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Abstract 

This paper investigates the feasibility of 
automated scoring of spoken English 
proficiency of non-native speakers. 
Unlike existing automated assessments 
of spoken English, our data consists of 
spontaneous spoken responses to 
complex test items. We perform both a 
quantitative and a qualitative analysis of 
these features using two different 
machine learning approaches. (1)  We 
use support vector machines to produce 
a score and evaluate it with respect to a 
mode  baseline and to human rater 
agreement. We find that scoring based 
on support vector machines yields 
accuracies approaching inter-rater 
agreement in some cases. (2) We use 
classification and regression trees  to 
understand the role of different features 
and feature classes in the 
characterization of speaking proficiency 
by human scorers. Our analysis shows 
that across all the test items most or all 
the feature classes are used in the nodes 
of the trees suggesting that the scores 
are, appropriately, a combination of 
multiple components of speaking 
proficiency. Future research will 
concentrate on extending the set of 
features and introducing new feature 
classes to arrive at a scoring model that 
comprises additional relevant aspects of 
speaking proficiency. 

1 Introduction 

While automated scoring of open-ended written 
discourse has been approached by several 

groups recently (Rudner & Gagne, 2001; Sher-
mis & Burstein, 2003), automated scoring of 
spontaneous spoken language  has proven to be 
more challenging and complex. Spoken lan-
guage tests are still mostly scored by human rat-
ers.  However, several systems exist that score 
different aspects of spoken language; (Bernstein, 
1999; C. Cucchiarini, H. Strik, & L. Boves, 
1997a; Franco et al., 2000).  Our work departs 
from previous research in that our goal is to 
study the feasibility of automating scoring for 
spontaneous speech, that is, when the spoken 
text is not known in advance.  

We approach scoring here as the characteri-
zation of a speaker’s oral proficiency based on 
features that can be extracted from a spoken re-
sponse to a well defined test question by means 
of automatic speech recognition (ASR).   We 
further approach scoring as the construction of a 
mapping from a set of features to a score scale, 
in our case five discrete scores from 1 (least pro-
ficient) to 5 (most proficient).  The set of fea-
tures and the specific mapping are motivated by 
the concept of communicative competence 
(Bachman, 1990; Canale & Swain, 1980; 
Hymes, 1972). This means that the features in 
the scoring system we are developing are meant 
to characterize specific components of commu-
nicative competence, such as mastery of pronun-
ciation, fluency, prosodic, lexical, grammatical 
and pragmatical subskills. The selection of fea-
tures is guided by an understanding of the nature 
of speaking proficiency.   We rely on the scoring 
behavior of judges to evaluate the features (sec-
tion 8) as well as a convenient criterion for 
evaluating the feasibility of automated scoring 
based on those features (section 7).  That is, the 
role of human scorers in this context is to pro-
vide a standard for system evaluations (see sec-
tion 7), as well as to validate specific features 
and feature classes chosen by the authors (sec-
tion 8). We use support vector machines (SVMs) 
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to determine how well the features recover hu-
man scores. We collect performance data under 
three different conditions, where features are 
either based on actual recognizer output or on 
forced alignment. (Forced alignment describes a 
procedure in speech recognition where the rec-
ognizer is looking for the most likely path 
through the Hidden Markov Models given a 
transcription of the speech file by an experi-
enced transcriber. This helps, e.g., in finding 
start and end times of words or phonemes.)  We 
then use classification and regression trees 
(CART) as a means to evaluate the relative im-
portance and salience of our features. When the 
classification criterion is a human score, as is the 
case in this study, an inspection of the CART 
tree can give us insights into the feature prefer-
ences a human judge might have in deciding on 
a score.  

The organization of this paper is as follows: 
first, we discuss related work in spoken lan-
guage scoring. Next, we introduce the data of 
our study and the speech recognizer used. In 
section 5 we describe features we used for this 
study. Section 6 describes the agreement among 
raters for this data. Section 7 describes the SVM 
analysis, section 8 the CART analysis.  This is 
followed by a discussion and then finally by 
conclusions and an outlook on future work. 

