
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 184–191,
New York, June 2006.c©2006 Association for Computational Linguistics

Fully Parsing the Penn Treebank�

Ryan Gabbard Mitchell Marcus

Department of
Computer and Information Science

University of Pennsylvania
{gabbard,mitch}@cis.upenn.edu

Seth Kulick

Institute for Research in
Cognitive Science

University of Pennsylvania
skulick@cis.upenn.edu

Abstract

We present a two stage parser that recov-

ers Penn Treebank style syntactic analy-

ses of new sentences including skeletal

syntactic structure, and, for the first time,

both function tags and empty categories.

The accuracy of the first-stage parser on

the standard Parseval metric matches that

of the (Collins, 2003) parser on which it

is based, despite the data fragmentation

caused by the greatly enriched space of

possible node labels. This first stage si-

multaneously achieves near state-of-the-

art performance on recovering function

tags with minimal modifications to the un-

derlying parser, modifying less than ten

lines of code. The second stage achieves

state-of-the-art performance on the recov-

ery of empty categories by combining a

linguistically-informed architecture and a

rich feature set with the power of modern

machine learning methods.

1 Introduction

The trees in the Penn Treebank (Bies et al., 1995) are

annotated with a great deal of information to make

various aspects of the predicate-argument structure

easy to decode, including both function tags and

markers of “empty” categories that represent dis-

placed constituents. Modern statistical parsers such

as (Collins, 2003) and (Charniak, 2000) however ig-

nore much of this information and return only an

�We would like to thank Fernando Pereira, Dan Bikel, Tony
Kroch and Mark Liberman for helpful suggestions. This work
was supported in part under the GALE program of the Defense
Advanced Research Projects Agency, Contract No. HR0011-
06-C-0022, and in part by the National Science Foundation un-
der grants NSF IIS-0520798 and NSF EIA 02-05448 and under
an NSF graduate fellowship.

impoverished version of the trees. While there has

been some work in the last few years on enrich-

ing the output of state-of-the-art parsers that output

Penn Treebank-style trees with function tags (e.g.

(Blaheta, 2003)) or empty categories (e.g. (Johnson,

2002; Dienes and Dubey, 2003a; Dienes and Dubey,

2003b), only one system currently available, the de-

pendency graph parser of (Jijkoun and de Rijke,

2004), recovers some representation of both these

aspects of the Treebank representation; its output,

however, cannot be inverted to recover the original

tree structures. We present here a parser,1 the first

we know of, that recovers full Penn Treebank-style

trees. This parser uses a minimal modification of the

Collins parser to recover function tags, and then uses

this enriched output to achieve or better state-of-the-

art performance on recovering empty categories.

We focus here on Treebank-style output for two

reasons: First, annotators developing additional

treebanks in new genres of English that conform to

the Treebank II style book (Bies et al., 1995) must

currently add these additional annotations by hand, a

much more laborious process than correcting parser

output (the currently used method for annotating the

skeletal structure itself). Our new parser is now in

use in a new Treebank annotation effort. Second, the

accurate recovery of semantic structure from parser

output requires establishing the equivalent of the in-

formation encoded within these representations.

Our parser consists of two components. The first-

stage is a modification of Bikel’s implementation

(Bikel, 2004) of Collins’ Model 2 that recovers func-

tion tags while parsing. Remarkably little modifica-

tion to the parser is needed to allow it to produce

function tags as part of its output, yet without de-

creasing the regular Parseval metric. While it is dif-

ficult to evaluate function tag assignment in isola-

1The parser consists of two boxes; those who prefer to label
it by its structure, as opposed to what it does, might call it a
parsing system.

184



(S

(NP-SBJ (DT The) (NN luxury)

(NN auto) (NN maker) )

(NP-TMP (JJ last) (NN year) )

(VP (VBD sold)

(NP (CD 1,214) (NNS cars) )

(PP-LOC (IN in)

(NP (DT the) (NNP U.S.) ))))

Figure 1: Example Tree

tion across the output of different parsers, our re-

sults match or exceed all but the very best of earlier

tagging results, even though this earlier work is far

more complicated than ours. The second stage uses

a cascade of statistical classifiers which recovers the

most important empty categories in the Penn Tree-

bank style. These classifiers utilize a wide range of

features, including crucially the function tags recov-

ered in the first stage of parsing.

