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Abstract

This paper presents a new approach to
combining outputs of existing word align-
ment systems. Each alignment link is rep-
resented with a set of feature functions
extracted from linguistic features and in-
put alignments. These features are used
as the basis of alignment decisions made
by a maximum entropy approach. The
learning method has been evaluated on
three language pairs, yielding significant
improvements over input alignments and
three heuristic combination methods. The
impact of word alignment on MT quality
is investigated, using a phrase-based MT
system.

1 Introduction
Word alignment—detection of corresponding words
between two sentences that are translations of each
other—is usually an intermediate step of statisti-
cal machine translation (MT) (Brown et al., 1993;
Och and Ney, 2003; Koehn et al., 2003), but also
has been shown useful for other applications such
as construction of bilingual lexicons, word-sense
disambiguation, projection of resources, and cross-
language information retrieval.

Maximum entropy (ME) models have been used
in bilingual sense disambiguation, word reordering,
and sentence segmentation (Berger et al., 1996),
parsing, POS tagging and PP attachment (Ratna-
parkhi, 1998), machine translation (Och and Ney,
2002), and FrameNet classification (Fleischman et
al., 2003). They have also been used to solve the
word alignment problem (Garcia-Varea et al., 2002;
Ittycheriah and Roukos, 2005; Liu et al., 2005), but
a sentence-level approach to combining knowledge
sources is used rather than a word-level approach.

This paper describes an approach to combin-
ing evidence from alignments generated by exist-
ing systems to obtain an alignment that is closer
to the true alignment than the individual align-
ments. The alignment-combination approach (called
ACME) operates at the level of alignment links,
rather than at the sentence level (as in previous ME
approaches). ACME uses ME to decide whether
to include/exclude a particular alignment link based
on feature functions that are extracted from the in-
put alignments and linguistic features of the words.
Since alignment combination relies on evidence
from existing alignments, we focus on alignment
links that exist in at least one input alignment. An
important challenge in this approach is the selection
of appropriate links when two aligners make differ-
ent alignment choices.

We show that ACME yields a significant relative
error reduction over the input alignment systems and
heuristic-based combinations on three different lan-
guage pairs. Using a higher number of input align-
ments and partitioning the training data into disjoint
subsets yield further error-rate reductions.

The next section briefly overviews ME models.
Section 3 presents a new ME approach to combin-
ing existing word alignment systems. Section 4 de-
scribes the evaluation data, input alignments, and
evaluation metrics. Section 5 presents experiments
on three language pairs, upper bounds for alignment
error rate in alignment combination, and MT evalu-
ation on English-Chinese and English-Arabic. Sec-
tion 6 describes previous work on alignment combi-
nation and ME models on word alignment.

2 Maximum Entropy (ME) Models

In a statistical classification problem, the goal is to
estimate the probability of a class y in a given con-
text x, i.e., p(y|x). In an ideal scenario, if the train-
ing data contain evidence for all pairs of (y, x), it is

96



trivial to compute the probability distribution p. Un-
fortunately, due to training-data sparsity, p is gener-
ally modeled using only the available evidence.

Given a collection of facts, ME chooses a model
consistent with all the facts, but otherwise as uni-
form as possible (Berger et al., 1996). Formally, the
evidence is represented as feature functions, i.e., bi-
nary valued functions that map a class y and a con-
text x to either 0 or 1, i.e., hm : Y × X → {0, 1},
where Y is the set of all classes andX is the set of all
facts. The biggest advantage of maximum entropy
models is that they are able to focus on the selection
of feature functions rather than on how such func-
tions are used. Any context can be used to define
feature functions without concern for the indepen-
dence of the feature functions from each other or the
relevance of the feature functions to the final deci-
sion (Ratnaparkhi, 1998).

Each feature function hm is associated with a
model parameter λm. Given a set of M feature func-
tions h1, . . . , hM , the probability of class y given a
context x is equal to:

p(y|x) =
1
Zx

exp

(
M∑

m=1

λmhm(y, x)
)

where Zx is a normalization constant. The contri-
bution of each feature function to the final decision,
i.e., λm, can be automatically computed using Gen-
eralized Iterative Scaling (GIS) algorithm (Darroch
and Ratcliff, 1972). The final classification for a
given instance is the class y that maximizes p(y|x).