2 Related work 

There has been previous work to characterize 
aspects of communicative competence such as 
fluency, pronunciation, and prosody.   (Franco et 
al., 2000) present a system for automatic evalua-
tion of pronunciation performance on a phone 
level and a sentence level of native and non-
native speakers of English and other languages 
(EduSpeak). Candidates read English text and a 
forced alignment between the speech signal and 
the ideal path through the Hidden Markov 
Model (HMM) was computed. Next, the log 
posterior probabilities for pronouncing a certain 
phone at a certain position in the signal were 
computed to achieve a local pronunciation score. 
These scores are then combined with other 
automatically derived measures such as the rate 
of speech (number of words per second) or the 
duration of phonemes to yield global scores. 

(C. Cucchiarini, S. Strik, & L. Boves, 
1997b)) and (Cucchiarini et al., 1997a)) describe 
a system for Dutch pronunciation scoring along 
similar lines. Their feature set, however, is more 
extensive and contains, in addition to log likeli-
hood Hidden Markov Model scores, various du-
ration scores, and information on pauses, word 
stress, syllable structure, and intonation. In an 
evaluation, they find good agreement between 
human scores and machine scores. 

(Bernstein, 1999)) presents a test for spo-
ken English (SET-10) that has the following 
types of items: reading, repetition, fill-in-the-
blank, opposites and open-ended answers. All 
types except for the last are scored automatically 
and a score is reported that can be interpreted as 
an indicator of how native-like a speaker’s 
speech is. In (Bernstein, DeJong, Pisoni, & 
Townshend, 2000), an experiment is performed 
to establish the generalizability of the SET-10 
test.  It is shown that this test’s output can suc-
cessfully be mapped to the Council of Europe’s 
Framework for describing second language pro-
ficiency (North, 2000). This paper further re-
ports on studies done to correlate the SET-10 
with two other tests of English proficiency, 
which are scored by humans and where commu-
nicative competence is tested for. Correlations 
were found to be between 0.73 and 0.88.  

3 Data 

The data we are using for the experiments 
in this paper comes from a 2002 trial administra-
tion of TOEFLiBT® (Test Of English as a For-
eign Language—internet-Based Test) for non-
native speakers (LanguEdge ™).  Item responses 
were transcribed from the digital recording of 
each response. In all there are 927 responses 
from 171 speakers.  Of these, 798 recordings 
were from one of five main test items, identified 
as P-A, P-C, P-T, P-E and P-W.  The remaining 
129 responses were from other questions.  As 
reported below, we use all 927 responses in the 
adaptation of the speech recognizer but the SVM 
and CART analyses are based on the 798 re-
sponses to the five test items. Of the five test 
items, three are independent tasks (P-A, P-C, P-
T) where candidates have to talk freely about a 
certain topic for 60 seconds. An example might 
be “Tell me about your favorite teacher.” Two of 
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the test items are integrated tasks (P-E, P-W) 
where candidates first read or listen to some ma-
terial to which they then have to relate in their 
responses (90 seconds speaking time). An ex-
ample might be that the candidates listen to a 
conversational argument about studying at home 
vs. studying abroad and then are asked to sum-
marize the advantages and disadvantages of both 
points of view. 

The textual transcription of our data set con-
tains about 123,000 words and the audio files are 
in WAV format and recorded with a sampling 
rate of 11025Hz and a resolution of 8 bit. 

For the purpose of adaptation of the speech 
recognizer, we split the full data (927 re-
cordings) into a training (596) and a test set (331 
recordings).   For the CART and SVM analyses 
we have 511 files in the train and 287 files in 
the eval set, summing up to 798. (Both data sets 
are subsets from the ASR adaptation training 
and test sets, respectively.)  The transcriptions of 
the audio files were done according to a tran-
scription manual derived from the German 
VerbMobil project (Burger, 1995). A wide vari-
ety of disfluencies are accounted for, such as, 
e.g., false starts, repetitions, fillers, or incom-
plete words.  One single annotator transcribed 
the complete corpus; for the purpose of testing 
inter-coder agreement, a second annotator tran-
scribed about 100 audio files, which were ran-
domly selected from the complete set of 927 
files. The disagreement between annotators, 
measured as word error rate (WER = (substitu-
tions + deletions + insertions) / (substitutions + 
deletions + correct)) was slightly above 20% 
(only lexical entries were measured here). This 
is markedly more disagreement than in other 
corpora, e.g., in SwitchBoard (Meteer & al., 
1995) where disagreements in the order of 5% 
are reported, but we have non-native speech 
from speakers at different levels of proficiency 
which is more challenging to transcribe. 

