system size.

It would be good if a tight ceiling could be estimat-
ed from partial data in order to know (and report to
the lexicon builder) that with n rules defined the
system is m percent complete. However, this trend
of geometric growth suggests that asking “how
many letter-to-sound rules does a given language
have?” is an ill-posed question.

In light of this, two questions are worth asking.
First, is the geometric trend particular to our rule
representation? And second, is “total number of
rules” the right measure of LTS complexity? To
answer the first question we repeated the experi-
ments with the CART tree builder available from
the Festival speech synthesis toolkit. As it turns
out – see Table 4 – a comparison of contextual
rules and node counts for Italian demonstrate that
a CART tree representation also exhibits geometric
growth with respect to lexicon size.

Num Words
in Lexicon

Contextual
LTS Rules

CART Tree
Nodes

100 80 145
250 131 272
500 198 399

1000 283 601
2500 506 1169
5000 821 1888

10,000 1306 2840
20,000 2109 4642
40,000 3385 7582
80,000 5524 13206

Table 4. A comparison of rule system growth for
Italian as the corpus size is increased. CART tree
nodes (i.e. questions) are the element comparable
to LTS rules used in letter context chains. The fit-
ted parameters to the CART data are a=2.29 and
b=0.765. This compares to a=2.16 and b=0.69.

Num Words in Lexicon

100 1000 10000 100000

N
u
m

 L
T
S
 R

u
le

s

100

1000

10000

LTS Rules vs. Lexicon Size
Legend

English (w/stress)
English (no stress)
Dutch
German
Afrikaans
Italian
Telugu (itrans-3)
Spanish

236

If geometric growth and lack of an obvious asymp-
tote is not particular to expanding context rule
chains, then what of the measure? The measure
proposed in Section 4.2 is average chain perplexi-
ty. The hypothesis is that a system close to satura-
tion will still add new rules, but that the average
perplexity levels off. Instead, the data shows little
sign of saturation (Figure 4). In contrast, the aver-
age perplexity of the letter-to-phoneme distribu-
tions remains level with corpus size (Figure 5).

Figure 4. Growth of average rule perplexity as a
function of lexicon size. Except for Spanish and
Telugu, the average rule system perplexity not
only grows, but grows at an accelerating rate.

Figure 5. Growth of average letter-to-phoneme
production perplexity as a function of lexicon size.

Considering these observations we've resorted to
the following heuristic to measure language com-
plexity: a) fix the window width to 5, b) measure
the average rule perplexity at lexicon sizes of 10k,
20k, and 40k, then c) take the average of these
three values. Fixing the window width to 5 is
somewhat arbitrary, but is intended to prevent the
system from learning an unbounded suite of excep-
tions. Available values are contained in Table 5.

Language Ave Letter
Perplexity

Heuristic
Perplexity

Perplexity
Ratio

English 3.25 50.11 15.42

Dutch 2.73 16.80 6.15

German 2.41 16.70 6.93

Afrikaans 2.32 11.48 8.32

Italian 1.38 3.52 2.55

Spanish 1.16 1.21 1.04
 Table 5. Perplexity measures for six languages.
The third (rightmost) column is the ratio of the
second divided by the first. A purely phonetic sys-
tem has a heuristic perplexity of one.

From these measurements we conclude, for exam-
ple, that Dutch and German are equally difficult,
that English is 3 times more complex than either of
these, and that English is 40 times more complex
than Spanish.

5 Word Selection Strategies

A selection strategy is a method for choosing an
ordered list of words from a lexicon. It may be
based on an estimate of expected maximum return,
or be as simple as random selection. A good strate-
gy should enable rapid learning, avoid repetition,
be robust, and not overtax the human verifier.

This section compares competing selection
strategies on a single lexicon. We've chosen a 10k
Italian lexicon as a problem of intermediate diffi-
culty, and focus on early stage learning. To pro-
vide a useful frame of reference, Figure 6 shows
the results of running 5000 experiments in which
the word sequence has been chosen randomly. The
x-axis is number of letters examined.

Figure 6. Random sampling of Italian 10k corpus.

