
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 25–32,
New York, June 2006.c©2006 Association for Computational Linguistics

Segment Choice Models: Feature-Rich Models for Global
Distortion in Statistical Machine Translation

Roland Kuhn, Denis Yuen, Michel Simard, Patrick Paul,
George Foster, Eric Joanis, and Howard Johnson

Institute for Information Technology, National Research Council of Canada

Gatineau, Québec, CANADA
Email: { Roland.Kuhn, Michel.Simard, Patrick.Paul, George.Foster, Eric.Joanis,

Howard.Johnson} @cnrc-nrc.gc.ca; Denis Yuen: mucous@gmail.com

Abstract

This paper presents a new approach to
distortion (phrase reordering) in phrase-
based machine translation (MT). Distor-
tion is modeled as a sequence of choices
during translation. The approach yields
trainable, probabilistic distortion models
that are global: they assign a probability
to each possible phrase reordering. These
“segment choice” models (SCMs) can be
trained on “segment-aligned” sentence
pairs; they can be applied during decoding
or rescoring. The approach yields a metric
called “distortion perplexity” (“disperp”)
for comparing SCMs offline on test data,
analogous to perplexity for language
models. A decision-tree-based SCM is
tested on Chinese-to-English translation,
and outperforms a baseline distortion
penalty approach at the 99% confidence
level.

1 Introduction: Defining SCMs

The work presented here was done in the context
of phrase-based MT (Koehn et al., 2003; Och and
Ney, 2004). Distortion in phrase-based MT occurs
when the order of phrases in the source-language
sentence changes during translation, so the order of
corresponding phrases in the target-language trans-
lation is different. Some MT systems allow arbi-

trary reordering of phrases, but impose a distortion
penalty proportional to the difference between the
new and the original phrase order (Koehn, 2004).
Some interesting recent research focuses on reor-
dering within a narrow window of phrases (Kumar
and Byrne, 2005; Tillmann and Zhang, 2005; Till-
mann, 2004). The (Tillmann, 2004) paper intro-
duced lexical features for distortion modeling. A
recent paper (Collins et al., 2005) shows that major
gains can be obtained by constructing a parse tree
for the source sentence and then applying hand-
crafted reordering rules to rewrite the source in
target-language-like word order prior to MT.

Our model assumes that the source sentence is

completely segmented prior to distortion. This
simplifying assumption requires generation of hy-
potheses about the segmentation of the complete
source sentence during decoding. The model also
assumes that each translation hypothesis grows in a
predetermined order. E.g., Koehn’s decoder
(Koehn 2004) builds each new hypothesis by add-
ing phrases to it left-to-right (order is deterministic
for the target hypothesis). Our model doesn’ t re-
quire this order of operation – it would support
right-to-left or inwards-outwards hypothesis con-
struction – but it does require a predictable order.

One can keep track of how segments in the
source sentence have been rearranged during de-
coding for a given hypothesis, using what we call a
“distorted source-language hypothesis” (DSH). A
similar concept appears in (Collins et al., 2005)
(this paper’s preoccupations strongly resemble

25

ours, though our method is completely different:
we don’ t parse the source, and use only automati-
cally generated rules). Figure 1 shows an example
of a DSH for German-to-English translation (case
information is removed). Here, German “ ich habe
das buch gelesen .” is translated into English “ i
have read the book .” The DSH shows the distor-
tion of the German segments into an English-like
word order that occurred during translation (we
tend to use the word “segment” rather than the
more linguistically-charged “phrase”).

Figure 1. Example of German-to-English DSH

From the DSH, one can reconstruct the series of
segment choices. In Figure 1 - given a left-to-right
decoder - “ [ich]” was chosen from five candidates
to be the leftmost segment in the DSH. Next,
“ [habe]” was chosen from four remaining candi-
dates, “ [gelesen]” from three candidates, and “ [das
buch]” from two candidates. Finally, the decoder
was forced to choose “ [.]” .

Segment Choice Models (SCMs) assign

probabilities to segment choices made as the DSH
is constructed. The available choices at a given
time are called the “Remaining Segments” (RS).
Consider a valid (though stupid) SCM that assigns
equal probabilities to all segments in the RS. This
uniform SCM assigns a probability of 1/5! to the
DSH in Figure 1: the probability of choosing
“ [ich]” from among 5 RS was 1/5, then the
probability of “ [habe]” among 4 RS was 1/4 , etc.
The uniform SCM would be of little use to an MT
system. In the next two sections we describe some
more informative SCMs, define the “distortion
perplexity” (“disperp”) metric for comparing
SCMs offline on a test corpus, and show how to
construct this corpus.