2 Motivation

Function tags are used in the current Penn Treebanks

to augment nonterminal labels for various syntactic

and semantic roles (Bies et al., 1995). For example,

in Figure 1, -SBJ indicates the subject, -TMP indi-

cates that the NP last year is serving as a tem-

poral modifier, and -LOC indicates that the PP is

specifying a location. Note that without these tags,

it is very difficult to determine which of the two NPs

directly dominated by S is in fact the subject. There

are twenty function tags in the Penn Treebank, and

following (Blaheta, 2003), we collect them into the

five groups shown in Figure 2. While nonterminals

can be assigned tags from different groups, they do

not receive more than one tag from within a group.

The Syntactic and Semantic groups are by far the

most common tags, together making up over 90% of

the function tag instances in the Penn Treebank.

Certain non–local dependencies must also be in-

cluded in a syntactic analysis if it is to be most use-

ful for recovering the predicate–argument structure

of a complex sentence. For instance, in the sentence

“The dragon I am trying to slay is green,” it is im-

portant to know that I is the semantic subject and

the dragon the semantic object of the slaying. The

Penn Treebank (Bies et al., 1995) represents such

dependencies by including nodes with no overt con-

tent (empty categories) in parse trees. In this work,

we consider the three most frequent2 and semanti-

cally important types of empty category annotations

in most Treebank genres:

Null complementizers are denoted by the sym-

bol 0. They typically appear in places where, for

example, an optional that or who is missing: “The

king said 0 he could go.” or “The man (0) I saw.”

Traces of wh–movement are denoted by *T*,

such as the noun phrase trace in “What1 do you

want (NP *T*-1)?” Note that wh–traces are co–

indexed with their antecedents.

(NP *)s are used for several purposes in the

Penn Treebank. Among the most common are pas-

sivization “(NP-1 I) was captured (NP *-1),”

and control “(NP-1 I) tried (NP *-1) to get the

best results.”

Under this representation the above sentence

would look like “(NP-1 The dragon) 0 (NP-2 I) am

trying (NP *-2) to slay (NP *T*-1) is green.”

Despite their importance, these annotations have

largely been ignored in statistical parsing work. The

importance of returning this information for most

real applications of parsing has been greatly ob-

scured by the Parseval metric (Black et al., 1991),

which explicitly ignores both function tags and null

elements. Because much statistical parsing research

has been driven until recently by this metric, which

has never been updated, the crucial role of parsing

in recovering semantic structure has been generally

ignored. An early exception to this was (Collins,

1997) itself, where Model 2 used function tags dur-

ing the training process for heuristics to identify ar-

guments (e.g., the TMP tag on the NP in Figure 1

disqualifies the NP-TMP from being treated as an

argument). However, after this use, the tags are ig-

nored, not included in the models, and absent from

the parser output. Collins’ Model 3 attempts to re-

cover traces of Wh-movement, with limited success.

3 Function Tags: Approach

Our system for restoring function tags is a modifica-

tion of Collins’ Model 2. We use the (Bikel, 2004)

2Excepting empty units (e.g. “$ 1,000,000 *U*”), which are
not very interesting. According to Johnson, (NP *)s occur
28,146 times in the training portion of the PTB, (NP *T*)s
occur 8,620 times, 0s occur 7,969 times, and (ADVP *T*)s
occur 2,492 times. In total, the types we consider cover roughly
84% of all the instances of empty categories in the training cor-
pus.

185



Syntactic (55.9%) Semantic (36.4%) Misc (1.0%) CLR (5.8%)

DTV Dative NOM Nominal EXT Extent CLF It-cleft CLR Closely-

LGS Logical subj ADV Non-specific LOC Location HLN Headline Related

PRD Predicate Adverbial MNR Manner TTL Title

PUT LOC of ’put’ BNF Benefactive PRP Purpose Topicalization

SBJ Subject DIR Direction TMP Temporal (2.6%)

VOC Vocative TPC Topic

Figure 2: Function Tags - Also shown is the percentage of each category in the Penn Treebank

emulation of the Collins parser.3 Remarkably little

modification to the parser is needed to allow it to

produce function tags as part its output, without de-

creasing the regular Parseval metric.