4 Speech recognition system 

Our speech recognizer is a gender-independent 
Hidden Markov Model system that was trained 

on 200 hours of dictation data by native speakers 
of English. 32 cepstral coefficients are used; the 
dictionary has about 30,000 entries. The sam-
pling rate of the recognizer is 16000Hz as op-
posed to 11025Hz for the LanguEdge™ corpus. 
The recognizer can accommodate this difference 
internally by up-sampling the input data stream.  

As our speech recognition system was 
trained on data quite different from our applica-
tion (dictation vs. spontaneous speech and native 
vs. non-native speakers) we adapted the system 
to the LanguEdge ™ corpus.  We were able to 
increase word accuracy on the unseen test set 
from 15% before adaptation to 33% in the fully 
adapted model (both acoustic and language 
model adaptation).  

5 Features 

Our feature set, partly inspired by (Cucchiarini 
et al., 1997a), focuses on low-level fluency fea-
tures, but also includes some features related to 
lexical sophistication and to content. The feature 
set also stems, in part, from the written guide-
lines used by human raters for scoring this data. 
The features can be categorized as follows: (1) 
Length measures, (2) lexical sophistication 
measures, (3) fluency measures, (4) rate meas-
ures, and (5) content measures. Table 1 renders a 
complete list of the features we computed, along 
with a brief explanation.  We do not claim these 
features to provide a full characterization of 
communicative competence; they should be seen 
as a first step in this direction.  The goal of the 
research is to gradually build such a set of fea-
tures to eventually achieve as large a coverage 
of communicative competence as possible.  The 
features are computed based on the output of the 
recognition engine based on either forced align-
ment or on actual recognition. The output con-
sists of (a) start and end time of every token and 
hence potential silence in between (used for 
most features); (b) identity of filler words (for 
disfluency-related features); and (c) word iden-
tity (for content features). 
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Lexical counts and length measures 
Segdur Total duration in seconds of all the utterances 
Numutt Number of utterances in the response 
Numwds Total number of word forms in the speech sample  
Numdff Number of disfluencies (fillers) 
Numtok Number of tokens = Numwds+Numdff 
Lexical sophistication  
Types Number of unique word forms in the speech sample 
Ttratio Ratio Types/Numtok (type-token ratio, TTR)  
Fluency measures 
(based on pause information) 
Numsil Number of silences, excluding silences between utterances  
Silpwd Ratio Numsil/Numwds 
Silmean  Mean duration in seconds of all silences in a response to a test item 
Silstddv Standard deviation of silence duration 

Rate measures  
Wpsec Number of words per second 
Dpsec. Number of disfluencies per second 
Tpsec Number of types per second 
Silpsec. Number of silences per second 
Content measures We first compute test-item-specific word vectors with the frequency 

counts of all words occurring in the train set for each test item 
(wvec_testitem). Then we generate for every item response a word 
vector in kind (wvec_response) and finally compute the inner prod-
uct to yield a similarity score:  
sim = wvec_testitem*wvec_response 

Cvfull  wvec_testitem*wvec_response 
6 other Cv*-features As Cvfull but measure similarity to a subset of wvec_testitem, based 

on the scores in the train set (e.g., “all responses with score 1”) 
Cvlennorm Length-normalized Cvfull: Cvfull/Numwds  

Table 1: List of features with definitions. 
 

