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Abstract

Recently, discriminative word alignment methods
have achieved state-of-the-art accuracies by extend-
ing the range of information sources that can be
easily incorporated into aligners. The chief advan-
tage of a discriminative framework is the ability
to score alignments based on arbitrary features of
the matching word tokens, including orthographic
form, predictions of other models, lexical context
and so on. However, the proposed bipartite match-
ing model of Taskar et al. (2005), despite being
tractable and effective, has two important limita-
tions. First, it is limited by the restriction that
words have fertility of at most one. More impor-
tantly, first order correlations between consecutive
words cannot be directly captured by the model. In
this work, we address these limitations by enrich-
ing the model form. We give estimation and infer-
ence algorithms for these enhancements. Our best
model achieves a relative AER reduction of 25%
over the basic matching formulation, outperform-
ing intersected IBM Model 4 without using any
overly compute-intensive features. By including
predictions of other models as features, we achieve
AER of 3.8 on the standard Hansards dataset.

1 Introduction

Word alignment is a key component of most end-
to-end statistical machine translation systems. The
standard approach to word alignment is to construct
directional generative models (Brown et al., 1990;
Och and Ney, 2003), which produce a sentence in
one language given the sentence in another lan-
guage. While these models require sentence-aligned
bitexts, they can be trained with no further super-
vision, using EM. Generative alignment models do,
however, have serious drawbacks. First, they require
extensive tuning and processing of large amounts
of data which, for the better-performing models, is
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a non-trivial resource requirement. Second, condi-
tioning on arbitrary features of the input is difficult;
for example, we would like to condition on the or-
thographic similarity of a word pair (for detecting
cognates), the presence of that pair in various dic-
tionaries, the similarity of the frequency of its two
words, choices made by other alignment systems,
and so on.

Recently, Moore (2005) proposed a discrimina-
tive model in which pairs of sentences (e, f) and
proposed alignments a are scored using a linear
combination of arbitrary features computed from the
tuples (a, e, f). While there are no restrictions on
the form of the model features, the problem of find-
ing the highest scoring alignment is very difficult
and involves heuristic search. Moreover, the param-
eters of the model must be estimated using averaged
perceptron training (Collins, 2002), which can be
unstable. In contrast, Taskar et al. (2005) cast word
alignment as a maximum weighted matching prob-
lem, in which each pair of words (e;, f;) in a sen-
tence pair (e, f) is associated with a score s, (e, f)
reflecting the desirability of the alignment of that
pair. Importantly, this problem is computationally
tractable. The alignment for the sentence pair is the
highest scoring matching under constraints (such as
the constraint that matchings be one-to-one). The
scoring model s, (e, f) can be based on a rich fea-
ture set defined on word pairs (e;, fi) and their con-
text, including measures of association, orthogra-
phy, relative position, predictions of generative mod-
els, etc. The parameters of the model are estimated
within the framework of large-margin estimation; in
particular, the problem turns out to reduce to the
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solution of a (relatively) small quadratic program
(QP). The authors show that large-margin estimation
is both more stable and more accurate than percep-
tron training.

While the bipartite matching approach is a use-
ful first step in the direction of discriminative word
alignment, for discriminative approaches to com-
pete with and eventually surpass the most sophisti-
cated generative models, it is necessary to consider
more realistic underlying statistical models. Note in
particular two substantial limitations of the bipartite
matching model of Taskar et al. (2005): words have
fertility of at most one, and there is no way to incor-
porate pairwise interactions among alignment deci-
sions. Moving beyond these limitations—while re-
taining computational tractability—is the next major
challenge for discriminative word alignment.

In this paper, we show how to overcome both lim-
itations. First, we introduce a parameterized model
that penalizes different levels of fertility. While this
extension adds very useful expressive power to the
model, it turns out not to increase the computa-
tional complexity of the aligner, for either the pre-
diction or the parameter estimation problem. Sec-
ond, we introduce a more thoroughgoing extension
which incorporates first-order interactions between
alignments of consecutive words into the model. We
do this by formulating the alignment problem as a
quadratic assignment problem (QAP), where in ad-
dition to scoring individual edges, we also define
scores of pairs of edges that connect consecutive
words in an alignment. The predicted alignment is
the highest scoring quadratic assignment.