The training process for the unmodified Collins

parser carries out various preprocessing steps, which

modify the trees in various ways before taking ob-

servations from them for the model. One of these

steps is to identify and mark arguments with a parser

internal tag (-A), using function tags as part of the

heuristics for doing so. A following preprocessing

step then deletes the original function tags.

We modify the Collins parser in a very simple

way: the parser now retains the function tags af-

ter using them for argument identification, and so

includes them in all the parameter classes. We

also augment the argument identification heuristic

to treat any nonterminal with any of the tags in the

Syntactic group to be an argument; these are treated

as synonyms for the internal tag that the parser uses

to mark arguments. This therefore extends (Collins,

2003)’s use of function tags for excluding potential

argument to also use them for including arguments.4

The parser is then trained as before.

4 Function Tags: Evaluation

We compare our tagging results in isolation with the

tagging systems of (Blaheta, 2003), since that work

has the first highly detailed accounting of function

tag results on the Penn Treebank, and with two re-

cent tagging systems. We use both Blaheta’s metric

and his function tag groupings, shown in Figure 2,

3Publicly available at http://www.cis.upenn.edu/
˜dbikel/software.html.

4Bikel’s parser, in its latest version, already does something
like this for Chinese and Arabic. However, the interaction with
the subcat frame is different, in that it puts all nonterminals with
a function tag into the miscellaneous slot in the subcat frame.

although our assignments are made by a fully inte-

grated system. There are two aspects of Blaheta’s

metric that require discussion: First, this metric in-

cludes only constituents that were otherwise parsed

correctly (ignoring function tag). Second, the metric

ignores cases in which both the gold and test nonter-

minals are lacking function tags, since they would

inflate the results.

5 Function Tags: Results

We trained the Bikel emulations of Collins’ model

2 and our modified versions on sections 2-21 and

tested on section 23. Scores are for all sentences,

not just those with less than 40 words.

Parseval labelled recall/precision scores for the

unmodified and modified parsers, show that there is

almost no difference in the scores:

Parser LR/LP

Model 2 88.12/88.31

Model 2-FuncB 88.23/88.31

We find this somewhat surprising, as we had ex-

pected that sparse data problems would arise, due

to the shattering of NP into NP-TMP, NP-SBJ, etc.

Table 1 shows the overall results and the break-

down for the different function tag groups. For pur-

poses of comparison, we have calculated our over-

all score both with and without CLR.5 The (Blaheta,

2003) numbers in parentheses in Table 1 are from

his feature trees specialized for the Syntactic and Se-

mantic groups, while all his other numbers, includ-

ing the overall score, are from using a single feature

set for his four function tag groups.6

5(Jijkoun and de Rijke, 2004) do not state whether they are
including CLR, but since they are comparing their results to
(Blaheta and Charniak, 2000), we are assuming that they do.
They do not break their results down by group.

6The P/R/F scores in (Blaheta, 2003)[p. 23] are internally

186



— Overall — — Breakdown by Function Tag Group —

w/CLR w/o CLR Syn Sem Top Misc CLR

Tag Group Frequency 55.87% 36.40% 2.60% 1.03% 5.76%

Model2-Ftags 88.95 90.78 95.76 84.56 93.89 17.31 65.86

88.28 95.16 79.81 93.72 39.44

Blaheta, 2003 (95.89) (83.37)

Jijkoun and de Rijke, 2004 88.50

Musillo and Merlo, 2005 96.5 85.6

Table 1: Overall Results (F-measure) and Breakdown by Function Tag Groups

Even though our tagging system results from only

eliminating a few lines of code from the Collins

parse, it has a higher overall score than (Blaheta,

2003), and a large increase over Blaheta’s non-

specialized Semantic score (79.81). It also out-

performs even Blaheta’s specialized Semantic score

(83.37), and is very close to Blaheta’s specialized

score for the Syntactic group (95.89). However,

since the evaluation is over a different set of non-

terminals, arising from the different parsers,7 it is

difficult to draw conclusions as to which system is

definitively “better”. It does seem clear, though,

that by integrating the function tags into the lexi-

calized parser, the results are roughly comparable

with the post-processing work, and it is much sim-

pler, without the need for a separate post-processing

level or for specialized feature trees for the different

tag groups.8

Our results clarify, we believe, the recent results

of (Musillo and Merlo, 2005), now state-of-the-art,

which extends the parser of

report a significant modification of the Henderson

parser to incorporate strong notions of linguistic lo-

cality. They also manually restructure some of the

function tags using tree transformations, and then

train on these relabelled trees. Our results indicate

that perhaps the simplest possible modification of an

existing parser suffices to perform better than post-

inconsistent for the Semantic and Overall scores. We have kept
the Precision and Recall and recalculated the F-measures, ad-
justing the Semantic score upwards from 79.15% to 79.81% and
the Overall score downward from 88.63% to 88.28%.

