
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 144–151,
New York, June 2006.c©2006 Association for Computational Linguistics

Partial Training for a Lexicalized-Grammar Parser

Stephen Clark

Oxford University Computing Laboratory

Wolfson Building, Parks Road

Oxford, OX1 3QD, UK

stephen.clark@comlab.ox.ac.uk

James R. Curran

School of Information Technologies

University of Sydney

NSW 2006, Australia

james@it.usyd.edu.au

Abstract

We propose a solution to the annotation

bottleneck for statistical parsing, by ex-

ploiting the lexicalized nature of Combi-

natory Categorial Grammar (CCG). The

parsing model uses predicate-argument

dependencies for training, which are de-

rived from sequences of CCG lexical cate-

gories rather than full derivations. A sim-

ple method is used for extracting depen-

dencies from lexical category sequences,

resulting in high precision, yet incomplete

and noisy data. The dependency parsing

model of Clark and Curran (2004b) is ex-

tended to exploit this partial training data.

Remarkably, the accuracy of the parser

trained on data derived from category se-

quences alone is only 1.3% worse in terms

of F-score than the parser trained on com-

plete dependency structures.

1 Introduction

State-of-the-art statistical parsers require large

amounts of hand-annotated training data, and are

typically based on the Penn Treebank, the largest

treebank available for English. Even robust parsers

using linguistically sophisticated formalisms, such

as TAG (Chiang, 2000), CCG (Clark and Curran,

2004b; Hockenmaier, 2003), HPSG (Miyao et al.,

2004) and LFG (Riezler et al., 2002; Cahill et al.,

2004), often use training data derived from the Penn

Treebank. The labour-intensive nature of the tree-

bank development process, which can take many

years, creates a significant barrier for the develop-

ment of parsers for new domains and languages.

Previous work has attempted parser adaptation

without relying on treebank data from the new do-

main (Steedman et al., 2003; Lease and Charniak,

2005). In this paper we propose the use of anno-

tated data in the new domain, but only partially an-

notated data, which reduces the annotation effort re-

quired (Hwa, 1999). We develop a parsing model

which can be trained using partial data, by exploiting

the properties of lexicalized grammar formalisms.

The formalism we use is Combinatory Categorial

Grammar (Steedman, 2000), together with a parsing

model described in Clark and Curran (2004b) which

we adapt for use with partial data.

Parsing with Combinatory Categorial Grammar

(CCG) takes place in two stages: first, CCG lexical

categories are assigned to the words in the sentence,

and then the categories are combined by the parser

(Clark and Curran, 2004a). The lexical categories

can be thought of as detailed part of speech tags and

typically express subcategorization information. We

exploit the fact that CCG lexical categories contain

a lot of syntactic information, and can therefore be

used for training a full parser, even though attach-

ment information is not explicitly represented in a

category sequence. Our partial training regime only

requires sentences to be annotated with lexical cate-

gories, rather than full parse trees; therefore the data

can be produced much more quickly for a new do-

main or language (Clark et al., 2004).

The partial training method uses the log-linear

dependency model described in Clark and Curran

(2004b), which uses sets of predicate-argument de-

144

pendencies, rather than derivations, for training. Our

novel idea is that, since there is so much informa-

tion in the lexical category sequence, most of the

correct dependencies can be easily inferred from the

categories alone. More specifically, for a given sen-

tence and lexical category sequence, we train on

those predicate-argument dependencies which occur

in k% of the derivations licenced by the lexical cat-

egories. By setting the k parameter high, we can

produce a set of high precision dependencies for

training. A similar idea is proposed by Carroll and

Briscoe (2002) for producing high precision data for

lexical acquisition.

Using this procedure we are able to produce de-

pendency data with over 99% precision and, re-

markably, up to 86% recall, when compared against

the complete gold-standard dependency data. The

high recall figure results from the significant amount

of syntactic information in the lexical categories,

which reduces the ambiguity in the possible depen-

dency structures. Since the recall is not 100%, we

require a log-linear training method which works

with partial data. Riezler et al. (2002) describe a

partial training method for a log-linear LFG parsing

model in which the “correct” LFG derivations for a

sentence are those consistent with the less detailed

gold standard derivation from the Penn Treebank.

We use a similar method here by treating a CCG

derivation as correct if it is consistent with the high-

precision partial dependency structure. Section 3 ex-

plains what we mean by consistency in this context.