Legend

English (w/stress)
English (no stress)
Dutch
German
Afrikaans
Italian
Telugu
Spanish

Num Words in Lexicon

100 1000 10000 100000

LT
S
 R

u
le

 P
e
rp

le
x
it
y

0.0

5.0

10.0

15.0

20.0

25.0

30.0
LTS Rule Perplexity vs Lexicon Size

Legend

English (no stress)
Dutch
German
Afrikaans
Italian
Telugu (itrans)
Spanish

37k4k

170k1k

Ave Productions per Letter

0 2 4 6 8 10 12

A
v
e
 P

ro
d
u
ct

io
n
 P

e
rp

le
x
it
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Letter to Phoneme Perplexity

Spanish

Iraqi

Phonetic alphabet

1k 40k

80k
Telugu

Italian

Num Letters Examined

0 1000 2000 3000 4000 5000 6000

W
o
rd

s
C
o
rr

e
ct

 (
%

)

10

20

30

40

50

60

70

80
Word Accuracy, Random Selection

Italian, 10k dict, maxwin=5

237

Figure 7 compares average random performance to
four deterministic strategies. They are: alphabeti-
cal word ordering, reverse alphabetical, alphabeti-
cal sorted by word length (groups of single charac-
ter words first, followed by two character words,
etc.), and a greedy ngram search. Of the first three,
reverse alphabetical performs best because it intro-
duces a greater variety of ngrams more quickly
than the others. Yet, all of these three are substan-
tially worse than random. Notice that grouping
words from short to long degrades performance.
This implies that strategies tuned to the needs of
humans will incur a machine learning penalty.

Figure 7. Comparison of three simple word order-
ings to the average random curve, as well as
greedy ngram search.

It might be expected that selecting words contain-
ing the most popular ngrams first would out-per-
forms random, but as is seen in Figure 7, greedy
selection closely tracks the random curve. This
leads us to investigate active leaning algorithms,
which we treat as variants of ngram selection.

5.1 Algorithm Description

Let W = {w1,w2,...} be the lexicon word set, having A =
{'a', 'b',...} as the alphabet of letters. We seek an ordered
list V = (... wi ...) s.t. score(wi) ≥ score (wi+1). V is initial-
ly empty and is extended one word at a time with wb, the
“best” new word. Let g=c1c2...cn ` A* be an ngram of
length n, and Gw={gi}, gi ` w are all the ngrams found in
word w. Then GW = 5 Gw, w ` W, is the set of all
ngrams in the lexicon W, and GV = 5 Gw, w ` Vis the set
of all ngrams in the selected word list V. The number of
occurrences of g in W is score(g), while score(w) = ∑
score(g) st. g ` w and g v GV. The scored ngrams are
segmented into separately sorted lists, forming an or-
dered list of queues Q = (q1,q2,...qN) where qn contains
ngram of length n and only n.

Algorithm
for q in Q

g = pop(q)
for L = 1 to |longest word in W|

Wg,L = {wi} s.t. |wi| = L, g ` wi and wi v V
wb = argmax score(Wg,L)
if score (wb) > 0 then

V = V + wb

GV = GV 4 Gwb

return wb

In this search the outer loop orders ngrams by length,
while the inner loop orders words by length. For selec-
tion based on ngram coverage, the queue Q is computed
only once for the given lexicon W. In our active learner,
Q is re-evaluated after each word is selected, based on
the ngrams present in the current LTS rule contexts. Let
GLTS = {gi} s.t. gi ` some letter context in the LTS rules.
Initially GLTS,0 = {}. Then, at any iteration k, GLTS,k are
the ngrams present in the rules, and G'LTS,k+1 is an ex-
panded set of candidate ngrams that constitute the ele-
ments of Q. G' is formed by prepending each letter c of
A to each g in G, plus appending each c to g. That is,
G'LTS,k+1 = A%GLTS,k 4 GLTS,k%A where % is the Cartesian
product. Executing the algorithm returns wb and yields
GLTS,k+1 the set of ngrams covered by the expanded rule
set. In this way knowledge of the current LTS rules
guides the search for maximally informative new words.

5.2 Active Learner Performance

Figure 8 displays the performance of our active
learner on the Italian 10k corpus, shown as the
blue curve. For the first 500 characters encoun-
tered, the active learner's performance is almost
everywhere better than average random, typically
one half to one standard deviation above this refer-
ence level.

Two other references are shown. Immediately
above the active learner curve is “Oracle” word se-
lection. The Oracle has access to the final LTS sys-
tem and selects words that maximally increases
coverage of the known rules. The topmost curve is
for a “Perfect Oracle.” This represents an even
more unrealistic situation in which each letter of
each word carries with it information about the
corresponding production rule. For example, that
'g' yields /F/ 10% of the time, when followed by
the letter 'h' (as in “laugh”) . Carrying complete in-
formation with each letter allows the LTS system
to be constructed directly and without mistake. In
contrast, the non-perfect oracle makes mistakes
sequencing rules in each letter's rule chain. This
decreases performance.