7And the (Charniak, 2000) parser that (Blaheta, 2003) used
has a reported F-measure of 89.5, higher than the Bikel parser
used here.

8Our score on the Miscellaneous category is significantly
lower, but as can be seen from Figure 2 and repeated in 1, this
is a very rare category.

processing approaches. The linguistic sophistication

of the work of (Musillo and Merlo, 2005) then pro-

vides an added boost in performance over simple in-

tegration.

6 Empty Categories: Approach

Most learning–based, phrase–structure–based

(PSLB) work9 on recovering empty categories

has fallen into two classes: those which integrate

empty category recovery into the parser (Dienes and

Dubey, 2003a; Dienes and Dubey, 2003b) and those

which recover empty categories from parser output

in a post–processing step (Johnson, 2002; Levy and

Manning, 2004). Levy and Manning note that thus

far no PSLB post–processing approach has come

close to matching the integrated approach on the

most numerous types of empty categories.

However, there is a rule–based post–processing

approach consisting of a set of entirely hand–

designed rules (Campbell, 2004) which has better

9As above, we consider only that work which both inputs
and outputs phrase–structure trees. This notably excludes Ji-
jkoun and de Rijke (Jijkoun and de Rijke, 2004), who have a
system which seems to match the performance of Dienes and
Dubey. However, they provide only aggregate statistics over all
the types of empty categories, making any sort of detailed com-
parison impossible. Finally, it is not clear that their numbers
are in fact comparable to those of Dienes and Dubey on parsed
data because the metrics used are not quite equivalent, partic-
ularly for (NP *)s: among other differences, unlike Jijkoun
and de Rijke’s metric (taken from (Johnson, 2002)), Dienes and
Dubey’s is sensitive to the string extent of the antecedent node,
penalizing them if the parser makes attachment errors involving
the antecedent even if the system recovered the long–distance
dependency itself correctly. Johnson noted that the two metrics
did not seem to differ much for his system, but we found that
evaluating our system with the laxer metric reduced error by
20% on the crucial task of restoring and finding the antecedents
of (NP *)s, which make up almost half the empty categories
in the Treebank.

187



results than the integrated approach. Campbell’s

rules make heavy use of aspects of linguistic repre-

sentation unexploited by PSLB post–processing ap-

proaches, most importantly function tags and argu-

ment annotation.10

7 Empty Categories: Method

7.1 Runtime

The algorithm applies a series five maximum–

entropy and two perceptron–based classifiers:

[1] For each PP, VP, and S node, ask the classifier

NPTRACE to determine whether to insert an (NP

*) as the object of a preposition, an argument of a

verb, or the subject of a clause, respectively.

[2] For each node , ask NULLCOMP to determine

whether or not to insert a 0 to the right.

[3] For each S node , ask WHXPINSERT to de-

termine whether or not to insert a null wh–word to

the left. If one should be, ask WHXPDISCERN to

decide if it should be a (WHNP 0) or a (WHADVP

0).

[4] For each S which is a sister of WHNP or

WHADVP, consider all possible places beneath it a

wh–trace could be placed. Score each of them using

WHTRACE, and insert a trace in the highest scoring

position.

[5] For any S lacking a subject, insert (NP *).

[6] For each (NP *) in subject position, look at

all NPs which c–command it. Score each of these us-

ing PROANTECEDENT, and co–index the (NP *)

with the NPwith the highest score. For all (NP *)s

in non–subject positions, we follow Campbell in as-

signing the local subject as the controller.

[7] For each (NP *), ask ANTECEDENTLESS to

determine whether or not to remove the co–indexing

between it and its antecedent.