Surprisingly, the accuracy of the parser trained on

partial data approaches that of the parser trained on

full data: our best partial-data model is only 1.3%

worse in terms of dependency F-score than the full-

data model, despite the fact that the partial data does

not contain any explicit attachment information.

2 The CCG Parsing Model

Clark and Curran (2004b) describes two log-linear

parsing models for CCG: a normal-form derivation

model and a dependency model. In this paper we

use the dependency model, which requires sets of

predicate-argument dependencies for training.1

1Hockenmaier and Steedman (2002) describe a generative
model of normal-form derivations; one possibility for training
this model on partial data, which has not been explored, is to
use the EM algorithm (Pereira and Schabes, 1992).

The predicate-argument dependencies are repre-

sented as 5-tuples: 〈hf , f, s, ha, l〉, where hf is the

lexical item of the lexical category expressing the

dependency relation; f is the lexical category; s is

the argument slot; ha is the head word of the ar-

gument; and l encodes whether the dependency is

non-local. For example, the dependency encoding

company as the object of bought (as in IBM bought

the company) is represented as follows:

〈bought2, (S\NP1)/NP2 , 2, company4,−〉 (1)

CCG dependency structures are sets of predicate-

argument dependencies. We define the probability

of a dependency structure as the sum of the probabil-

ities of all those derivations leading to that structure

(Clark and Curran, 2004b). “Spurious ambiguity” in

CCG means that there can be more than one deriva-

tion leading to any one dependency structure. Thus,

the probability of a dependency structure, π, given a

sentence, S, is defined as follows:

P (π|S) =
∑

d∈∆(π)

P (d, π|S) (2)

where ∆(π) is the set of derivations which lead to π.

The probability of a 〈d, π〉 pair, ω, conditional on

a sentence S, is defined using a log-linear form:

P (ω|S) =
1

ZS

eλ.f (ω) (3)

where λ.f(ω) =
∑

i λifi(ω). The function fi is the

integer-valued frequency function of the ith feature;

λi is the weight of the ith feature; and ZS is a nor-

malising constant.

Clark and Curran (2004b) describes the training

procedure for the dependency model, which uses a

discriminative estimation method by maximising the

conditional likelihood of the model given the data

(Riezler et al., 2002). The optimisation of the objec-

tive function is performed using the limited-memory

BFGS numerical optimisation algorithm (Nocedal

and Wright, 1999; Malouf, 2002), which requires

calculation of the objective function and the gradi-

ent of the objective function at each iteration.

The objective function is defined below, where

L(Λ) is the likelihood and G(Λ) is a Gaussian prior

term for smoothing.

145

He anticipates growth for the auto maker

NP (S [dcl]\NP)/NP NP (NP\NP)/NP NP [nb]/N N /N N

Figure 1: Example sentence with CCG lexical categories

L′(Λ) = L(Λ) − G(Λ) (4)

=
m∑

j=1

log
∑

d∈∆(πj)

eλ.f (d,πj)

−
m∑

j=1

log
∑

ω∈ρ(Sj)

eλ.f (ω) −
n∑

i=1

λ2
i

2σ2

S1, . . . , Sm are the sentences in the training data;

π1, . . . , πm are the corresponding gold-standard de-

pendency structures; ρ(S) is the set of possible

〈derivation, dependency-structure〉 pairs for S; σ is

a smoothing parameter; and n is the number of fea-

tures. The components of the gradient vector are:

∂L′(Λ)

∂λi
=

m∑

j=1

∑

d∈∆(πj)

eλ.f (d,πj)fi(d, πj)
∑

d∈∆(πj) eλ.f (d,πj)
(5)

−
m∑

j=1

∑

ω∈ρ(Sj)

eλ.f (ω)fi(ω)
∑

ω∈ρ(Sj) eλ.f (ω)
−

λi

σ2

The first two terms of the gradient are expecta-

tions of feature fi: the first expectation is over

all derivations leading to each gold-standard depen-

dency structure, and the second is over all deriva-

tions for each sentence in the training data. The es-

timation process attempts to make the expectations

in (5) equal (ignoring the Gaussian prior term). An-

other way to think of the estimation process is that

it attempts to put as much mass as possible on the

derivations leading to the gold-standard structures

(Riezler et al., 2002).