Italian, 10k dict, maxwin=5

Num Letters Examined

0 1000 2000 3000 4000 5000 6000

W
o
rd

s
C
o
rr

e
ct

 (
%

)

10

20

30

40

50

60

70

80
Word Accuracy, Simple Strategies

Legend

Average random
n-gram coverage
Reverse alphabetic
Alphabetic order
Length, alpha order

238

Figure 8. From top to bottom: a perfect Oracle, a
word selection Oracle, our active learner, and av-
erage random performance. The perfect Oracle de-
marcates (impossibly high) optimal performance,
while Oracle word selection suggests near-opti-
mality. For comparison, standard deviation error
bars are added to the random curve.

Encouragingly, the active learning algorithm strad-
dles the range in between average random (the
baseline) and Oracle word selection (near-optimal-
ity). Less favorable is the non-monotonicity of the
performance curve; for example, when the number
of letters examined is 135, and 210. Analysis
shows that these drops occur when a new letter-to-
sound production is encountered but more than
one context offers an equally likely explanation.
Faced with a tie, the LTS learner sometimes
chooses incorrectly. Not being aware of this mis-
take it does not seek out correcting words. Flat
plateaus occur when additional words (containing
the next most popular ngrams) do not contain pre-
viously unseen letter-to-sound productions.

6 Conclusions

While this work does not definitively answer the
question of “how may words to learn the rules,”
we have developed ways of characterizing lan-
guage complexity, which can guide developers.
We've devised a word selection strategy that ap-
pears to perform better than the (surprisingly high)
standard set by randomly selection. Further im-
provements are possible by incorporating knowl-
edge of word alignment and rule sequencing er-
rors. By design, our strategy is biased towards
short words over long, thereby being “nice” to lex-
icon developers – our original objective.

Acknowledgments
This material is in part based upon work supported by

the National Science Foundation under Grant No.
0415201. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
Peter Auer, 2000. Using upper confidence bounds for

online learning. Proceedings of the 41st Annual Sym-
posium on Foundations of Computer Science, pp.

Alan W Black, Kevin Lenzo, and Vincent Pagel, 1998.
Issues in Building General Letter to Sound Rules. 3rd
ESCA Workshop on Speech Synthesis, Australia.

Gavin Burnage, 1990. CELEX – A Guide for Users. Hi-
jmegen: Centre for Lexical Information, University of
Nijmegen.

Piero Cosi, Roberto Gretter, Fabio Tesser, 2000. Festi-
val parla italiano. Proceedings of GFS2000, Gior-
nate del Gruppo di Fonetica Sperimentale, Padova.

Marelie Davel and Etienne Barnard, 2003. Bootstrap-
ping in Language Resource Generation. Proceedings
of the 14th Symposium of the Pattern Recognition As-
sociation of South Africa, pp. 97-100.

Marelie Davel and Etienne Barnard, 2004. A default-
and-refine approach to pronunciation prediction,
Proceedings of the 15th Symposium of the Pattern
Recognition Association of South Africa.

Marelie Davel and Etienne Barnard, 2005. Bootstrap-
ping Pronunciation Dictionaries: Practical Issues.
Proceedings of the 9th International Conference on
Spoken Language Processing, Lisbon, Portugal.

Herman Engelbrecht, Tanja Schultz, 2005. Rapid De-
velopment of an Afrikaans-English Speech-to-Speech
Translator, International Workshop on Spoken Lan-
guage Translation, Pittsburgh, PA. pp.169-176.

S P Kishore and Alan W Black, 2003. Unit Size in Unit
Selection Speech Synthesis. Proceedings of the 8th Eu-
ropean Conference on Spoken Language Processing,
Geneva, Switzerland.

Alon Lavie, et al. 2003. Experiments with a Hindi-to-
English Transfer-based MT System under a Miserly
Data Scenario, ACM Transactions on Asian Lan-
guage Information Processing, 2(2).

Piet Mertens and Filip Vercammen, 1998. Fonilex Man-
ual, Technical Report, K. U. Leuven CCL.

John Wells and Jill House, 1995. Sounds of the IPA.
http://www.phon.ucl.ac.uk/shop/soundsipa.php.

Italian, 10k dict, maxwin=5

Legend

Perfect Oracle
Oracle word selection
Active learner
Averge random

Num Letters Examined

0 100 200 300 400 500

W
o
rd

s
C
or

re
ct

 (
%

)

0

20

40

60

80

100
Word Accuracy, Active Learner

239