3 Alignment Combination: ACME
Let e = e1, . . . , eI and f = f1, . . . , fJ be two
sentences in two different languages. An align-
ment link (i, j) corresponds to a translational equiv-
alence between words ei and fj . Let Ak be an
alignment between sentences e and f , where each
element a ∈ Ak is an alignment link (i, j). Let
A = {A1, . . . , An} be a set of alignments between
e and f . We refer to the true alignment as T , where
each a ∈ T is of the form (i, j). The goal of
ACME is to combine the information in A such
that the combined alignment AC is closer to T . A
straightforward solution is to take the intersection or
union of the individual alignments. In this paper, an
additional model is learned to combine outputs of
A1, . . . , An.

In our combination framework, first, n differ-
ent word-alignment systems, A1, . . . , An, generate
word alignments between a given English sentence
and a foreign-language (FL) sentence. Then a Fea-
ture Extractor takes the output of these alignment
systems and the parallel corpus (which might be en-
riched with linguistic features) and extracts a set of
feature functions based on linguistic properties of
the words and the input alignments. Each feature
function hm is associated with a model parameter
λm. Next, an Alignment Combiner decides whether
to include or exclude an alignment link based on the
extracted feature functions and the model parame-
ters associated with them.

For each possible alignment link a set of features
is extracted from the input alignments and linguistic
properties of words. The features that are used for
representing an alignment link (i, j) are as follows:

1. Part-of-speech tags (posE, posF, prevposE,
prevposF, nextpostE, nextposF): POS tags for
the previous, current, and the next English and
FL words.

2. Outputs of input aligners (out): Whether
(i, j) exists in a given input alignment Ak.

3. Neighbors (neigh): A neighborhood of an
alignment link (i, j)—denoted by N(i, j)—
consists of 8 possible alignment links in a 3×3
window with (i, j) in the center of the window.
Each element of N(i, j) is called a neighbor-
ing link of (i, j). Neighbor features include:
(1) Whether a particular neighbor of (i, j) ex-
ists in a given input alignment Ak; and (2) To-
tal number of neighbors of (i, j) in a given in-
put alignment Ak.

4. Fertilities (fertE, fertF): The number of
words that ei (or fj) is aligned to in a given
input alignment Ak.

5. Monotonicity (mon): The absolute difference
between i and j.

Our combination approach employs feature func-
tions derived from a subset of the features above.
Assuming Y = {yes,no} represents the set of
classes, where each class denotes the existence or
absence of a link in the combined alignment, and
X is the set of features above, we generate various
feature functions h(y, x), where y ∈ Y and x are
instantiations of one or more features in X . Table 1
lists the feature sets with an example feature func-

97



Features Example Feature Function
posE h(′yes′, i, j) = 1 if (i, j) ∈ AC and pos(ei) = Noun
posF h(′no′, i, j) = 1 if (i, j) /∈ AC and pos(fj) = V erb
out h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and (i, j) ∈ Ak

out, neigh h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and (i− 1, j + 1) ∈ Ak

h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and |NC| = 2 where NC = {n|n ∈ N(i, j), n ∈ Ak}
out, fertE h(′no′, i, j, k) = 1 if (i, j) /∈ AC and |FT | = 0 where FT = {t|(i, t) ∈ Ak}
out, fertF h(′no′, i, j, k) = 1 if (i, j) /∈ AC and |FT | = 1 where FT = {t|(t, j) ∈ Ak}
mon h(′yes′, i, j) = 1 if (i, j) ∈ AC and |i− j| = 2

Table 1: Feature Functions.

tion for each.1 For example, the feature function in
the fifth row has a value of 1 if there are 2 neighbor-
ing links to (i, j) that exist in the input alignment Ak

and the alignment link (i, j) exists in AC .
In combining evidence from different alignments,

it is assumed that, when an alignment link is left
out by all aligners, that particular link should not
be included in the final output. Since the majority
of all possible word pairs are unaligned in real data,
the inclusion of all possible word pairs in the train-
ing data leads to skewed results, where the learning
algorithm is biased toward labeling the links as in-
valid. To offset this problem, our training data in-
cludes only alignment links that appear in at least
one input alignment.