Calculation of the feature expectations requires

summing over all derivations for a sentence, and

summing over all derivations leading to a gold-

standard dependency structure. Clark and Cur-

ran (2003) shows how the sum over the complete

derivation space can be performed efficiently using

a packed chart and the inside-outside algorithm, and

Clark and Curran (2004b) extends this method to

sum over all derivations leading to a gold-standard

dependency structure.

3 Partial Training

The partial data we use for training the dependency

model is derived from CCG lexical category se-

quences only. Figure 1 gives an example sentence

adapted from CCGbank (Hockenmaier, 2003) to-

gether with its lexical category sequence. Note that,

although the attachment of the prepositional phrase

to the noun phrase is not explicitly represented, it

can be inferred in this example because the lexical

category assigned to the preposition has to combine

with a noun phrase to the left, and in this example

there is only one possibility. One of the key insights

in this paper is that the significant amount of syntac-

tic information in CCG lexical categories allows us

to infer attachment information in many cases.

The procedure we use for extracting dependencies

from a sequence of lexical categories is to return all

those dependencies which occur in k% of the deriva-

tions licenced by the categories. By giving the k pa-

rameter a high value, we can extract sets of depen-

dencies with very high precision; in fact, assuming

that the correct lexical category sequence licences

the correct derivation, setting k to 100 must result in

100% precision, since any dependency which occurs

in every derivation must occur in the correct deriva-

tion. Of course the recall is not guaranteed to be

high; decreasing k has the effect of increasing recall,

but at the cost of decreasing precision.

The training method described in Section 2 can

be adapted to use the (potentially incomplete) sets

of dependencies returned by our extraction proce-

dure. In Section 2 a derivation was considered cor-

rect if it produced the complete set of gold-standard

dependencies. In our partial-data version a deriva-

tion is considered correct if it produces dependen-

cies which are consistent with the dependencies re-

turned by our extraction procedure. We define con-

sistency as follows: a set of dependencies D is con-

sistent with a set G if G is a subset of D. We also

say that a derivation d is consistent with dependency

set G if G is a subset of the dependencies produced

by d.

146

This definition of “correct derivation” will intro-

duce some noise into the training data. Noise arises

from sentences where the recall of the extracted de-

pendencies is less than 100%, since some of the

derivations which are consistent with the extracted

dependencies for such sentences will be incorrect.

Noise also arises from sentences where the preci-

sion of the extracted dependencies is less than 100%,

since for these sentences every derivation which is

consistent with the extracted dependencies will be

incorrect. The hope is that, if an incorrect derivation

produces mostly correct dependencies, then it can

still be useful for training. Section 4 shows how the

precision and recall of the extracted dependencies

varies with k and how this affects parsing accuracy.

The definitions of the objective function (4) and

the gradient (5) for training remain the same in the

partial-data case; the only differences are that ∆(π)
is now defined to be those derivations which are con-

sistent with the partial dependency structure π, and

the gold-standard dependency structures πj are the

partial structures extracted from the gold-standard

lexical category sequences.2

Clark and Curran (2004b) gives an algorithm for

finding all derivations in a packed chart which pro-

duce a particular set of dependencies. This algo-

rithm is required for calculating the value of the ob-

jective function (4) and the first feature expectation

in (5). We adapt this algorithm for finding all deriva-

tions which are consistent with a partial dependency

structure. The new algorithm is shown in Figure 2.

The algorithm relies on the definition of a packed

chart, which is an instance of a feature forest (Miyao

and Tsujii, 2002). The idea behind a packed chart is

that equivalent chart entries of the same type and in

the same cell are grouped together, and back point-

ers to the daughters indicate how an individual entry

was created. Equivalent entries form the same struc-

tures in any subsequent parsing.

A feature forest is defined in terms of disjunctive

and conjunctive nodes. For a packed chart, the indi-

vidual entries in a cell are conjunctive nodes, and the

equivalence classes of entries are disjunctive nodes.

The definition of a feature forest is as follows:

A feature forest Φ is a tuple 〈C, D, R, γ, δ〉 where:

2Note that the procedure does return all the gold-standard
dependencies for some sentences.