6 Inter-rater agreement 

The training and scoring procedures followed 
standard practices in large scale testing.  Scorers 
are trained to apply the scoring standards that 
have been previously agreed upon by the devel-
opers of the test.  The training takes the form of 
discussing multiple instances of responses at 
each score level. The scoring of the responses 
used for training other raters is done by more 
experienced scorers working closely with the 
designers of the test.   

All the 927 speaking samples (see section 3) 
were rated once by one of several expert raters, 
which we call Rater1. A second rating was ob-
tained for approximately one half (454) of the 
speaking samples, which we call Rater2.  We 

computed the exact agreement for all Rater1-
Rater2 pairs for all five test items and report the 
results in the last column of Table 2. Overall, the 
exact agreement was about 49% and the kappa 
coefficient 0.34.  These are rather low numbers 
and certainly demonstrate the difficulty of the 
rating task for humans. Inter-rater agreement for 
integrated tasks is lower than for independent 
tasks.  We conjecture that this is related to the 
dual nature of scoring integrated tasks: for one, 
the communicative competence per se needs to 
be assessed, but on the other hand so does the 
correct interpretation of the written or auditory 
stimulus material. The low agreement in general 
is also understandable since the number of fea-
ture dimensions that have to be mentally inte-
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grated pose a significant cognitive load for 
judges.1   

7 SVM models 

As we have mentioned earlier, the rationale be-
hind using support vector machines for score 
prediction is to yield a quantitative analysis of 
how well our features would work in an actual 
scoring system, measured against human expert 
raters. The choice of the particular classifier be-
ing SVMs was due to their superior performance 
in many machine learning tasks. 

7.1 Support vector machines 

Support vector machines (SVMs) were in-
troduced by (Vapnik, 1995) as an instantiation 
of his approach to model regularization. They 
attempt to solve a multivariate discrete classifi-
cation problem where an n-dimensional hyper-
plane separates the input vectors into, in the 
simplest case, two distinct classes. The optimal 
hyperplane is selected to minimize the classifi-
cation error on the training data, while maintain-
ing a maximally large margin (the distance of 
any point from the separating hyperplane). 

 

                                                           
1 Inter-human agreement rates for written language, such as 
essays, are significantly higher, around 70-80% with a 5-
point scale (Y.Attali, personal communication). More re-
cently we observed agreement rates of about 60% for spo-
ken test items, but here a 4-point scale was used. 

7.2 Experiments 

We built five SVM models based on the 
train data, one for each of the five test items. 
Each model has two versions: (a) based on 
forced alignment with the true reference, repre-
senting the case with 100% word accuracy 
(align), and (b) based on the actual recognition 
output hypotheses (hypo). The SVM models 
were tested on the eval data set and there were 
three test conditions: (1) both training and test 
conditions derived from forced alignment (align-
align); (2) models trained on forced alignment 
and evaluated based on actual recognition hy-
potheses (align-hypo; this represented the realis-
tic situation that while human transcriptions are 
made for the training set, they would turn out to 
be too costly when the system is running con-
tinuously); and (3) both training and evaluation 
are based on ASR output in recognition mode 
(hypo-hypo). 

We identified the best models by running a 
set of SVMs with varying cost factors, ranging 
from 0.01 to 15, and three different kernels: ra-
dial basis function, and polynomial, of second 
degree and of third degree. We selected the best 
performing models measured on the train set 
and report results with these models on the eval 
set. The cost factor for all three configurations 
varied between 5 and 15 among the five test 
items, and as best kernel we found the radial 
basis function in almost all cases, except for 
some polynomial kernels in the hypo-hypo con-
figuration

 
 

Mode 
(% of 
eval 
set) 

Train : align 
Eval : align 
 

Train : align 
Eval : hypo 

Train : hypo 
Eval : hypo 

Human Rater 
Agreement (% 
of all pairs) 

P-A (ind) 34 40.7 33.9 35.9 53 
P-C (ind) 53 50.0 55.0 56.7 57 
P-T (ind) 38 43.4 18.9 37.7 54 
P-E (int) 25 42.1 26.3 47.4 43 
P-W (int) 29 34.5 20.7 39.7 42 