The sequencing of classifiers and choice of how

to frame the classification decisions closely follows

Campbell with the exception of finding antecedents

of (NP *)s and inserting wh–traces, which follow

Levy and Manning in using a competition–based ap-

proach. We differ from Levy and Manning in using

a perceptron–based approach for these, rather than a

10The non–PSLB system of Jijkoun and de Rijke uses func-
tion tags, and Levy and Manning mention that the lack of this
information was sometimes an obstacle for them. Also, access
to argument annotation inside the parser may account for a part
of the good performance of Dienes and Dubey.

maximum–entropy one. Also, rather than introduc-

ing an extra zero node for uncontrolled (NP *)s,

we always assign a controller and then remove co–

indexing from uncontrolled (NP *)s using a sepa-

rate classifier.

7.2 Training

Each of the maximum–entropy classifiers men-

tioned above was trained using MALLET (McCal-

lum, 2002) over a common feature set. The most

notable departure of this feature list from previous

ones is in the use of function tags and argument

markings, which were previously ignored for the un-

derstandable reason that though they are present in

the Penn Treebank, parsers generally do not produce

them. Another somewhat unusual feature examined

right and left sisters.

The PROANTECEDENT perceptron classifier

uses the local features of the controller and the con-

trolled (NP *), whether the controller precedes or

follows the controlled (NP *), the sequence of cat-

egories on the path between the two (with the ‘turn-

ing’ category marked), the length of that path, and

which categories are contained anywhere along the

path.

The WHTRACE perceptron classifier uses the fol-

lowing features each conjoined with the type of wh–

trace being sought: the sequence of categories found

on the path between the trace and its antecedent,

the path length, which categories are contained any-

where along the path, the number of bounding cat-

egories crossed and whether the trace placement vi-

olates subjacency, whether or not the trace insertion

site’s parent is the first verb on the path, whether or

not the insertion site’s parent contains another verb

beneath it, and if the insertion site’s parent is a verb,

whether or not the verb is saturated.11

All maximum–entropy classifiers were trained on

sections 2-21 of the Penn Treebank’s Wall Street

Journal section; the perceptron–based classifiers

were trained on sections 10-18. Section 24 was used

for development testing while choosing the feature

11To provide the verb saturation feature, we calculated the
number of times each verb in the training corpus occurs with
each number of NP arguments (both overt and traces). When
calculating the feature value, we compare the number of in-
stances seen in the training corpus of the verb with the number
of argument NPs it overtly has with the number of times in the
corpus the verb occurs with one more argument NP.

188



set and other aspects of the system, and section 23

was used for the final evaluation.

8 Empty Categories: Results

8.1 Metrics

For the sake of easy comparison, we report our re-

sults using the most widely–used metric for perfor-

mance on this task, that proposed by Johnson. This

metric judges an entity correct if it matches the gold

standard in type and string position (and, if there is

an antecedent, in its label and string extent). Be-

cause Campell reports results by category using only

his own metric, we use this metric to compare our

results to his. There is much discussion in the litera-

ture of metrics for this task; Levy and Manning and

Campbell both note that the Johnson metric fails to

catch when an empty category has a correct string

position but incorrect parse tree attachment. While

we do not have space to discuss this issue here, the

metrics they in turn propose also have significant

weaknesses. In any event, we use the metrics that

allow the most widespread comparison.

8.2 Comparison to Other PSLB Methods

Category Pres LM J DD

Comb. 0 87.8 87.0 77.1

COMP-SBAR 91.9 88.0 85.5

COMP-WHNP 61.5 47.0 48.8

COMP-WHADVP 69.0

NP * 69.1 61.1 55.6 70.3

Comb. wh–trace 78.2 63.3 75.2 75.3

NP *T* 80.9 80.0 82.0

ADVP *T* 69.8 56 53.6

Table 2: F1 scores comparing our system to the

two PSLB post–processing systems and Dienes and

Dubey’s integrated system on automatically parsed

trees from section 23 using Johnson’s metric.

F1 scores on parsed sentences from section 23

are given in table 2. Note that our system’s

parsed scores were obtained using our modified

version of Bikel’s implementation of Collins’s the-

sis parser which assigns function tags, while the

other PSLB post–processing systems use Charniak’s

parser (Charniak, 2000) and Dienes and Dubey inte-

grate empty category recovery directly into a variant

of Collins’s parser.

On parsed trees, our system outperforms other

PSLB post–processing systems. On the most numer-

ous category by far, (NP *), our system reduces

the error of the best PSLB post–processing approach

by 21%. Comparing our aggregate wh–trace results

to the others,12 we reduce error by 41% over Levy

and Manning and by 12% over Johnson.