〈C, D, R, γ, δ〉 is a packed chart / feature forest
G is a set of dependencies returned by the extraction procedure
Let c be a conjunctive node
Let d be a disjunctive node
deps(c) is the set of dependencies on node c

cdeps(c) = |deps(c) ∩ G|

dmax(c) =
∑

d∈δ(c)
dmax(d) + cdeps(c)

dmax(d) = max{dmax(c) | c ∈ γ(d)}

mark(d):
mark d as a correct node
foreach c ∈ γ(d)

if dmax(c) == dmax(d)
mark c as a correct node
foreach d′ ∈ δ(c)

mark(d′)

foreach dr ∈ R such that dmax. (dr) = |G|
mark(dr)

Figure 2: Finding nodes in derivations consistent

with a partial dependency structure

• C is a set of conjunctive nodes;

• D is a set of disjunctive nodes;

• R ⊆ D is a set of root disjunctive nodes;

• γ : D → 2C is a conjunctive daughter function;

• δ : C → 2D is a disjunctive daughter function.

Dependencies are associated with conjunctive

nodes in the feature forest. For example, if the

disjunctive nodes (equivalence classes of individual

entries) representing the categories NP and S\NP

combine to produce a conjunctive node S , the re-

sulting S node will have a verb-subject dependency

associated with it.

In Figure 2, cdeps(c) is the number of dependen-

cies on conjunctive node c which appear in partial

structure G; dmax(c) is the maximum number of

dependencies in G produced by any sub-derivation

headed by c; dmax(d) is the same value for disjunc-

tive node d. Recursive definitions for calculating

these values are given; the base case occurs when

conjunctive nodes have no disjunctive daughters.

The algorithm identifies all those root nodes head-

ing derivations which are consistent with the partial

dependency structure G, and traverses the chart top-

down marking the nodes in those derivations. The

insight behind the algorithm is that, for two con-

junctive nodes in the same equivalence class, if one

node heads a sub-derivation producing more depen-

dencies in G than the other node, then the node with

147

less dependencies in G cannot be part of a derivation

consistent with G.

The conjunctive and disjunctive nodes appearing

in derivations consistent with G form a new “gold-

standard” feature forest. The gold-standard forest,

and the complete forest containing all derivations

spanning the sentence, can be used to estimate the

likelihood value and feature expectations required

by the estimation algorithm. Let EΦ
Λfi be the ex-

pected value of fi over the forest Φ for model Λ;

then the values in (5) can be obtained by calculating

E
Φj

Λ fi for the complete forest Φj for each sentence

Sj in the training data (the second sum in (5)), and

also E
Ψj

Λ fi for each forest Ψj of derivations consis-

tent with the partial gold-standard dependency struc-

ture for sentence Sj (the first sum in (5)):

∂L(Λ)

∂λi
=

m∑

j=1

(E
Ψj

Λ fi − E
Φj

Λ fi) (6)

The likelihood in (4) can be calculated as follows:

L(Λ) =
m∑

j=1

(log ZΨj
− log ZΦj

) (7)

where log ZΦ is the normalisation constant for Φ.

4 Experiments

The resource used for the experiments is CCGbank

(Hockenmaier, 2003), which consists of normal-

form CCG derivations derived from the phrase-

structure trees in the Penn Treebank. It also contains

predicate-argument dependencies which we use for

development and final evaluation.

4.1 Accuracy of Dependency Extraction

Sections 2-21 of CCGbank were used to investigate

the accuracy of the partial dependency structures re-

turned by the extraction procedure. Full, correct de-

pendency structures for the sentences in 2-21 were

created by running our CCG parser (Clark and Cur-

ran, 2004b) over the gold-standard derivation for

each sentence, outputting the dependencies. This re-

sulted in full dependency structures for 37,283 of the

sentences in sections 2-21.

Table 1 gives precision and recall values for the

dependencies obtained from the extraction proce-

dure, for the 37,283 sentences for which we have

k Precision Recall SentAcc

0.99999 99.76 74.96 13.84

0.9 99.69 79.37 16.52

0.85 99.65 81.30 18.40

0.8 99.57 82.96 19.51

0.7 99.09 85.87 22.46

0.6 98.00 88.67 26.28

Table 1: Accuracy of the Partial Dependency Data

complete dependency structures. The SentAcc col-

umn gives the percentage of training sentences for

which the partial dependency structures are com-

pletely correct. For a given sentence, the extrac-

tion procedure returns all dependencies occurring in

at least k% of the derivations licenced by the gold-

standard lexical category sequence. The lexical cat-

egory sequences for the sentences in 2-21 can easily

be read off the CCGbank derivations.