2 Disperp and Distortion Corpora

2.1 Defining Disperp

The ultimate reason for choosing one SCM over
another will be the performance of an MT system
containing it, as measured by a metric like BLEU
(Papineni et al., 2002). However, training and

testing a large-scale MT system for each new SCM
would be costly. Also, the distortion component’s
effect on the total score is muffled by other
components (e.g., the phrase translation and target
language models). Can we devise a quick
standalone metric for comparing SCMs?

There is an offline metric for statistical language
models: perplexity (Jelinek, 1990). By analogy, the
higher the overall probability a given SCM assigns
to a test corpus of representative distorted sentence
hypotheses (DSHs), the better the quality of the
SCM. To define distortion perplexity (“disperp”),
let PrM(dk) = the probability an SCM M assigns to
a DSH for sentence k, dk. If T is a test corpus
comprising numerous DSHs, the probability of the
corpus according to M is PrM(T) =

�
k PrM(dk).

Let S(T) = total number of segments in T. Then
disperp(M,T) = PrM(T)-1/S(T). This gives the mean
number of choices model M allows; the lower the
disperp for corpus T, the better M is as a model for
T (a model X that predicts segment choice in T
perfectly would have disperp(X,T) = 1.0).

2.2 Some Simple A Priori SCMs

The uniform SCM assigns to the DSH dk that has
S(dk) segments the probability 1/[S(dk)!] . We call
this Model A. Let’s define some other illustrative
SCMs. Fig. 2 shows a sentence that has 7 segments
with 10 words (numbered 0-9 by original order).
Three segments in the source have been used; the
decoder has a choice of four RS. Which of the RS
has the highest probability of being chosen? Per-
haps [2 3], because it is the leftmost RS: the “ left-
most” predictor. Or, the last phrase in the DSH will
be followed by the phrase that originally followed
it, [8 9]: the “ following” predictor. Or, perhaps
positions in the source and target should be close,
so since the next DSH position to be filled is 4,
phrase [4] should be favoured: the “parallel” pre-
dictor.

Figure 2. Segment choice prediction example

Model B will be based on the “ leftmost” predic-
tor, giving the leftmost segment in the RS twice the
probability of the other segments, and giving the

Original German: [ich] [habe] [das buch] [gelesen] [.]
DSH for German: [ich] [habe] [gelesen] [das buch] [.]
(English: [i] [have] [read] [the book] [.])

original: [0 1] [2 3] [4] [5] [6] [7] [8 9]
DSH: [0 1] [5] [7], RS: [2 3], [4], [6], [8 9]

26

others uniform probabilities. Model C will be
based on the “ following” predictor, doubling the
probability for the segment in the RS whose first
word was the closest to the last word in the DSH,
and otherwise assigning uniform probabilities. Fi-
nally, Model D combines “ leftmost” and “ follow-
ing” : where the leftmost and following segments
are different, both are assigned double the uniform
probability; if they are the same segment, that
segment has four times the uniform probability. Of
course, the factor of 2.0 in these models is arbi-
trary. For Figure 2, probabilities would be:

• Model A: PrA([2 3])= PrA([4])= PrA([6])=
PrA([8 9]) = 1/4;

• Model B: PrB ([2 3])= 2/5, PrB([4])=
PrB([6])= PrB([8 9]) = 1/5;

• Model C: PrC ([2 3])= PrC ([4])= PrC([6])
= 1/5, PrC([8 9]) = 2/5;

• Model D: PrD ([2 3]) = PrD([8 9]) = 1/3,
PrD([4])= PrD([6]) = 1/6.

Finally, let’s define an SCM derived from the

distortion penalty used by systems based on the
“ following” predictor, as in (Koehn, 2004). Let ai =
start position of source phrase translated into ith
target phrase, bi -1= end position of source phrase
that’s translated into (i-1)th target phrase. Then
distortion penalty d(ai, bi-1) = � ¦ai– bi-1 -1¦; the total
distortion is the product of the phrase distortion
penalties. This penalty is applied as a kind of non-
normalized probability in the decoder. The value of

� for given (source, target) languages is optimized
on development data.