Once the feature functions are extracted, we learn
the model parameters using the YASMET ME pack-
age (Och, 2002), which is an efficient implementa-
tion of the GIS algorithm.

4 Experiment Data, Alignment Inputs, and
Metrics

The alignment combination techniques are evaluated
in this paper using data from three language pairs, as
shown in Table 2.

Lang # of # Words Source
Pair Sent’s (en/fl)
en-ch 491 13K/13K NIST MTEval ’022

en-ar 450 11K/13K NIST MTEval ’033

en-ro 248 5.5K/5.5K HLT Workshop ’034

Table 2: Data Used for Combination Experiments.

Input alignments are generated using two exist-
ing word alignment systems: GIZA++ (Och, 2000)

1In Table 1, NC corresponds to the set of (i, j)’s neighbors
that exist in the alignment Ak, and FT represents the set of
words that ei (or fj) is aligned to.

2From (Ayan et al., 2005).
3From (Ittycheriah and Roukos, 2005).
4From (Mihalcea and Pedersen, 2003).

and SAHMM (Lopez and Resnik, 2005). Both sys-
tems are run in two different directions with default
configurations. We indicate the two directions using
the notation Aligner(en → fl) and Aligner(fl →
en), where en is English, fl is either Chinese (ch),
Arabic (ar), or Romanian (ro).

To train both systems, additional data was used
for the three language pairs: 107K English-Chinese
sentence pairs (4.1M/3.3M English/Chinese words);
44K English-Arabic sentence pairs (1.4M/1M En-
glish/Arabic words); 48K English-Romanian sen-
tence pairs (1M/1M English/Romanian words).5

POS tags were generated using the MXPOST tag-
ger (Ratnaparkhi, 1998). POS tagger for English
was trained on Sections 0-18 of the Penn Treebank
Wall Street Journal corpus. On the FL side, we used
POS tagger for only Chinese and it was trained on
Sections 16-299 of Chinese Treebank.

For comparison purposes, three additional
heuristically-induced alignments are generated
for each system: (1) Intersection of both direc-
tions (Aligner(int)); (2) Union of both directions
(Aligner(union)); and (3) The previously best-
known heuristic combination approach called grow-
diag-final (Koehn et al., 2003) (Aligner(gdf)).

In our evaluation, we take A to be the set of align-
ment links for a set of sentences, S to be the set
of sure alignment links, and P be the set of proba-
ble alignment links (in the gold standard). Precision
(Pr), recall (Rc) and alignment error rate (AER)
are defined as follows:6

Pr =
|A ∩ P |
|A| Rc =

|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

5Note that both GIZA++ and SAHMM are unsupervised
learning systems. Sentence-aligned parallel texts are the only
required input.

6Note that AER= 1 - F-score when there is no distinction
between probable and sure alignment links.
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Our gold standard for each language pair is a
manually aligned corpus. English-Chinese annota-
tions distinguish between sure and probable align-
ment links (i.e., S ⊂ P ), but there is no such distinc-
tion for the other two language pairs (i.e., P = S).

Because of the availability of limited manually
annotated data, evaluations are performed using 5-
fold cross validation. Once the alignments are gen-
erated for each fold (using one as the test set and the
other 4 folds as training set), the results are concate-
nated to compute precision, recall and error rate on
the entire set of sentence pairs for each data set.7

5 Experiments and Results

This section presents several experiments and re-
sults comparing AER of ACME to those of standard
alignment approaches on English-Chinese data. We
also present experiments on additional languages,
analyses based on precision and recall, an upper-
bound oracle analysis, and MT evaluations.