The derivations licenced by a lexical category se-

quence were created using the CCG parser described

in Clark and Curran (2004b). The parser uses a small

number of combinatory rules to combine the cate-

gories, along with the CKY chart-parsing algorithm

described in Steedman (2000). It also uses some

unary type-changing rules and punctuation rules ob-

tained from the derivations in CCGbank.3 The parser

builds a packed representation, and counting the

number of derivations in which a dependency occurs

can be performed using a dynamic programming al-

gorithm similar to the inside-outside algorithm.

Table 1 shows that, by varying the value of k, it

is possible to get the recall of the extracted depen-

dencies as high as 85.9%, while still maintaining a

precision value of over 99%.

4.2 Accuracy of the Parser

The training data for the dependency model was cre-

ated by first supertagging the sentences in sections

2-21, using the supertagger described in Clark and

Curran (2004b).4 The average number of categories

3Since our training method is intended to be applicable in
the absence of derivation data, the use of such rules may appear
suspect. However, we argue that the type-changing and punc-
tuation rules could be manually created for a new domain by
examining the lexical category data.

4An improved version of the supertagger was used for this
paper in which the forward-backward algorithm is used to cal-
culate the lexical category probability distributions.

148

assigned to each word is determined by a parameter,

β, in the supertagger. A category is assigned to a

word if the category’s probability is within β of the

highest probability category for that word.

For these experiments, we used a β value of 0.01,

which assigns roughly 1.6 categories to each word,

on average; we also ensured that the correct lexi-

cal category was in the set assigned to each word.

(We did not do this when parsing the test data.) For

some sentences, the packed charts can become very

large. The supertagging approach we adopt for train-

ing differs to that used for testing: if the size of the

chart exceeds some threshold, the value of β is in-

creased, reducing ambiguity, and the sentence is su-

pertagged and parsed again. The threshold which

limits the size of the charts was set at 300 000 indi-

vidual entries. Two further values of β were used:

0.05 and 0.1.

Packed charts were created for each sentence and

stored in memory. It is essential that the packed

charts for each sentence contain at least one deriva-

tion leading to the gold-standard dependency struc-

ture. Not all rule instantiations in CCGbank can be

produced by our parser; hence it is not possible to

produce the gold standard for every sentence in Sec-

tions 2-21. For the full-data model we used 34 336

sentences (86.7% of the total). For the partial-data

models we were able to use slightly more, since the

partial structures are easier to produce. Here we

used 35,709 sentences (k = 0.85).

Since some of the packed charts are very large,

we used an 18-node Beowulf cluster, together with

a parallel version of the BFGS training algorithm.

The training time and number of iterations to con-

vergence were 172 minutes and 997 iterations for the

full-data model, and 151 minutes and 861 iterations

for the partial-data model (k = 0.85). Approximate

memory usage in each case was 17.6 GB of RAM.

The dependency model uses the same set of fea-

tures described in Clark and Curran (2004b): de-

pendency features representing predicate-argument

dependencies (with and without distance measures);

rule instantiation features encoding the combining

categories together with the result category (with

and without a lexical head); lexical category fea-

tures, consisting of word–category pairs at the leaf

nodes; and root category features, consisting of

headword–category pairs at the root nodes. Further

k LP LR F CatAcc

0.99999 85.80 84.51 85.15 93.77

0.9 85.86 84.51 85.18 93.78

0.85 85.89 84.50 85.19 93.71

0.8 85.89 84.45 85.17 93.70

0.7 85.52 84.07 84.79 93.72

0.6 84.99 83.70 84.34 93.65

FullData 87.16 85.84 86.50 93.79

Random 74.63 72.53 73.57 89.31

Table 2: Accuracy of the Parser on Section 00

generalised features for each feature type are formed

by replacing words with their POS tags.

Only features which occur more than once in the

training data are included, except that the cutoff

for the rule features is 10 or more and the count-

ing is performed across all derivations licenced by

the gold-standard lexical category sequences. The

larger cutoff was used since the productivity of the

grammar can lead to large numbers of these features.

The dependency model has 548 590 features. In or-

der to provide a fair comparison, the same feature set

was used for the partial-data and full-data models.

The CCG parsing consists of two phases: first the

supertagger assigns the most probable categories to

each word, and then the small number of combina-

tory rules, plus the type-changing and punctuation

rules, are used with the CKY algorithm to build a

packed chart.5 We use the method described in Clark

and Curran (2004b) for integrating the supertagger

with the parser: initially a small number of cat-

egories is assigned to each word, and more cate-

gories are requested if the parser cannot find a span-

ning analysis. The “maximum-recall” algorithm de-

scribed in Clark and Curran (2004b) is used to find

the highest scoring dependency structure.