To turn this penalty into an SCM, penalties are
normalized into probabilities, at each decoding
stage; we call the result Model P (for “penalty”).
Model P with � = 1.0 is the same as uniform
Model A. In disperp experiments, Model P with �
optimized on held-out data performs better than
Models A-D (see Figure 5), suggesting that dis-
perp is a realistic measure.

Models A-D are models whose parameters were
all defined a priori; Model P has one trainable pa-
rameter, � . Next, let’s explore distortion models
with several trainable parameters.

2.3 Constructing a Distor tion Corpus

To compare SCMs using disperp and to train
complex SCMs, we need a corpus of representative
examples of DSHs. There are several ways of ob-
taining such a corpus. For the experiments de-
scribed here, the MT system was first trained on a
bilingual sentence-aligned corpus. Then, the sys-
tem was run in a second pass over its own training
corpus, using its phrase table with the standard dis-
tortion penalty to obtain a best-fit phrase alignment
between each (source, target) sentence pair. Each
such alignment yields a DSH whose segments are
aligned with their original positions in the source;
we call such a source-DSH alignment a “segment
alignment” . We now use a leave-one-out procedure
to ensure that information derived from a given
sentence pair is not used to segment-align that sen-
tence pair. In our initial experiments we didn’ t do
this, with the result that the segment-aligned cor-
pus underrepresented the case where words or N-
grams not in the phrase table are seen in the source
sentence during decoding.

3 A Trainable Decision Tree SCM

Almost any machine learning technique could be
used to create a trainable SCM. We implemented
one based on decision trees (DTs), not because
DTs necessarily yield the best results but for soft-
ware engineering reasons: DTs are a quick way to
explore a variety of features, and are easily inter-
preted when grown (so that examining them can
suggest further features). We grew N DTs, each
defined by the number of choices available at a
given moment. The highest-numbered DT has a
“+” to show it handles N+1 or more choices. E.g.,
if we set N=4, we grow a “2-choice” , a “3-choice” ,
a “4-choice” , and a “5+-choice tree” . The 2-choice
tree handles cases where there are 2 segments in
the RS, assigning a probability to each; the 3-
choice tree handles cases where there are 3 seg-
ments in the RS, etc. The 5+-choice tree is differ-
ent from the others: it handles cases where there
are 5 segments in the RS to choose from, and
cases where there are more than 5. The value of N
is arbitrary; e.g., for N=8, the trees go from “2-
choice” up to “9+-choice” .

Suppose a left-to-right decoder with an N=4
SCM is translating a sentence with seven phrases.
Initially, when the DSH is empty, the 5+-choice
tree assigns probabilities to each of these seven. It

27

will use the 5+-choice tree twice more, to assign
probabilities to six RS, then to five. To extend the
hypothesis, it will then use the 4-choice tree, the 3-
choice tree, and finally the 2-choice tree. Disperps
for this SCM are calculated on test corpus DSHs in
the same left-to-right way, using the tree for the
number of choices in the RS to find the probability
of each segment choice.

Segments need labels, so the N-choice DT can
assign probabilities to the N segments in the RS.
We currently use a “ following” labeling scheme.
Let X be the original source position of the last
word put into the DSH, plus 1. In Figure 2, this
was word 7, so X=8. In our scheme, the RS seg-
ment whose first word is closest to X is labeled
“A” ; the second-closest segment is labeled “B” ,
etc. Thus, segments are labeled in order of the
(Koehn, 2004) penalty; the “A” segment gets the
lowest penalty. Ties between segments on the right
and the left of X are broken by first labeling the
right segment. In Figure 2, the labels for the RS
are “A” = [8 9], “B” = [6], “C” = [4], “D” = [2 3].