5.1 English-Chinese Experiments

The experiments below test the effects of input
alignments, feature set, data partitioning, number of
inputs, and size of training data on the performance
of ACME.

2 Input alignments: Table 3 shows the AER for
GIZA++ and SAHMM (in each direction), three
heuristic-based combinations and ACME using 2
uni-directional alignments as input and all features
described in Section 3.8 (We use ‘ACME[2]’ in
this section to refer to ACME applied to two input
alignments and ACME[4] in later sections to refer
to ACME applied to four input alignments.)

Using 2 GIZA++ uni-directional alignments as in-
put, ACME yields a 22.0% AER—a relative error re-
duction of 25.9% over GIZA++(gdf). Similarly, us-
ing 2 SAHMM uni-directional alignments as input,
ACME produces a 20.6% AER—a relative error re-
duction of 28.0% and 25.4% over SAHMM(gdf) and
SAHMM(int), respectively.

7Because the NIST MTEval data include sentences that may
be related (according to the document in which they appear), the
training and test material could potentially be related; however,
given the types of features used in our experiments, we do not
believe this biases our results.

8For ease of readability, in the rest of this paper, we will
report precision, recall, and AER in percentages.

Alignments GIZA++ SAHMM
Aligner(en→ fl) 30.7 26.5
Aligner(fl → en) 32.2 31.3
Aligner(int) 31.2 27.6
Aligner(union) 31.6 29.8
Aligner(gdf) 29.7 28.6
ACME[2] 22.0 20.6

Table 3: Comparison of GIZA++ and SAHMM to
ACME[2] (on English-Chinese).

Feature Set: To examine the effects of each fea-
ture on the performance of ACME, we compute the
AER under a variety of conditions, removing each
feature one at a time. ACME is evaluated using
2 uni-directional GIZA++ alignments as input on
English-Chinese data. Using all features, the AER
is 22.0%. Our experiments show that there is no sig-
nificant increase in AER for the removal of features
corresponding to monotonicity (22.1%), neighbors
(22.8%), POS on English side (22.9%), POS on
foreign-language side (22.9%). On the other hand,
deleting POS tags on both sides yields an AER of
25.2% and deleting the fertility features increases
the AER to 25.9%. This indicates that both POS
tags (or fertilities) contribute heavily toward the de-
cision as to whether a particular alignment should be
included/excluded.

Partitioning Data: Previous work showed that
partitioning the data into disjoint subsets and learn-
ing a different model for each partition improves
the performance of the alignment systems (Ayan et
al., 2005). To test whether this same principle ap-
plies to alignment combination with maximum en-
tropy modeling, the training data was partitioned us-
ing POS tags for English and the FL, and different
weights were learned for each partition.

Alignments GIZA++ SAHMM
ACME[2] 22.0 20.6
ACME[2]-Part[posE] 19.8 18.0
ACME[2]-Part[posF ] 20.0 18.1
ACME[2]-Part[posE, posF ] 20.0 18.4

Table 4: Application of ACME[2] on Partitioned
Data (on English-Chinese).

Table 4 presents the AER for ACME[2], using ei-
ther two GIZA++ alignments or two SAHMM align-
ments, on English-Chinese data. Without any parti-
tioning, ACME achieves an AER of 22.0 (GIZA++)
and 20.6 (SAHMM). Using English POS tags for
data partitioning results in a significant reduction
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in AER: 19.8% (GIZA++) and 18.0% (SAHMM).
Interestingly, using foreign-language (FL) tags on
their own or together with English POS tags does not
provide any improvement. Overall when ACME[2]
is applied to partitioned data (using posE for parti-
tioning) a relative error reduction of 33–37% over
GIZA++(gdf) and SAHMM(gdf) is achieved.

Number of Input Alignments: Table 5 presents
the English-Chinese AER for ACME[1] (using ei-
ther GIZA++ or SAHMM in only one direction),
ACME[2] (using either GIZA++ or SAHMM in
two directions) and ACME[4] (using GIZA++ and
SAHMM, each in two directions).