QAP is an NP-hard problem, but in the range of
problem sizes that we need to tackle the problem can
be solved efficiently. In particular, using standard
off-the-shelf integer program solvers, we are able to
solve the QAP problems in our experiments in under
a second. Moreover, the parameter estimation prob-
lem can also be solved efficiently by making use of
a linear relaxation of QAP for the min-max formu-
lation of large-margin estimation (Taskar, 2004).

We show that these two extensions yield signif-
icant improvements in error rates when compared
to the bipartite matching model. The addition of a
fertility model improves the AER by 0.4. Model-
ing first-order interactions improves the AER by 1.8.
Combining the two extensions results in an improve-
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ment in AER of 2.3, yielding alignments of better
quality than intersected IBM Model 4. Moreover,
including predictions of bi-directional IBM Model
4 and model of Liang et al. (2006) as features, we
achieve an absolute AER of 3.8 on the English-
French Hansards alignment task—the best AER re-
sult published on this task to date.

2 Modes

We begin with a quick summary of the maximum
weight bipartite matching model in (Taskar et al.,
2005). More precisely, nodes V = V¢ U V! cor-
respond to words in the “source” (V*) and “tar-
get” (V') sentences, and edges £ = {jk : j €
Vs, k € V'} correspond to alignments between word
pairs.! The edge weights s;; represent the degree
to which word j in one sentence can be translated
using the word % in the other sentence. The pre-
dicted alignment is chosen by maximizing the sum
of edge scores. A matching is represented using a
set of binary variables y;; that are set to 1 if word
j is assigned to word k in the other sentence, and 0
otherwise. The score of an assignment is the sum of
edge scores: s(y) = ij s;kYy;k- For simplicity, let
us begin by assuming that each word aligns to one or
zero words in the other sentence; we revisit the issue
of fertility in the next section. The maximum weight
bipartite matching problem, arg maxy,cy, s(y), can
be solved using combinatorial algorithms for min-
cost max-flow, expressed in a linear programming
(LP) formulation as follows:

max L7 1
0ee Z Sik%jk ( )
JkeE
st. Yz <1l VkeVh
JEVS
Z 2k <1,Vje Ve,
keVvt

where the continuous variables z;, are a relax-
ation of the corresponding binary-valued variables
yjk- This LP is guaranteed to have integral (and
hence optimal) solutions for any scoring function
s(y) (Schrijver, 2003). Note that although the above
LP can be used to compute alignments, combina-
torial algorithms are generally more efficient. For

1The source/target designation is arbitrary, as the models
considered below are all symmetric.
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Figure 2: An example fragment that requires fertility
greater than one to correctly label. (a) The guess of
the baseline M model. (b) The guess of the M+F
fertility-augmented model.

example, in Figure 1(a), we show a standard con-
struction for an equivalent min-cost flow problem.
However, we build on this LP to develop our exten-
sions to this model below. Representing the predic-
tion problem as an LP or an integer LP provides a
precise (and concise) way of specifying the model
and allows us to use the large-margin framework
of Taskar (2004) for parameter estimation described
in Section 3.

For a sentence pair x, we denote position pairs by
1, and their scores as s ;. We let s, = w ' f(x;x)
for some user provided feature mapping f and ab-
breviate w ' f(x,y) = >, yjrw ' £(xz). We can
include in the feature vector the identity of the two
words, their relative positions in their respective sen-
tences, their part-of-speech tags, their string similar-
ity (for detecting cognates), and so on.

21 Fertility

An important limitation of the model in Eq. (1) is
that in each sentence, a word can align to at most
one word in the translation. Although it is common
that words have gold fertility zero or one, it is cer-
tainly not always true. Consider, for example, the
bitext fragment shown in Figure 2(a), where back-
bone is aligned to the phrase épine dorsal. In this
figure, outlines are gold alignments, square for sure
alignments, round for possibles, and filled squares
are target alignments (for details on gold alignments,
see Section 4). When considering only the sure
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alignments on the standard Hansards dataset, 7 per-
cent of the word occurrences have fertility 2, and 1
percent have fertility 3 and above; when considering
the possible alignments high fertility is much more
common—31 percent of the words have fertility 3
and above.