Table 2: Speech scoring:  Mode baseline, SVM performance on forced alignment and standard recogni-
tion data, and human agreement for all five test items (ind=independent task; int=integrated task). 
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7.3 Results 

Table 2 shows the results for the SVM analysis 
as well as a baseline measure of agreement and 
the inter rater agreement.    The baseline refers 
to the expected level of agreement with Rater1 
by simply assigning the mode of the distribution 
of scores for a given question, i.e., to always 
assign the most frequently occurring score on 
the train set.  Table 2 also reports the agreement 
between trained raters. As can be seen the hu-
man agreement is consistently higher than the 
mode agreement but the difference is less for the 
integrated questions suggesting that humans 
scorers found those questions more challenging 
to score consistently.   

The other 3 columns of Table 2 report the 
results for the perfect agreement between a score 
assigned by the SVM developed for that test 
question and Rater1 on the eval corpus, which 
was not used in the development of the SVM. 
We observe that for the align-align configura-
tion, accuracies are all clearly better than the 
mode baseline, except for P-C, which has an 
unusually skewed score distribution and there-
fore a rather high mode baseline.  In the align-
hypo case, where SVM models were built based 
on features derived from ASR forced alignment 
and where these models were tested using ASR 
output in recognition mode, we see a general 
drop in performance – again except for P-C – 
which is to be expected as the training and test 
data were derived in different ways.  Finally, in 
the hypo-hypo configuration, using ASR recog-
nition output for both training and testing, SVM 
models are, in comparison to the align-align 
models, improved for the two integrated tasks 
but not for the independent tasks, again except 
for P-C. The SVM classification accuracies for 
the integrated tasks are in the range of human 
scorer agreement, which indicates that a per-
formance ceiling may have been reached al-
ready. These results suggest that the recovery of 
scores is more feasible for integrated rather than 
independent tasks.  However, it is also the case 
that human scorers had more difficulty with the 
integrated tasks, as discussed in the previous 
section. 

The fact that the classification performance of 
the hypo-hypo models is not greatly lower than 

that of the align-align models, and in some cases 
even higher ---and that with the relatively low 
word accuracy of 33%---, leads to our conjecture 
that this could be due to the majority of features 
being based on measures which do not require a 
correct word identity such as measures of rate or 
pauses. 

In a recent study (Xi, Zechner, & Bejar, 2006) 
with a similar speech corpus we found that while 
the hypo-hypo models are better than the align-
align models when using features related to flu-
ency, the converse is true when using word-
based vocabulary features.  

8 CART models 

 
8.1 Classification and regression trees 
 
Classification and regression trees (CART trees)  
were introduced by (Breiman, Friedman, Ol-
shen, & Stone, 1984). The goal of a classifica-
tion tree is to classify the data such that the data 
in the terminal or classification nodes is as pure 
as possible meaning all the cases have the same 
true classification, in the present case a score 
provided by a human rater, the variable Rater1 
above.  At the top of the tree all the data is avail-
able and is split into two groups based on a split 
of one of the features available.  Each split is 
treated in the same manner until no further splits 
are possible, in which case a terminal node has 
been reached.  

8.2 Tree analysis 

For each of the five test items described above 
we estimated a classification tree using as inde-
pendent variables the features described in Table 
1 and as the dependent variable a human score.  
The trees were built on the train set. Table 3 
shows the distribution of features in the CART 
tree nodes of the five test items (rows) based on 
feature classes (columns).  For P-A, for exam-
ple, it can be seen that three of the feature 
classes have a count greater than 0.   The last 
column shows the number of classes appearing 
in the tree and the number of total features, in 
parentheses.  The P-A tree, for example has six 
features from three classes.  The last row sum-
marizes the number of test items that relied on a 
feature class and the number of features from 
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that class across all five test items, in parenthe-
sis.  For example, Rate and Length were present 
in every test item and lexical sophistication was 
present in all but one test item.   The table sug-
gests that across all test items there was good 
coverage of feature classes but length was espe-
cially well represented.  This is to be expected 
with a group heterogeneous in speaking profi-
ciency.  The length features often were used to 
classify students in the lower scores, that is, stu-
dents who could not manage to speak suffi-
ciently to be responsive to the test item.  