Table 2 gives the accuracy of the parser on Section

00 of CCGbank, evaluated against the predicate-

argument dependencies in CCGbank.6 The table

gives labelled precision, labelled recall and F-score,

and lexical category accuracy. Numbers are given

for the partial-data model with various values of k,

and for the full-data model, which provides an up-

5Gold-standard POS tags from CCGbank were used for all
the experiments in this paper.

6There are some dependency types produced by our parser
which are not in CCGbank; these were ignored for evaluation.

149

LP LR F CatAcc

k = 0.85 86.21 85.01 85.60 93.90

FullData 87.50 86.37 86.93 94.01

Table 3: Accuracy of the Parser on Section 23

k Precision Recall SentAcc

0.99999 99.71 80.16 17.48

0.9999 99.68 82.09 19.13

0.999 99.49 85.18 22.18

0.99 99.00 88.95 27.69

0.95 98.34 91.69 34.95

0.9 97.82 92.84 39.18

Table 4: Accuracy of the Partial Dependency Data

using Inside-Outside Scores

per bound for the partial-data model. We also give a

lower bound which we obtain by randomly travers-

ing a packed chart top-down, giving equal proba-

bility to each conjunctive node in an equivalence

class. The precision and recall figures are over those

sentences for which the parser returned an analysis

(99.27% of Section 00).

The best result is obtained for a k value of 0.85,

which produces partial dependency data with a pre-

cision of 99.7 and a recall of 81.3. Interestingly, the

results show that decreasing k further, which results

in partial data with a higher recall and only a slight

loss in precison, harms the accuracy of the parser.

The Random result also dispels any suspicion that

the partial-model is performing well simply because

of the supertagger; clearly there is still much work

to be done after the supertagging phase.

Table 3 gives the accuracy of the parser on Sec-

tion 23, using the best performing partial-data model

on Section 00. The precision and recall figures are

over those sentences for which the parser returned

an analysis (99.63% of Section 23). The results

show that the partial-data model is only 1.3% F-

score short of the upper bound.

4.3 Further Experiments with Inside-Outside

In a final experiment, we attempted to exploit the

high accuracy of the partial-data model by using it

to provide new training data. For each sentence in

Section 2-21, we parsed the gold-standard lexical

category sequences and used the best performing

partial-data model to assign scores to each depen-

dency in the packed chart. The score for a depen-

dency was the sum of the probabilities of all deriva-

tions producing that dependency, which can be cal-

culated using the inside-outside algorithm. (This is

the score used by the maximum-recall parsing algo-

rithm.) Partial dependency structures were then cre-

ated by returning all dependencies whose score was

above some threshold k, as before. Table 4 gives the

accuracy of the data created by this procedure. Note

how these values differ to those reported in Table 1.

We then trained the dependency model on this

partial data using the same method as before. How-

ever, the peformance of the parser on Section 00 us-

ing these new models was below that of the previous

best performing partial-data model for all values of

k. We report this negative result because we had hy-

pothesised that using a probability model to score

the dependencies, rather than simply the number of

derivations in which they occur, would lead to im-

proved performance.

5 Conclusions

Our main result is that it is possible to train a CCG

dependency model from lexical category sequences

alone and still obtain parsing results which are only

1.3% worse in terms of labelled F-score than a

model trained on complete data. This is a notewor-

thy result and demonstrates the significant amount

of information encoded in CCG lexical categories.

The engineering implication is that, since the de-

pendency model can be trained without annotating

recursive structures, and only needs sequence in-

formation at the word level, then it can be ported

rapidly to a new domain (or language) by annotating

new sequence data in that domain.

One possible response to this argument is that,

since the lexical category sequence contains so

much syntactic information, then the task of anno-

tating category sequences must be almost as labour

intensive as annotating full derivations. To test this

hypothesis fully would require suitable annotation

tools and subjects skilled in CCG annotation, which

we do not currently have access to.

However, there is some evidence that annotat-

ing category sequences can be done very efficiently.