One simple fix to the original matching model is
to increase the right hand sides for the constraints
in Eq. (1) from 1 to D, where D is the maximum
allowed fertility. However, this change results in
an undesirable bimodal behavior, where maximum
weight solutions either have all words with fertil-
ity 0 or D, depending on whether most scores s,
are positive or negative. For example, if scores tend
to be positive, most words will want to collect as
many alignments as they are permitted. What the
model is missing is a means for encouraging the
common case of low fertility (0 or 1), while allowing
higher fertility when it is licensed. This end can be
achieved by introducing a penalty for having higher
fertility, with the goal of allowing that penalty to
vary based on features of the word in question (such
as its frequency or identity).

In order to model such a penalty, we introduce
indicator variables zg;, (and zge) With the intended
meaning: node j has fertility of at least d (and node
k has fertility of at least d). In the following LP, we
introduce a penalty of ) ", ;- ) Saje2dje TOr fertility
of node j, where each term sg4;e > 0 is the penalty
increment for increasing the fertility from d — 1 to
d:

max SikZ; 2
0<z21 Jk<jk ( )
jke€
- Z SdjeZdje — Z SdekZdek
jEVS 2<d<D keVt,2<d<D
s.t. Z Zjk <1+ Z Zaels Vk €V
jevs 2<d<D
Z Zjg < 1+ Z Zdje; Vj e Ve,
kevt 2<d<D

We can show that this LP always has integral so-
lutions by a reduction to a min-cost flow problem.
The construction is shown in Figure 1(b). To ensure
that the new variables have the intended semantics,
we need to make sure that sgie < sgje if d < ',
so that the lower cost z4;, is used before the higher
cost zqje to increase fertility. This restriction im-
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Figure 1: (a) Maximum weight bipartite matching as min-cost flow. Diamond-shaped nodes represent flow
source and sink. All edge capacities are 1, with edges between round nodes (7, k) have cost —s j;, edges
from source and to sink have cost 0. (b) Expanded min-cost flow graph with new edges from source and to
sink that allow fertility of up to 3. The capacities of the new edges are 1 and the costs are 0 for solid edges
from source and to sink, soje, 5241 for dashed edges, and s3;., s34, for dotted edges. (c) Three types of pairs
of edges included in the QAP model, where the nodes on both sides correspond to consecutive words.
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Figure 3: An example fragment with a monotonic
gold alignment. (a) The guess of the baseline M
model. (b) The guess of the M+Q quadratic model.

plies that the penalty must be monotonic and convex
as a function of the fertility.

To anticipate the results that we report in Sec-
tion 4, adding fertility to the basic matching model
makes the target alignment of the backbone example
feasible and, in this case, the model correctly labels
this fragment as shown in Figure 2(b).

2.2 First-order interactions

An even more significant limitation of the model
in Eg. (1) is that the edges interact only indi-
rectly through the competition induced by the con-
straints.  Generative alignment models like the
HMM model (Vogel et al., 1996) and IBM models 4
and above (Brown et al., 1990; Och and Ney, 2003)
directly model correlations between alignments of
consecutive words (at least on one side). For exam-
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ple, Figure 3 shows a bitext fragment whose gold
alignment is strictly monotonic. This monotonicity
is quite common — 46% of the words in the hand-
aligned data diagonally follow a previous alignment
in this way. We can model the common local align-
ment configurations by adding bonuses for pairs of
edges. For example, strictly monotonic alignments
can be encouraged by boosting the scores of edges
of the form ((4, k), ( + 1,k + 1)). Another trend,
common in English-French translation (7% on the
hand-aligned data), is the local inversion of nouns
and adjectives, which typically involves a pair of
edges ((j,k+ 1), (j + 1, k)). Finally, aword in one
language is often translated as a phrase (consecutive
sequence of words) in the other language. This pat-
tern involves pairs of edges with the same origin on
oneside: ((4, k), (j, k+1))or ((4,k), (j+1,k)). All
three of these edge pair patterns are shown in Fig-
ure 1(c). Note that the set of such edge pairs Q =
{jklm : |5 = 1| < 1,|k —m| < 1} is of linear size
in the number of edges.