Regardless of the number of inputs, partitioning
the data (using English POS tags) yields lower AER
than no partitioning. Using one GIZA++ alignment
as input, ACME[1] with partitioning improves the
AER to 26.9% and 25.5% for each direction, respec-
tively. Similarly, using one SAHMM alignment as
input, ACME[1] with partitioning reduces the AER
to 22.9% and 24.7%. ACME[2] with partitioning
reduces the AER to 19.8% and 18.0% for GIZA++
and SAHMM, respectively. Finally, using all four
input alignments, ACME[4] with partitioning yields
a 15.6% AER—a relative error reduction of 21.2%
and 13.3% over each ACME[2] case.

Alignments GIZA++ SAHMM
ACME[1](en→ fl) 28.1 24.4
ACME[1]-Part[posE](en→ fl) 26.9 22.9
ACME[1](fl → en) 26.6 26.9
ACME[1]-Part[posE](fl → en) 25.5 24.7
ACME[2] 22.0 20.6
ACME[2]-Part[posE] 19.8 18.0
ACME[4] 17.8
ACME[4]-Part[posE] 15.6

Table 5: Application of ACME to 1, 2 and 4 Input
Alignments (on English-Chinese).

Size of Training Data to Obtain Input Align-
ments: In general, statistical alignment systems
improve as the size of the training data increases.
We present the AER for GIZA++ and ACME[2] us-
ing GIZA++ alignments as input, where GIZA++ is
trained on different sizes of data. We started with
20K sentence pairs of FBIS data and increased it to
all available FBIS data (241K sentence pairs).

Figure 1 compares the alignment performance
of: (1) uni-directional GIZA++ (each direction);
(2) GIZA++(gdf); and (3) ACME[2] with all fea-

Figure 1: Effects of Training Data Size Used for Ini-
tial Alignments on the performance of GIZA++ and
ACME[2] (on English-Chinese).

tures and English POS partitioning. With only
20K sentence pairs, ACME[2] achieves an AER of
23.7% in contrast to 34.3% AER for GIZA++(gdf).
With 241K sentence pairs, ACME[2] yields 18.3%
AER in contrast to 27.7% AER for GIZA++(gdf).
We should emphasize that ACME[2] on only 20K
sentence pairs yields a lower AER than those of
all GIZA++ alignments obtained on 241K sen-
tence pairs. Overall ACME[2] achieves a relative
error reduction of 31–38% over the input align-
ments, and a relative error reduction of 31–34% over
GIZA++(gdf) for different sizes of training data.

5.2 Expanding to Additional Languages

We also investigated the applicability of ACME to
additional language pairs. Table 6 presents the
AER for GIZA++ and SAHMM (in each direction),
three combination heuristics (gdf, int and union),
and ACME[2] and ACME[4] on English-Arabic and
English-Romanian data. We should emphasize that
no POS tagger on the FL side was used for these
experiments.

On English-Arabic data, ACME[2] (with POS
partitioning and including all features) yields 21.4%
(20.7%) AER—a relative error reduction of 24.6%
(13.0%) over the best combination heuristic with
GIZA++ (SAHMM) alignments. ACME[4] re-
duces the AER to 18.1%—a relative error reduc-
tion of 36.3% and 23.9% over GIZA++(int) and
SAHMM(int), respectively.

On English-Romanian data, ACME[2] (with POS
partitioning and including all features) yields 24.7%
(26.2%) AER—a relative error reduction of 14.3%
(10.6%) over the best combination heuristic with
GIZA++ (SAHMM) alignments. ACME[4] re-
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English-Arabic English-Romanian
Alignments GIZA++ SAHMM GIZA++ SAHMM
Aligner(en→ fl) 34.5 27.8 32.7 31.0
Aligner(fl → en) 27.9 29.5 30.0 29.8
Aligner(int) 28.4 23.8 32.7 29.3
Aligner(union) 32.8 32.0 30.5 31.2
Aligner(gdf) 30.2 30.4 28.8 30.3
ACME[2] 23.2 21.9 25.2 27.0
ACME[2]-Part[posE] 21.4 20.7 24.7 26.2
ACME[4] 19.8 24.0
ACME[4]-Part[posE] 18.1 22.3

Table 6: AER for Input Alignments, Heuristic-based Alignments, and ACME Using 2 and 4 Input Align-
ments (on English-Arabic and English-Romanian).

duces the AER to 22.3%—a relative error reduc-
tion of 22.6% and 23.9% over GIZA++(int) and
SAHMM(int), respectively.