9 Discussion 

9.1 Speech recognition 

We successfully adapted an off-the-shelf speech 
recognition engine for the purpose of assessing 
spontaneous speaking proficiency.  By acoustic 
and language model adaptation, we were able to 
markedly increase our speech recognition en-
gine’s word accuracy, from initially 15% to 
eventually 33%.  Although a 33% recognition 
rate is not high by current standards, the hurdles 
to higher recognition are significant, including 
the fact that the recognizer’s acoustic model was 
originally trained on quite different data, and the 
fact that our data is based on highly accented 

speech from non-native speakers of English of a 
range of proficiencies, which are harder to rec-
ognize than native speakers. 

9.2 SVM and CART models 

Our goal in this research has been to develop 
models for automatically scoring communicative 
competence in non-native speakers of English. 
The approach we took is to compute features 
from ASR output that may eventually serve as 
indicators of communicative competence.  We 
evaluated those features (a) in quantitative re-
spect by using SVM models for score prediction 
and (b) in qualitative respect in terms of their 
roles in assigning scores based on a human crite-
rion by means of CART analyses. 

We found in the analysis of the SVM mod-
els that despite low word accuracy, with ASR 
recognition as a basis for training and testing, 
scores near inter-rater agreement levels can be 
reached for those items that include a listening 
or reading passage. When simulating perfect 
word accuracy (in the align-align configuration), 
4 of 5 test items achieve scoring accuracies 
above the mode baseline. These results are very 
encouraging in the light that we are continuing 
to add features to the models on various levels of 
speech proficiency. 

 
 

Test item Length Lexical  
sophistication 

Fluency Rate Content Total: 
# classes  
(# features) 

P-A 4 1 0 1 0 3 (6) 
P-C 4 0 1 1 1 4 (7) 
P-T 2 1 0 1 1 4 (5) 
P-E 1 1 2 1 1 5 (6) 
P-W 1 2 0 1 0 3 (4) 
Total # 
classes (# 
features) 

5 (12) 4 (5) 2 (3) 5 (5) 3 (3) 19 (28) 

Table 3: Distribution of features from the nodes of five CART trees (rows) into feature classes (columns). The “to-
tals” in the last colunmn and row count first the number of classes with at least one feature and then sums the fea-
tures (in parentheses).   
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CART trees have the advantage of being in-
spectable and interpretable (unlike, e.g., neural 
nets or support vector machines with non-linear 
kernels). It is easy to trace a path from the root 

of the tree to any leaf node and record the final 
decisions made along the way. We looked at the 
distribution of features in these CART tree 
nodes (Table 3) and

found that all the different categories of features 
were used by the set of trees. For all 5 test items, 
most classes occurred in the nodes of the respec-
tive CART trees (with a minimum of 3 out of 5 
classes).     

10 Conclusions and future work 

This paper is concerned with explorations into 
scoring spoken language test items of non-native 
speakers of English. We demonstrated that an ex-
tended feature set comprising features related to 
length, lexical sophistication, fluency, rate and 
content could be used to predict human scores in 
SVM models and to illuminate their distribution 
into five different classes by means of a CART 
analysis.  

An important step for future work will be to 
train the acoustic and language models of the 
speech recognizer directly from our corpus; we are 
additionally planning to use automatic speaker ad-
aptation and to evaluate its benefits. Furthermore 
we are aware that, maybe with the exception of the 
classes related to fluency, rate and length, our fea-
ture set is as of yet quite rudimentary and will need 
significant expansion in order to obtain a broader 
coverage of communicative competence.  

In summary, future work will focus on im-
proving speech recognition, and on significantly 
extending the feature sets in different categories. 
The eventual goal is to have a well-balanced multi-
component scoring system which can both rate 
non-native speech as closely as possible according 
to communicative criteria, as well as provide use-
ful feedback for the language learner. 
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