Figure 3. Some question types for choice DTs

Figure 3 shows the main types of questions used
for tree-growing, comprising position questions
and word-based questions. Position questions
pertain to location, length, and ordering of seg-
ments. Some position questions ask about the dis-
tance between the first word of a segment and the
“ following” position X: e.g., if the answer to
“pos(A)-pos(X)=0?” is yes, then segment A comes
immediately after the last DSH segment in the
source, and is thus highly likely to be chosen.
There are also questions relating to the “ leftmost”
and “parallel” predictors (above, sec. 2.2). The
fseg() and bseg() functions count segments in the

RS from left to right and right to left respectively,
allowing, e.g., the question whether a given seg-
ment is the second last segment in the RS. The
only word-based questions currently implemented
ask whether a given word is contained in a given
segment (or anywhere in the DSH, or anywhere in
the RS). This type could be made richer by allow-
ing questions about the position of a given word in
a given segment, questions about syntax, etc.

Figure 4 shows an example of a 5+-choice DT.
The “+” in its name indicates that it will handle
cases where there are 5 or more segments in the
RS. The counts stored in the leaves of this DT rep-
resent the number of training data items that ended
up there; the counts are used to estimate probabili-
ties. Some smoothing will be done to avoid zero
probabilities, e.g., for class C in node 3.

Figure 4. Example of a 5+-choice tree

For “+” DTs, the label closest to the end of the
alphabet (“E” in Figure 4) stands for a class that
can include more than one segment. E.g., if this
5+-choice DT is used to estimate probabilities for a
7-segment RS, the segment closest to X is labeled
“A” , the second closest “B” , the third closest “C” ,
and the fourth closest “D” . That leaves 3 segments,
all labeled “E” . The DT shown yields probability
Pr(E) that one of these three will be chosen. Cur-
rently, we apply a uniform distribution within this
“ furthest from X” class, so the probability of any
one of the three “E” segments is estimated as
Pr(E)/3.

To train the DTs, we generate data items from
the second-pass DSH corpus. Each DSH generates
several data items. E.g., moving across a seven-
segment DSH from left to right, there is an exam-
ple of the seven-choice case, then one of the six-
choice case, etc. Thus, this DSH provides three
items for training the 5+-choice DT and one item

 pos(A)-pos(X)<0?
A:27 B:23 C:20 D:11 E:19

 today � DSH?
A:10 B:8 C:10 D:6 E:5

A:8 B:6 C:0 D:2 E:4 A:2 B:2 C:10 D:4 E:1

A:17 B:15 C:10 D:5 E:14

yes no

yes no

1.

3.

2. 5.

4.

1. Position Questions
Segment Length Questions
E.g., “ lgth(DSH)<5?”, “ lgth(B)=2?”, “ lgth(RS)<6?”, etc.
Questions about Original Position
Let pos(seg) = index of seg’s first word in source sentence
E.g., “pos(A)=9?”, “pos(C) <17?”, etc.
Questions With X (“ following” word position)
E.g., “pos(X)=9?”, “pos(C) – pos(X) <0?” , etc.
Segment Order Questions
Let fseg = segment # (forward), bseg = segment # (back-
ward)
E.g., “fseg(D) = 1?” , “bseg(A) <5?” , etc.
2. Word-Based Questions
E.g., “and � DSH?”, “November � B?” , etc.

28

each for training the 4-choice, 3-choice, and 2-
choice DTs. The DT training method was based on
Gelfand-Ravishankar-Delp expansion-pruning
(Gelfand et al., 1991), for DTs whose nodes con-
tain probability distributions (Lazaridès et al.,
1996).

4 Disperp Exper iments

We carried out SCM disperp experiments for the
English-Chinese task, in both directions. That is,
we trained and tested models both for the distortion
of English into Chinese-like phrase order, and the
distortion of Chinese into English-like phrase or-
der. For reasons of space, details about the “dis-
torted English” experiments won’ t be given here.
Training and development data for the distorted
Chinese experiments were taken from the NIST
2005 release of the FBIS corpus of Xinhua news
stories. The training corpus comprised 62,000
FBIS segment alignments, and the development
“dev” corpus comprised a disjoint set of 2,306
segment alignments from the same FBIS corpus.
All disperp results are obtained by testing on “dev”
corpus.

Distorted Chinese: Models A-D, P, & a four-DT
Model

1

2

3

4

5

6

7

8

50
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

62
00

0

training alignments (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Model A

Model B

Model C

Model D

Model P (alpha =
0.77)

Four DTs: pos +
100-wd qns

Figure 5. Several SCMs for distor ted Chinese

Figure 5 shows disperp results for the models
described earlier. The y axis begins at 1.0 (mini-
mum value of disperp). The x axis shows number
of alignments (DSHs) used to train DTs, on a log
scale. Models A-D are fixed in advance; Model P’s
single parameter � was optimized once on the en-
tire training set of 62K FBIS alignments (to 0.77)
rather than separately for each amount of training

data. Model P, the normalized version of Koehn’s
distortion penalty, is superior to Models A-D, and
the DT-based SCM is superior to Model P.