System Precision Recall F1

D&D 78.50 68.08 72.92

Pres 74.70 74.62 74.66

Table 3: Comparison of our system with that of Di-

enes and Dubey on parsed data from section 23 over

the aggregation of all categories in table 2 except-

ing the infrequent (WHADVP 0)s, which they do

not report but which we almost certainly outperform

them on.

Performance on parsed data compared to the inte-

grated system of Dienes and Dubey is split. We re-

duce error by 25% and 44% on plain 0s and (WHNP

0)s, respectively and by 12% on wh–traces. We

increase error by 4% on (NP *)s. Aggregating

over all the categories under consideration, the more

balanced precision and recall of our system puts it

ahead of Dienes and Dubey’s, with a 6.4% decrease

in error (table 3).

8.3 Comparison to Campbell

Category Present Campbell

NP * 88.8 86.9

NP *T* 96.3 96.0

ADVP *T* 82.2 79.9

0 99.8 98.5

Table 4: A comparison of the present system with

Campbell’s rule–based system on gold–standard

trees from section 23 using Campbell’s metric

12Levy and Manning report Johnson to have an aggregate
wh–trace score of 80, but Johnson’s paper gives 80 as his score
for (NP *T*)s only, with 56 as his score for (ADVP *T*)s.
A similar problem seems to have occured with Levy and Man-
ning’s numbers for Dienes and Dubey on this and on (NP *)s.
This error makes the other two systems appear to outperform
Levy and Manning on wh–traces by a slightly larger margin than
they actually do.

189



Classifier Features with largest weights
NPTRACE daughter categories, function tags, argumentness, heads, and POS tags, subjectless

S. . .
NULLCOMP is first daughter?, terminalness, aunt’s label and POS tag, mother’s head, daughters’

heads, great–grandmother’s label. . .
WHXPINSERT is first daughter?, left sister’s terminalness, labels of mother, aunt, and left sister,

aunt’s head. . .
WHXPDISCERN words contained by grandmother, grandmother’s head, aunt’s head, grandmother’s

function tags, aunt’s label, aunt’s function tags. . .
WHTRACE lack of subject, daughter categories, child argument information, subjacency viola-

tion, saturation, whether or not there is a verb below, path information. . .
PROANTECEDENT controller’s sisters’ function tags, categories path contains, path length, path shape,

controller’s function tags, controller’s sisters’ heads, linear precedence informa-
tion. . .

ANTECEDENTLESS mother’s function tags, great–grandmother’s label, aunt’s head (“It is difficult
to. . . ”), grandmother’s function tag, mother’s head. . .

Table 5: A few of the most highly weighted features for various classifiers

On gold-standard trees,13 our system out-

performs Campbell’s rule–based system on all four

categories, reducing error by 87% on 0s,14 by 11%

on (ADVP *T*)s, by 7% on (NP *T*)s, and by

8% on the extremely numerous (NP *)s.

9 Empty Categories: Discussion

We have shown that a PSLB post–processing ap-

proach can outperform the state–of–the–art inte-

grated approach of Dienes and Dubey.15 Given that

their modifications to Collins’s parser caused a de-

crease in local phrase structure parsing accuracy

due to sparse data difficulties (Dienes and Dubey,

2003a), our post–processing approach seems to be

an especially attractive choice. We have further

shown that our PSLB approach, using only sim-

ple, unconjoined features, outperforms Campbell’s

state–of–the–art, complex system on gold–standard

data, suggesting that much of the power of his sys-

tem lies in his richer linguistic representation and

his structuring of decisions rather than the hand–

designed rules.

We have also compared our system to that of Levy

and Manning which is based on a similar learning

technique and have shown large increases in perfor-

13Only aggregate statistics over a different set of empty cat-
egories were available for Campbell on parsed data, making a
comparison impossible.

14Note that for comparison with Campbell, the 0 numbers
here exclude (WHNP 0)s and (WHADVP 0)s.