Formally, we add to the model variables z;,
which indicate whether both edge jk and im are in
the alignment. We also add a corresponding score
skim, Which we assume to be non-negative, since
the correlations we described are positive. (Nega-
tive scores can also be used, but the resulting for-
mulation we present below would be slightly differ-
ent.) To enforce the semantics 2;i1, = 2ji2im, We
use a pair of constraints z;xi, < 2jk; Zjkim < Zim-
Since s, Is positive, at the optimum, zji;, =



min(z;, 2im ). If inaddition z;y,, 2, are integral (0
or 1), then zjpm = 2jr21m- Hence, solving the fol-
lowing LP as an integer linear program will find the
optimal quadratic assignment for our model:

Jnax, Z SjkZjk + Z SjklmZjkim @)
=T jkee jklmeQ
s.t. Z zip <1, Vk € %8
jevs
keyt

Zikim < Zjk, Zjkim < Zim, Vjklm € Q.

Note that we can also combine this extension with
the fertility extension described above.

To once again anticipate the results presented in
Section 4, the baseline model of Taskar et al. (2005)
makes the prediction given in Figure 3(a) because
the two missing alignments are atypical translations
of common words. With the addition of edge pair
features, the overall monotonicity pushes the align-
ment to that of Figure 3(b).

3 Parameter estimation

To estimate the parameters of our model, we fol-
low the large-margin formulation of Taskar (2004).
Our input is a set of training instances {(x;, yi)}7;,
where each instance consists of a sentence pair x;
and a target alignment y;. We would like to find
parameters w that predict correct alignments on the
training data: y; = arg maxw ' f(x;,y;) for each i,
yi€Vi

where Y; is the spaceyof%atchings for the sentence
pair x;.

In standard classification problems, we typically
measure the error of prediction, ¢(y;,y;), using the
simple 0-1 loss. In structured problems, where we
are jointly predicting multiple variables, the loss is
often more complex. While the F-measure is a nat-
ural loss function for this task, we instead chose a
sensible surrogate that fits better in our framework:
weighted Hamming distance, which counts the num-
ber of variables in which a candidate solution y dif-
fers from the target output y, with different penalty
for false positives (¢") and false negatives (¢ ):
(y,3) = 3 [ (1= yn)iin + ¢~ (1= Gn)yn] -
ik
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We use an SVM-like hinge upper bound on
the loss £(y;,¥:), given by maxy,cy,[w ' fi(y;) +
li(yi) — w ' fi(y:)], where £i(y;) = £(yi,y:), and
fi(y;) = f(x;,¥y:). Minimizing this upper bound
encourages the true alignment y; to be optimal with
respect to w for each instance :

min Y max([w ' £i(5:) + Li(5:)] — w ' fi(ya),

[lwi|<y p Vi€V
where ~y is a regularization parameter.

In this form, the estimation problem is a mixture
of continuous optimization over w and combinato-
rial optimization over y;. In order to transform it
into a more standard optimization problem, we need
a way to efficiently handle the loss-augmented in-
ference, maxy,cy, (W' fi(¥;) + €:(¥:)]. This opti-
mization problem has precisely the same form as the
prediction problem whose parameters we are trying
to learn — maxy,cy, w ' f;(¥;) — but with an addi-
tional term corresponding to the loss function. Our
assumption that the loss function decomposes over
the edges is crucial to solving this problem. We omit
the details here, but note that we can incorporate the
loss function into the LPs for various models we de-
scribed above and “plug” them into the large-margin
formulation by converting the estimation problem
into a quadratic problem (QP) (Taskar, 2004). This
QP can be solved using any off-the-shelf solvers,
such as MOSEK or CPLEX.? An important differ-
ence that comes into play for the estimation of the
guadratic assignment models in Equation (3) is that
inference involves solving an integer linear program,
not justan LP. In fact the LP is a relaxation of the in-
teger LP and provides an upper bound on the value
of the highest scoring assignment. Using the LP re-
laxation for the large-margin QP formulation is an
approximation, but as our experiments indicate, this
approximation is very effective. At testing time, we
use the integer LP to predict alignments. We have
also experimented with using just the LP relaxation
at testing time and then independently rounding each
fractional edge value, which actually incurs no loss
in alignment accuracy, as we discuss below.

2\When training on 200 sentences, the QP we obtain contains
roughly 700K variables and 300K constraints and is solved in
roughly 10 minutes on a 2.8 GHz Pentium 4 machine. Aligning
the whole training set with the flow formulation takes a few

seconds, whereas using the integer programming (for the QAP
formulation) takes 1-2 minutes.
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Figure 4: An example fragment with several multiple fertility sure alignments. (a) The guess of the M+Q
model with maximum fertility of one. (b) The guess of the M+Q+F quadratic model with fertility two
permitted. (c) The guess of the M+Q+F model with lexical fertility features.