The Figure 5 DT-based SCM had four trees (2-
choice, 3-choice, 4-choice, and 5+-choice) with
position-based and word-based questions. The
word-based questions involved only the 100 most
frequent Chinese words in the training corpus. The
system’s disperp drops from 3.1 to 2.8 as the num-
ber of alignments goes from 500 to 62K.

Figure 6 examines the effect of allowing word-
based questions. These questions provide a signifi-
cant disperp improvement, which grows with the
amount of training data.

Distorted Chinese: effect of allowing word qns
(four- DT models)

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

50
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

62
00

0

training alignments (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Four DTs: pos qns
only

Four DTs: pos +
100-wd qns

Figure 6. Do word-based questions help?

In the “ four-DT” results above, examples with
five or more segments are handled by the same
“5+-choice” tree. Increasing the number of trees
allows finer modeling of multi-segment cases
while spreading the training data more thinly.
Thus, the optimal number of trees depends on the
amount of training data. Fixing this amount to 32K
alignments, we varied the number of trees. Figure
7 shows that this parameter has a significant im-
pact on disperp, and that questions based on the
most frequent 100 Chinese words help perform-
ance for any number of trees.

29

Distorted Chinese: Disperp vs. # of trees (all
trees grown on 32K alignments)

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3 4 5 6 7 8 9 10 11 12 13 14

of trees

D
is

p
er

p
 o

n
 "

d
ev

"

pos qns only

pos + 100-wd qns

Figure 7. Varying the number of DTs

In Figure 8 the number of the most frequent
Chinese words for questions is varied (for a 13-DT
system trained on 32K alignments). Most of the
improvement came from the 8 most frequent
words, especially from the most frequent, the
comma “ ,” . This behaviour seems to be specific to
Chinese. In our “distorted English” experiments,
questions about the 8 most frequent words also
gave a significant improvement, but each of the 8
words had a fairly equal share in the improvement.

Distorted Chinese: Disperp vs. #words (all trees
grown on 32K alignments)

2.58

2.6

2.62

2.64

2.66

2.68

2.7

2.72

0 2 8 32 12
8

51
2

words tried for qns (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Performance of 13-
DT system

Figure 8. Varying #words (13-DT system)

Finally, we grew the DT system used for the MT
experiments: one with 13 trees and questions about
the 25 most frequent Chinese words, grown on
88K alignments. Its disperp on the “dev” used for
the MT experiments (a different “dev” from the
one above – see Sec. 5.2) was 2.42 vs. 3.48 for the
baseline Model P system: a 30% drop.

5 Machine Translation Exper iments

5.1 SCMs for Decoding

SCMs assume that the source sentence is fully
segmented throughout decoding. Thus, the system
must guess the segmentation for the unconsumed
part of the source (“ remaining source” : RS). For
the results below, we used a simple heuristic: RS is
broken into one-word segments. In future, we will
apply a more realistic segmentation model to RS
(or modify DT training to reflect accurately RS
treatment during decoding).

5.2 Chinese-to-English MT Exper iments

The training corpus for the MT system’s phrase
tables consists of all parallel text available for the
NIST MT05 Chinese-English evaluation, except
the Xinhua corpora and part 3 of LDC's “Multiple-
Translation Chinese Corpus” (MTCCp3). The Eng-
lish language model was trained on the same cor-
pora, plus 250M words from Gigaword. The DT-
based SCM was trained and tuned on a subset of
this same training corpus (above). The dev corpus
for optimizing component weights is MTCCp3.
The experimental results below were obtained by
testing on the evaluation set for MTeval NIST04.