15And therefore also very likely outperforms the
dependency–based post–processing approach of Jijkoun
and de Rijke, even if its performance does in fact equal Dienes
and Dubey’s.

mance on all of the most common types of empty

categories; this increase seems to have come al-

most entirely from an enrichment of the linguistic

representation and a slightly different structuring of

the problem, rather than any use of more powerful

machine–learning techniques

We speculate that the primary source of our per-

formance increase is the enrichment of the linguis-

tic representation with function tags and argument

markings from the parser’s first stage, as table 5 at-

tests. We also note that several classifiers make use

of the properties of aunt nodes, which have previ-

ously been exploited only in a limite form in John-

son’s patterns. For example, ANTECEDENTLESS

uses the aunt’s head word to learn an entire class of

uncontrolled PRO constructions like “It is difficult

(NP *) to imagine living on Mars.”

10 Conclusion

This work has presented a two stage parser that re-

covers Penn Treebank style syntactic analyses of

new sentences including skeletal syntactic structure,

and, for the first time, both function tags and empty

categories. The accuracy of the first-stage parser

on the standard Parseval metric matches that of the

(Collins, 2003) parser on which it is based, despite

the data fragmentation caused by the greatly en-

riched space of possible node labels for the Collins

statistical model. This first stage simultaneously

achieves near state-of-the-art performance on recov-

ering function tags with minimal modifications to

the underlying parser, modifying less than ten lines

190



of code. We speculate that this success is due to the

lexicalization of the Collins model, combined with

the sophisticated backoff structure already built into

the Collins model. The second stage achieves state-

of-the-art performance on the recovery of empty cat-

egories by combining the linguistically-informed ar-

chitecture of (Campbell, 2004) and a rich feature set

with the power of modern machine learning meth-

ods. This work provides an example of how small

enrichments in linguistic representation and changes

in the structure of the problem having significant

effects on the performance of a machine–learning–

based system. More concretely, we showed for the

first time that a PSLB post–processing system can

outperform the state–of–the–art for both rule–based

post–processing and integrated approaches to the

empty category restoration problem.

Most importantly from the point of view of the

authors, we have constructed a system that recov-

ers sufficiently rich syntactic structure based on the

Penn Treebank to provide rich syntactic guidance for

the recovery of predicate-argument structure in the

near future. We also expect that productivity of syn-

tactic annotation of further genres of English will be

significantly enhanced by the use of this new tool,

and hope to have practical evidence of this in the

near future.

References

Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-
Intyre. 1995. Bracketing guidelines for Treebank II
style Penn Treebank project. Technical report, Uni-
versity of Pennsylvania.

Daniel M. Bikel. 2004. On the Parameter Space of Lex-
icalized Statistical Parsing Models. Ph.D. thesis, De-
partment of Computer and Information Sciences, Uni-
versity of Pennsylvania.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of English grammars. In Proceedings of the
Fourth DARPA Workshop on Speech and Natural Lan-
guage, pages 306–311, CA.

Don Blaheta and Eugene Charniak. 2000. Assigning
function tags to parsed text. In Proceedings of the
1st Annual Meeting of the North American Chapter of

the Association for Computational Linguistics, pages
234–240, Seattle.

Don Blaheta. 2003. Function Tagging. Ph.D. thesis,
Brown University.

Richard Campbell. 2004. Using linguistic principles to
recover empty categories. In Proceedings of ACL.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Annual Meeting of the
North American Chapter of the Association for Com-
putational Linguistics.

Michael Collins. 1997. Three generative, lexicalized
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics, Madrid.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29:589–637.

Peter Dienes and Amit Dubey. 2003a. Antecedent recov-
ery: Experiments with a trace tagger. In Proceedings
of EMNLP.

Peter Dienes and Amit Dubey. 2003b. Deep process-
ing by combining shallow methods. In Proceedings of
ACL.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Pro-
ceedings of NLT-NAACL 2003, Edmonton, Alberta,
Canada. Association for Computational Linguistics.

Valentin Jijkoun and Maarten de Rijke. 2004. Enrich-
ing the output of a parser using memory-based learn-
ing. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, Barcelona,
Spain.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40st Annual Meet-
ing of the Association for Computational Linguistics,
Philadelphia, PA.

Roger Levy and Christopher Manning. 2004. Deep de-
pendencies from context–free statistical parsers: cor-
recting the surface dependency approximation. In Pro-
ceedings of the ACL.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Gabriele Musillo and Paolo Merlo. 2005. Lexical and
structural biases for function parsing. In Proceedings
of the Ninth International Workshop on Parsing Tech-
nology, pages 83–92, Vancouver, British Columbia,
October. Association for Computational Linguistics.

191