4 Experiments

We applied our algorithms to word-level alignment
using the English-French Hansards data from the
2003 NAACL shared task (Mihalcea and Pedersen,
2003). This corpus consists of 1.1M automatically
aligned sentences, and comes with a validation set of
37 sentence pairs and a test set of 447 sentences. The
validation and test sentences have been hand-aligned
(see Och and Ney (2003)) and are marked with both
sure and possible alignments. Using these align-
ments, alignment error rate (AER) is calculated as:

(1_ |ANS|+ AN P|
A +15]

Here, A is a set of proposed index pairs, S is the
sure gold pairs, and P is the possible gold pairs.
For example, in Figure 4, proposed alignments are
shown against gold alignments, with open squares
for sure alignments, rounded open squares for possi-
ble alignments, and filled black squares for proposed
alignments.

The input to our algorithm is a small number of
labeled examples. In order to make our results more
comparable with Moore (2005), we split the origi-
nal set into 200 training examples and 247 test ex-
amples. We also trained on only the first 100 to
make our results more comparable with the exper-
iments of Och and Ney (2003), in which IBM model

> x 100%.
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4 was tuned using 100 sentences. In all our experi-
ments, we used a structured loss function that penal-
ized false negatives 10 times more than false posi-
tives, where the value of 10 was picked by using a
validation set. The regularization parameter v was
also chosen using the validation set.

4.1 Featuresand results

We parameterized all scoring functions s;i, Sgje,
Sdek aNd 511, as Weighted linear combinations of
feature sets. The features were computed from
the large unlabeled corpus of 1.1M automatically
aligned sentences.

In the remainder of this section we describe the
improvements to the model performance as various
features are added. One of the most useful features
for the basic matching model is, of course, the set of
predictions of IBM model 4. However, computing
these features is very expensive and we would like to
build a competitive model that doesn’t require them.
Instead, we made significant use of IBM model 2 as
a source of features. This model, although not very
accurate as a predictive model, is simple and cheap
to construct and it is a useful source of features.

The Basic Matching Model: Edge Features In
the basic matching model of Taskar et al. (2005),
called M here, one can only specify features on pairs
of word tokens, i.e. alignment edges. These features



include word association, orthography, proximity,
etc., and are documented in Taskar et al. (2005). We
also augment those features with the predictions of
IBM Model 2 run on the training and test sentences.
We provided features for model 2 trained in each
direction, as well as the intersected predictions, on
each edge. By including the IBM Model 2 features,
the performance of the model described in Taskar et
al. (2005) on our test set (trained on 200 sentences)
improves from 10.0 AER to 8.2 AER, outperforming
unsymmetrized 1BM Model 4 (but not intersected
model 4).

As an example of the kinds of errors the baseline
M system makes, see Figure 2 (where multiple fer-
tility cannot be predicted), Figure 3 (where a prefer-
ence for monotonicity cannot be modeled), and Fig-
ure 4 (which shows several multi-fertile cases).

The Fertility Model: Node Features To address
errors like those shown in Figure 2, we increased
the maximum fertility to two using the parameter-
ized fertility model of Section 2.1. The model learns
costs on the second flow arc for each word via fea-
tures not of edges but of single words. The score of
taking a second match for a word w was based on
the following features: a bias feature, the proportion
of times w’s type was aligned to two or more words
by IBM model 2, and the bucketed frequency of the
word type. This model was called m+F. We also in-
cluded a lexicalized feature for words which were
common in our training set: whether w was ever
seen in a multiple fertility alignment (more on this
feature later). This enabled the system to learn that
certain words, such as the English not and French
verbs like aurait commonly participate in multiple
fertility configurations.

Figure 5 show the results using the fertility exten-
sion. Adding fertility lowered AER from 8.5 to 8.1,
though fertility was even more effective in conjunc-
tion with the quadratic features below. The M+F set-
ting was even able to correctly learn some multiple
fertility instances which were not seen in the training
data, such as those shown in Figure 2.

