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Abstract 

This paper presents a new approach to 
distortion (phrase reordering) in phrase-
based machine translation (MT). Distor-
tion is modeled as a sequence of choices 
during translation. The approach yields 
trainable, probabilistic distortion models 
that are global: they assign a probability 
to each possible phrase reordering. These 
“segment choice”  models (SCMs) can be 
trained on “segment-aligned”  sentence 
pairs; they can be applied during decoding 
or rescoring. The approach yields a metric 
called “distortion perplexity”  (“disperp”) 
for comparing SCMs offline on test data, 
analogous to perplexity for language 
models. A decision-tree-based SCM is 
tested on Chinese-to-English translation, 
and outperforms a baseline distortion 
penalty approach at the 99% confidence 
level. 

1 Introduction: Defining SCMs  

The work presented here was done in the context 
of phrase-based MT (Koehn et al., 2003; Och and 
Ney, 2004). Distortion in phrase-based MT occurs 
when the order of phrases in the source-language 
sentence changes during translation, so the order of 
corresponding phrases in the target-language trans-
lation is different. Some MT systems allow arbi-

trary reordering of phrases, but impose a distortion 
penalty proportional to the difference between the 
new and the original phrase order (Koehn, 2004). 
Some interesting recent research focuses on reor-
dering within a narrow window of phrases (Kumar 
and Byrne, 2005; Tillmann and Zhang, 2005; Till-
mann, 2004). The (Tillmann, 2004) paper intro-
duced lexical features for distortion modeling. A 
recent paper (Collins et al., 2005) shows that major 
gains can be obtained by constructing a parse tree 
for the source sentence and then applying hand-
crafted reordering rules to rewrite the source in 
target-language-like word order prior to MT.  

 
Our model assumes that the source sentence is 

completely segmented prior to distortion. This 
simplifying assumption requires generation of hy-
potheses about the segmentation of the complete 
source sentence during decoding. The model also 
assumes that each translation hypothesis grows in a 
predetermined order. E.g., Koehn’s decoder 
(Koehn 2004) builds each new hypothesis by add-
ing phrases to it left-to-right (order is deterministic 
for the target hypothesis). Our model doesn’ t re-
quire this order of operation – it would support 
right-to-left or inwards-outwards hypothesis con-
struction – but it does require a predictable order. 
 

One can keep track of how segments in the 
source sentence have been rearranged during de-
coding for a given hypothesis, using what we call a 
“distorted source-language hypothesis”  (DSH). A 
similar concept appears in (Collins et al., 2005) 
(this paper’s preoccupations strongly resemble 
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ours, though our method is completely different: 
we don’ t parse the source, and use only automati-
cally generated rules). Figure 1 shows an example 
of a DSH for German-to-English translation (case 
information is removed). Here, German “ ich habe 
das buch gelesen .”  is translated into English “ i 
have read the book .”  The DSH shows the distor-
tion of the German segments into an English-like 
word order that occurred during translation (we 
tend to use the word “segment”  rather than the 
more linguistically-charged  “phrase”). 

Figure 1. Example of German-to-English DSH 

From the DSH, one can reconstruct the series of 
segment choices. In Figure 1 - given a left-to-right 
decoder - “ [ich]”  was chosen from five candidates 
to be the leftmost segment in the DSH. Next, 
“ [habe]”  was chosen from four remaining candi-
dates, “ [gelesen]”  from three candidates, and “ [das 
buch]”  from two candidates. Finally, the decoder 
was forced to choose “ [.]” .   

 
Segment Choice Models (SCMs) assign 

probabilities to segment choices made as the DSH 
is constructed. The available choices at a given 
time are called the “Remaining Segments”  (RS). 
Consider a valid (though stupid) SCM that assigns 
equal probabilities to all segments in the RS. This 
uniform SCM assigns a probability of 1/5! to the 
DSH in Figure 1: the probability of choosing 
“ [ich]”  from among 5 RS was 1/5, then the 
probability of “ [habe]”  among 4 RS was  1/4 , etc. 
The uniform SCM would be of little use to an MT 
system. In the next two sections we describe some 
more informative SCMs, define the “distortion 
perplexity”  (“disperp”) metric for comparing 
SCMs offline on a test corpus, and show how to 
construct this corpus.  

2 Disperp and Distortion Corpora 

2.1 Defining Disperp 

The ultimate reason for choosing one SCM over 
another will be the performance of an MT system 
containing it, as measured by a metric like BLEU 
(Papineni et al., 2002). However, training and 

testing a large-scale MT system for each new SCM 
would be costly. Also, the distortion component’s 
effect on the total score is muffled by other 
components (e.g., the phrase translation and target 
language models). Can we devise a quick 
standalone metric for comparing SCMs? 
 

There is an offline metric for statistical language 
models: perplexity (Jelinek, 1990). By analogy, the 
higher the overall probability a given SCM assigns 
to a test corpus of representative distorted sentence 
hypotheses (DSHs), the better the quality of the 
SCM. To define distortion perplexity (“disperp”), 
let PrM(dk) = the probability an SCM M assigns to 
a DSH for sentence k, dk. If T is a test corpus 
comprising numerous DSHs, the probability of the 
corpus according to M is PrM(T) = 

�
k PrM(dk).  

Let S(T) = total number of segments in T. Then 
disperp(M,T) = PrM(T)-1/S(T). This gives the mean 
number of choices model M allows; the lower the 
disperp for corpus T, the better M is as a model for 
T (a model X that predicts segment choice in T 
perfectly would have disperp(X,T) = 1.0).  