5.3 Precision, Recall and Upper-Bound
Analysis

We now turn to a precision vs. recall analysis of dif-
ferent alignments to elucidate the nature of the dif-
ferences between two alignments.

Figure 2 presents precision and recall values
for three combined alignments using GIZA++ (int,
union, gdf) as well as results for ACME[2] and
ACME[4] on three different language pairs. For
all three pairs, the ranking of the combined align-
ments is the same with respect to precision and
recall. GIZA++(int) yields the highest precision
(nearly 95%) but the lowest recall (53–57%). Both
union and gdf methods achieve low precision (56–
68%) but high recall (75–83%), and gdf is better
than union. By contrast, ACME[2] yields signifi-
cantly higher precision (nearly 87%) but lower recall
(67–75%) with respect to union and gdf. ACME[4]
has higher precision and recall than ACME[2]—an
absolute increase of 2–3% and 4%, respectively.

Next we compute an oracle upper-bound in AER
where mismatched input alignments are assumed to
be resolved perfectly within the alignment combina-
tion framework (i.e., an oracle chooses the correct
output in cases where the input aligners make differ-
ent choices).9

Table 7 presents the upper bounds using a generic
alignment combiner (denoted Oracle) with 2 and 4
input alignments on three language pairs, assuming
a perfect resolution of mismatched input alignments.
For English-Chinese, the upper bound is 9.4% (us-

9If the input aligners agree on a particular link, that decision
is taken as the final output in computing the upper bound.

Alignments GIZA++ SAHMM
Oracle[2] (en-ch) 9.4 8.4
Oracle[4] (en-ch) 4.7
Oracle[2] (en-ar) 9.8 11.1
Oracle[4] (en-ar) 5.5
Oracle[2] (en-ro) 15.4 17.7
Oracle[4] (en-ro) 11.3

Table 7: Oracle Upper Bounds on AER for Align-
ment Combination

ing Oracle[2]) and 4.7% (using Oracle[4]). The
English-Arabic data exhibits a slightly higher upper
bound of 5.5% for Oracle[4]. The upper bounds for
AER on English-Romanian data are even higher (up
to 17.7%), which indicates that the input alignments
are significantly worse than others. This may be
one of the main contributing factors to the lower im-
provement of ACME on English-Romanian in com-
parison to the other two language pairs.

5.4 MT Evaluation
To determine the contribution of improved align-
ment in an external application, we examined the
improvement in an off-the-shelf phrase-based MT
system Pharaoh (Koehn, 2004) on both Chinese and
Arabic data. In these experiments, all components
of the MT system were kept the same except for
the component that generates a phrase table from a
given alignment.

The input alignments were generated using
GIZA++ and SAHMM on 107K (44K) sentence
pairs for Chinese (Arabic). ACME (with English
POS partitioning) combines alignments using model
parameters learned from the corresponding manu-
ally aligned data. MT output is evaluated using the
standard MT evaluation metric BLEU (Papineni et
al., 2002).10 Table 8 presents the BLEU scores on

10We used the NIST script (version 11a) with its default set-
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Figure 2: Precision and Recall Scores for GIZA++ and ACME Using 2 and 4 Input Alignments.

MTEval’03 data for 5 different Pharaoh runs, one for
each alignment. The parameters of the MT system
were optimized on MTEval’02 data using minimum
error rate training (Och, 2003).