Clark et al. (2004) describes a porting experiment

150

in which a CCG parser is adapted for the ques-

tion domain. The supertagger component of the

parser is trained on questions annotated at the lex-

ical category level only. The training data consists

of over 1,000 annotated questions which took less

than a week to create. This suggests, as a very

rough approximation, that 4 annotators could an-

notate 40,000 sentences with lexical categories (the

size of the Penn Treebank) in a few months.

Another advantage of annotating with lexical cat-

egories is that a CCG supertagger can be used to per-

form most of the annotation, with the human an-

notator only required to correct the mistakes made

by the supertagger. An accurate supertagger can be

bootstrapped quicky, leaving only a small number of

corrections for the annotator. A similar procedure is

suggested by Doran et al. (1997) for porting an LTAG

grammar to a new domain.

We have a proposed a novel solution to the an-

notation bottleneck for statistical parsing which ex-

ploits the lexicalized nature of CCG, and may there-

fore be applicable to other lexicalized grammar for-

malisms such as LTAG.

References

A. Cahill, M. Burke, R. O’Donovan, J. van Genabith, and
A. Way. 2004. Long-distance dependency resolution in au-
tomatically acquired wide-coverage PCFG-based LFG ap-
proximations. In Proceedings of the 42nd Meeting of the
ACL, pages 320–327, Barcelona, Spain.

John Carroll and Ted Briscoe. 2002. High precision extrac-
tion of grammatical relations. In Proceedings of the 19th In-
ternational Conference on Computational Linguistics, pages
134–140, Taipei, Taiwan.

David Chiang. 2000. Statistical parsing with an automatically-
extracted Tree Adjoining Grammar. In Proceedings of the
38th Meeting of the ACL, pages 456–463, Hong Kong.

Stephen Clark and James R. Curran. 2003. Log-linear mod-
els for wide-coverage CCG parsing. In Proceedings of the
EMNLP Conference, pages 97–104, Sapporo, Japan.

Stephen Clark and James R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. In Proceed-
ings of COLING-04, pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the WSJ
using CCG and log-linear models. In Proceedings of the
42nd Meeting of the ACL, pages 104–111, Barcelona, Spain.

Stephen Clark, Mark Steedman, and James R. Curran. 2004.
Object-extraction and question-parsing using CCG. In
Proceedings of the EMNLP Conference, pages 111–118,
Barcelona, Spain.

C. Doran, B. Hockey, P. Hopely, J. Rosenzweig, A. Sarkar,
B. Srinivas, F. Xia, A. Nasr, and O. Rambow. 1997. Main-
taining the forest and burning out the underbrush in XTAG.
In Proceedings of the ENVGRAM Workshop, Madrid, Spain.

Julia Hockenmaier and Mark Steedman. 2002. Generative
models for statistical parsing with Combinatory Categorial
Grammar. In Proceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003. Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Rebbeca Hwa. 1999. Supervised grammar induction using
training data with limited constituent information. In Pro-
ceedings of the 37th Meeting of the ACL, pages 73–79, Uni-
versity of Maryland, MD.

Matthew Lease and Eugene Charniak. 2005. Parsing biomed-
ical literature. In Proceedings of the Second Interna-
tional Joint Conference on Natural Language Processing
(IJCNLP-05), Jeju Island, Korea.

Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. In Proceedings of the
Sixth Workshop on Natural Language Learning, pages 49–
55, Taipei, Taiwan.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum entropy
estimation for feature forests. In Proceedings of the Human
Language Technology Conference, San Diego, CA.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. 2004.
Corpus-oriented grammar development for acquiring a head-
driven phrase structure grammar from the Penn Treebank. In
Proceedings of the First International Joint Conference on
Natural Language Processing (IJCNLP-04), pages 684–693,
Hainan Island, China.

Jorge Nocedal and Stephen J. Wright. 1999. Numerical Opti-
mization. Springer, New York, USA.

Fernando Pereira and Yves Schabes. 1992. Inside-outside rees-
timation from partially bracketed corpora. In Proceedings of
the 30th Meeting of the ACL, pages 128–135, Newark, DE.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell III, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques. In Pro-
ceedings of the 40th Meeting of the ACL, pages 271–278,
Philadelphia, PA.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark,
Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen, Steve Baker,
and Jeremiah Crim. 2003. Bootstrapping statistical parsers
from small datasets. In Proceedings of the 11th Conference
of the European Association for Computational Linguistics,
Budapest, Hungary.

Mark Steedman. 2000. The Syntactic Process. The MIT Press,
Cambridge, MA.

151