The First-Order Modd: Quadratic Features
With or without the fertility model, the model makes
mistakes such as those shown in Figure 3, where
atypical translations of common words are not cho-
sen despite their local support from adjacent edges.
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In the quadratic model, we can associate features
with pairs of edges. We began with features which
identify each specific pattern, enabling trends of
monotonicity (or inversion) to be captured. We also
added to each edge pair the fraction of times that
pair’s pattern (monotonic, inverted, one to two) oc-
curred according each version of IBM model 2 (for-
ward, backward, intersected).

Figure 5 shows the results of adding the quadratic
model. M+Q reduces error over M from 8.5 to 6.7
(and fixes the errors shown in Figure 3). When both
the fertility and quadratic extensions were added,
AER dropped further, to 6.2. This final model is
even able to capture the diamond pattern in Figure 4;
the adjacent cycle of alignments is reinforced by the
quadratic features which boost adjacency. The ex-
ample in Figure 4 shows another interesting phe-
nomenon: the multi-fertile alignments for not and
député are learned even without lexical fertility fea-
tures (Figure 4b), because the Dice coefficients of
those words with their two alignees are both high.
However the surface association of aurait with have
is much higher than with would. If, however, lexi-
cal features are added, would is correctly aligned as
well (Figure 4c), since it is observed in similar pe-
riphrastic constructions in the training set.

We have avoided using expensive-to-compute fea-
tures like IBM model 4 predictions up to this point.
However, if these are available, our model can im-
prove further. By adding model 4 predictions to the
edge features, we get a relative AER reduction of
27%, from 6.5 to 4.5. By also including as features
the posteriors of the model of Liang et al. (2006), we
achieve AER of 3.8, and 96.7/95.5 precision/recall.

It is comforting to note that in practice, the burden
of running an integer linear program at test time can
be avoided. We experimented with using just the LP
relaxation and found that on the test set, only about
20% of sentences have fractional solutions and only
0.2% of all edges are fractional. Simple rounding®
of each edge value in the LP solution achieves the
same AER as the integer LP solution, while using
about a third of the computation time on average.

3We slightly bias the system on the recall side by rounding
0.5 up, but this doesn’t yield a noticeable difference in the re-
sults.



| Model Prec Rec AER |
Generative
IBM 2 (E—F) 736 877 217
IBM 2 (F—E) 754 87.0 20.6
IBM 2 (intersected) 90.1 80.4 14.3
IBM 4 (E—F) 90.3 921 9.0
IBM 4 (F—E) 90.8 913 9.0
IBM 4 (intersected) 98.0 88.1 6.5

Discriminative (100 sentences)

Matching (M) 941 885 85
M + Fertility (F) 939 894 81
M + Quadratic (Q) 944 919 6.7
M+F+Q 948 925 6.2
M+F+Q+IBM4 964 944 45
Discriminative (200 sentences)
Matching (M) 934 89.7 82
M + Fertility (F) 936 90.1 80
M + Quadratic (Q) 95.0 91.1 6.8
M+F+Q 952 924 6.1
M+F+Q+IBM4 96.0 950 44

Figure 5: AER on the Hansards task.

5 Conclusion

We have shown that the discriminative approach to
word alignment can be extended to allow flexible
fertility modeling and to capture first-order inter-
actions between alignments of consecutive words.
These extensions significantly enhance the expres-
sive power of the discriminative approach; in partic-
ular, they make it possible to capture phenomena of
monotonicity, local inversion and contiguous fertil-
ity trends—phenomena that are highly informative
for alignment. They do so while remaining compu-
tationally efficient in practice both for prediction and
for parameter estimation.

Our best model achieves a relative AER reduc-
tion of 25% over the basic matching formulation,
beating intersected IBM Model 4 without the use
of any compute-intensive features. Including Model
4 predictions as features, we achieve a further rela-
tive AER reduction of 32% over intersected Model
4 alignments. By also including predictions of an-
other model, we drive AER down to 3.8. We are
currently investigating whether the improvement in
AER results in better translation BLEU score. Al-
lowing higher fertility and optimizing a recall bi-
ased cost function provide a significant increase in
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recall relative to the intersected IBM model 4 (from
88.1% to 94.4%), with only a small degradation in
precision. We view this as a particularly promising
aspect of our work, given that phrase-based systems
such as Pharaoh (Koehn et al., 2003) perform better
with higher recall alignments.
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