Phrase tables were learned from the training cor-
pus using the “diag-and” method (Koehn et al.,
2003), and using IBM model 2 to produce initial
word alignments (these authors found this worked
as well as IBM4). Phrase probabilities were based
on unsmoothed relative frequencies. The model
used by the decoder was a log-linear combination
of a phrase translation model (only in the
P(source|target) direction), trigram language
model, word penalty (lexical weighting), an op-
tional segmentation model (in the form of a phrase
penalty) and distortion model. Weights on the
components were assigned using the (Och, 2003)
method for max-BLEU training on the develop-
ment set. The decoder uses a dynamic-
programming beam-search, like the one in (Koehn,
2004). Future-cost estimates for all distortion mod-
els are assigned using the baseline penalty model.

5.3 Decoding Results

30

29,40

29,60

29,80

30,00

30,20

30,40

30,60

30,80

31,00

31,20

no PP PP no PP PP

DP DT

B
L

E
U

 s
co

re

1x beam

4x beam

Figure 9. BLEU on NIST04 (95% conf. = ±0.7)

Figure 9 shows experimental results. The “DP”
systems use the distortion penalty in (Koehn, 2004)
with � optimized on “dev” , while “DT” systems
use the DT-based SCM. “1x” is the default beam
width, while “4x” is a wider beam (our notation
reflects decoding time, so “4x” takes four times as
long as “1x”). “PP” denotes presence of the phrase
penalty component. The advantage of DTs as
measured by difference between the score of the
best DT system and the best DP system is 0.75
BLEU at 1x and 0.5 BLEU at 4x. With a 95%
bootstrap confidence interval of ±0.7 BLEU (based
on 1000-fold resampling), the resolution of these
results is too coarse to draw firm conclusions.

Thus, we carried out another 1000-fold bootstrap
resampling test on NIST04, this time for pairwise
system comparison. Table 1 shows results for
BLEU comparisons between the systems with the
default (1x) beam. The entries show how often the
A system (columns) had a better score than the B
system (rows), in 1000 observations.

 A �
vs. B

�

DP,
no PP

DP, PP DT,
no PP

DT, PP

DP,
no PP

x 2.95% 99.45% 99.55%

DP, PP 97.05% x 99.95% 99.95%

DT,
no PP

0.55% 0.05% x 65.68%

DT, PP 0.45% 0.05% 34.32% x

Table 1. Pairwise compar ison for 1x systems

The table shows that both DT-based 1x systems
performed better than either of the DP systems
more than 99% of the time (underlined results).
Though not shown in the table, the same was true
with 4x beam search. The DT 1x system with a
phrase penalty had a higher score than the DT 1x
system without one about 66% of the time.

6 Summary and Discussion

In this paper, we presented a new class of probabil-
istic model for distortion, based on the choices
made during translation. Unlike some recent dis-
tortion models (Kumar and Byrne, 2005; Tillmann
and Zhang, 2005; Tillmann, 2004) these Segment
Choice Models (SCMs) allow phrases to be moved
globally, between any positions in the sentence.
They also lend themselves to quick offline com-
parison by means of a new metric called disperp.
We developed a decision-tree (DT) based SCM
whose parameters were optimized on a “dev” cor-
pus via disperp. Two variants of the DT system
were experimentally compared with two systems
with a distortion penalty on a Chinese-to-English
task. In pairwise bootstrap comparisons, the sys-
tems with DT-based distortion outperformed the
penalty-based systems more than 99% of the time.

The computational cost of training the DTs on
large quantities of data is comparable to that of
training phrase tables on the same data - large but
manageable – and increases linearly with the
amount of training data. However, currently there
is a major problem with DT training: the low pro-
portion of Chinese-English sentence pairs that can
be fully segment-aligned and thus be used for DT
training (about 27%). This may result in selection
bias that impairs performance. We plan to imple-
ment an alignment algorithm with smoothed phrase
tables (Johnson et al. 2006) to achieve segment
alignment on 100% of the training data.

Decoding time with the DT-based distortion
model is roughly proportional to the square of the
number of tokens in the source sentence. Thus,
long sentences pose a challenge, particularly dur-
ing the weight optimization step. In experiments on
other language pairs reported elsewhere (Johnson
et al. 2006), we applied a heuristic: DT training
and decoding involved source sentences with 60 or
fewer tokens, while longer sentences were handled
with the distortion penalty. A more principled ap-

31

proach would be to divide long source sentences
into chunks not exceeding 60 or so tokens, within
each of which reordering is allowed, but which
cannot themselves be reordered.