For the language model, the SRI Language Mod-
eling Toolkit was used to train a trigram model with
modified Kneser-Ney smoothing on 155M words of
English newswire text, mostly from the Xinhua por-
tion of the Gigaword corpus. During decoding, the
number of English phrases per FL phrase was lim-
ited to 100 and the distortion of phrases was lim-
ited by 4. Based on the observations in (Koehn et
al., 2003), we also limited the phrase length to 3 for
computational reasons.

Alignment Chinese Arabic
GIZA++(union) 22.66 41.72
GIZA++(gdf) 23.79 43.82
GIZA++(int) 23.97 42.76
ACME[2] 25.20 44.94
ACME[4] 25.59 45.54

Table 8: Evaluation of Pharaoh with Different Initial
Alignments using BLEU (in percentages)

For both languages, ACME[2] and ACME[4]
outperform the other three alignment combination
techniques. ACME[4], for instance, yields the
BLEU scores of 25.59% for Chinese and 45.54% for
Arabic—an absolute 1.6-1.7% BLEU point increase
over the best of the other three alignment combina-
tions. The differences between the BLEU scores for
ACME and the other three BLEU scores are statisti-
cally significant, using a significance test with boot-
strap resampling (Zhang et al., 2004).

6 Related Work
ME models have been previously applied to several
NLP problems, including word alignments. For in-
tings: case-insensitive matching of n-grams up to n = 4, and
the shortest reference sentence for the brevity penalty.

stance, the IBM models (Brown et al., 1993) can be
improved by adding more context dependencies into
the translation model using a ME framework rather
than using only p(fj |ei) (Garcia-Varea et al., 2002).
In a later study, Och and Ney (2003) present a log-
linear combination of the HMM and IBM Model 4
that produces better alignments than either of those.
The major advantage of these two methods is that
they do not require manually annotated data.

The alignment process can be modeled as a prod-
uct of a transition model and an observation model,
where ME models the observations (Ittycheriah and
Roukos, 2005). Significant improvements are re-
ported using this approach but the need for large
manually aligned data is a bottleneck. An alterna-
tive ME approach models alignment directly as a
log-linear combination of feature functions (Liu et
al., 2005). Moore (2005) and Taskar et al. (2005)
represent alignments with several feature functions
that are then combined in a weighted sum to model
word alignments. Once a confidence score is as-
signed to all links, a non-trivial search is invoked to
find the best alignment using the scores associated
with the links. The major difference between these
approaches and that of ACME is that we use the ME
model to predict the correct class for each align-
ment link independently using outputs of existing
alignment systems, instead of generating them from
scratch at the level of the whole sentence, thus elim-
inating the need for an exhaustive search over all
possible alignments, i.e., previous approaches work
globally while ACME is a localized model. A dis-
cussion of these two contrasting approaches can be
found in (Tillmann and Zhang, 2005).

A recent attempt to combine outputs of differ-
ent alignments views the combination problem as a
classifier ensemble in the neural network framework
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(Ayan et al., 2005). However, this method is subject
to the unpredictability of random network initializa-
tion, whereas ACME is guaranteed to find the model
that maximizes the likelihood of training data.

7 Conclusions

We presented a new approach, ACME, to combin-
ing the outputs of different word alignment systems
by reducing the combination problem to the level
of alignment links and using a maximum entropy
model to learn whether a particular alignment link
is included in the final alignment.

Our results indicate that ACME yields significant
relative error reduction over the input alignments
and their heuristic-based combinations on three dif-
ferent language pairs. Moreover, ACME provides
similar relative improvements for different sizes of
training data for the input alignment systems. We
have also shown that using a higher number of input
alignments, and partitioning the training data into
disjoint subsets and learning a different model for
each partition yield further improvements.

We have tested impact of the reduced AER on
MT and have shown that alignments generated by
ACME yield statistically significant improvements
in BLEU scores in two different languages, even
if we don’t employ a POS tagger on the FL side.
However, additional studies are needed to investi-
gate why huge improvements in AER result in rela-
tively smaller improvements in BLEU scores.

Because ACME is a supervised learning ap-
proach, it requires annotated data; however, our ex-
periments have shown that significant improvements
can be obtained using a small set of annotated data.
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