The experiments above used a segmentation
model that was a count of the number of source
segments (sometimes called “phrase penalty”), but
we are currently exploring more sophisticated
models. Once we have found the best segmentation
model, we will improve the system’s current naïve
single-word segmentation of the remaining source
sentence during decoding, and construct a more
accurate future cost function for beam search. An-
other obvious system improvement would be to
incorporate more advanced word-based features in
the DTs, such as questions about word classes
(Tillmann and Zhang 2005, Tillmann 2004).

We also plan to apply SCMs to rescoring N-best
lists from the decoder. For rescoring, one could
apply several SCMs, some with assumptions dif-
fering from those of the decoder. E.g., one could
apply right-to-left SCMs, or “distorted target”
SCMs which assume a target hypothesis generated
the source sentence, instead of vice versa.

Finally, we are contemplating an entirely differ-
ent approach to DT-based SCMs for decoding. In
this approach, only one DT would be used, with
only two output classes that could be called “C”
and “N” . The input to such a tree would be a par-
ticular segment in the remaining source sentence,
with contextual information (e.g., the sequence of
segments already chosen). The DT would estimate
the probability Pr(C) that the specified segment is
“chosen” and the probability Pr(N) that it is “not
chosen” . This would eliminate the need to guess
the segmentation of the remaining source sentence.

References

P. Brown, S. Della Pietra, V. Della Pietra, and R. Mer-
cer. 1993. “The Mathematics of Statistical Machine
Translation: Parameter Estimation” . Computational
Linguistics, 19(2), pp. 263-311.

M. Collins, P. Koehn, and I. Ku� erová. 2005. “Clause

Restructuring for Statistical Machine Translation” .
Proc. ACL, Ann Arbor, USA, pp. 531-540.

S. Gelfand, C. Ravishankar, and E. Delp. 1991. “An
Iterative Growing and Pruning Algorithm for Clas-
sification Tree Design” . IEEE Trans. Patt. Analy.
Mach. Int. (IEEE PAMI), V. 13, no. 2, pp. 163-174.

F. Jelinek. 1990. “Self-Organized Language Modeling

for Speech Recognition” in Readings in Speech
Recognition (ed. A. Waibel and K. Lee, publ. Mor-
gan Kaufmann), pp. 450-506.

H. Johnson, F. Sadat, G. Foster, R. Kuhn, M. Simard, E.

Joanis, and S. Larkin. 2006. “PORTAGE: with
Smoothed Phrase Tables and Segment Choice Mod-
els” . Submitted to NAACL 2006 Workshop on Statis-
tical Machine Translation, New York City.

P. Koehn. 2004. “Pharaoh: a Beam Search Decoder for
Phrase-Based Statistical Machine Translation Mod-
els” . Assoc. Machine Trans. Americas (AMTA04).

P. Koehn, F.-J. Och and D. Marcu. 2003. “Statistical

Phrase-Based Translation” . Proc. Human Lang.
Tech. Conf. N. Am. Chapt. Assoc. Comp. Ling.
(NAACL03), pp. 127-133.

S. Kumar and W. Byrne. 2005. “Local Phrase Reorder-

ing Models for Statistical Machine Translation” .
HLT/EMNLP, pp. 161-168, Vancouver, Canada.

A. Lazaridès, Y. Normandin, and R. Kuhn. 1996. “ Im-

proving Decision Trees for Acoustic Modeling” .
Int. Conf. Spoken Lang. Proc. (ICSLP96), V. 2, pp.
1053-1056, Philadelphia, Pennsylvania, USA.

F. Och and H. Ney. 2004. “The Alignment Template

Approach to Statistical Machine Translation” .
Comp. Linguistics, V. 30, Issue 4, pp. 417-449.

Franz Josef Och. 2003. “Minimum Error Rate Training

for Statistical Machine Translation” . Proc. ACL,
Sapporo, Japan.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.

“BLEU: A method for automatic evaluation of ma-
chine translation” . Proc. ACL, pp. 311-318.

C. Tillmann and T. Zhang. 2005. “A Localized Predic-

tion Model for Statistical Machine Translation” .
Proc. ACL.

C. Tillmann. 2004. “A Block Orientation Model for

Statistical Machine Translation” . HLT/NAACL.

S. Vogel, H. Ney, and C. Tillmann. 1996. “HMM-Based

Word Alignment in Statistical Translation”.
COLING, pp. 836-841.

32