2.2 Some Simple A Priori SCMs 

The uniform SCM assigns to the DSH dk that has 
S(dk) segments the probability 1/[S(dk)!] . We call 
this Model A. Let’s define some other illustrative 
SCMs. Fig. 2 shows a sentence that has 7 segments 
with 10 words (numbered 0-9 by original order). 
Three segments in the source have been used; the 
decoder has a choice of four RS. Which of the RS 
has the highest probability of being chosen? Per-
haps [2 3], because it is the leftmost RS: the “ left-
most”  predictor. Or, the last phrase in the DSH will 
be followed by the phrase that originally followed 
it, [8 9]: the “ following”  predictor. Or, perhaps 
positions in the source and target should be close, 
so since the next DSH position to be filled is 4, 
phrase [4] should be favoured: the “parallel”  pre-
dictor. 

 

 

Figure 2. Segment choice prediction example 

Model B will be based on the “ leftmost”  predic-
tor, giving the leftmost segment in the RS twice the 
probability of the other segments, and giving the 

Original German:   [ich] [habe] [das buch] [gelesen]    [.] 
DSH for German:  [ich] [habe]  [gelesen]    [das buch] [.] 
(English:                [i]     [have]   [read]        [the book] [.]) 

original:  [0 1] [2 3] [4] [5] [6] [7] [8 9] 
DSH:  [0 1] [5] [7],   RS:  [2 3], [4], [6], [8 9] 
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others uniform probabilities. Model C will be 
based on the “ following”  predictor, doubling the 
probability for the segment in the RS whose first 
word was the closest to the last word in the DSH, 
and otherwise assigning uniform probabilities. Fi-
nally, Model D combines “ leftmost”  and “ follow-
ing” : where the leftmost and following segments 
are different, both are assigned double the uniform 
probability; if they are the same segment, that 
segment has four times the uniform probability. Of 
course, the factor of 2.0 in these models is arbi-
trary. For Figure 2, probabilities would be: 

• Model A: PrA([2 3])= PrA([4])= PrA([6])= 
PrA([8 9]) = 1/4; 

• Model B: PrB ([2 3])= 2/5, PrB([4])= 
PrB([6])= PrB([8 9]) = 1/5; 

• Model C: PrC ([2 3])= PrC ([4])= PrC([6]) 
= 1/5, PrC([8 9]) = 2/5; 

• Model D: PrD ([2 3]) = PrD([8 9]) = 1/3, 
PrD([4])= PrD([6]) = 1/6.  

 
Finally, let’s define an SCM derived from the 

distortion penalty used by systems based on the 
“ following”  predictor, as in (Koehn, 2004). Let ai = 
start position of source phrase translated into ith 
target phrase, bi -1= end position of source phrase 
that’s translated into (i-1)th target phrase. Then 
distortion penalty d(ai, bi-1) = � ¦ai– bi-1 -1¦; the total 
distortion is the product of the phrase distortion 
penalties. This penalty is applied as a kind of non-
normalized probability in the decoder. The value of 

�  for given (source, target) languages is optimized 
on development data. 

To turn this penalty into an SCM, penalties are 
normalized into probabilities, at each decoding 
stage; we call the result Model P (for “penalty” ). 
Model P with �  = 1.0 is the same as uniform 
Model A. In disperp experiments, Model P with �  
optimized on held-out data performs better than 
Models A-D (see Figure 5), suggesting that dis-
perp is a realistic measure.  

Models A-D are models whose parameters were 
all defined a priori; Model P has one trainable pa-
rameter, � . Next, let’s explore distortion models 
with several trainable parameters.  

2.3 Constructing a Distor tion Corpus 

To compare SCMs using disperp and to train 
complex SCMs, we need a corpus of representative 
examples of DSHs. There are several ways of ob-
taining such a corpus. For the experiments de-
scribed here, the MT system was first trained on a 
bilingual sentence-aligned corpus. Then, the sys-
tem was run in a second pass over its own training 
corpus, using its phrase table with the standard dis-
tortion penalty to obtain a best-fit phrase alignment 
between each (source, target) sentence pair. Each 
such alignment yields a DSH whose segments are 
aligned with their original positions in the source; 
we call such a source-DSH alignment a “segment 
alignment” . We now use a leave-one-out procedure 
to ensure that information derived from a given 
sentence pair is not used to segment-align that sen-
tence pair. In our initial experiments we didn’ t do 
this, with the result that the segment-aligned cor-
pus underrepresented the case where words or N-
grams not in the phrase table are seen in the source 
sentence during decoding.  

3 A Trainable Decision Tree SCM 

Almost any machine learning technique could be 
used to create a trainable SCM. We implemented 
one based on decision trees (DTs), not because 
DTs necessarily yield the best results but for soft-
ware engineering reasons: DTs are a quick way to 
explore a variety of features, and are easily inter-
preted when grown (so that examining them can 
suggest further features). We grew N DTs, each 
defined by the number of choices available at a 
given moment. The highest-numbered DT has a 
“+”  to show it handles N+1 or more choices. E.g., 
if we set N=4, we grow a “2-choice” , a “3-choice” , 
a “4-choice” , and a “5+-choice tree” . The 2-choice 
tree handles cases where there are 2 segments in 
the RS, assigning a probability to each; the 3-
choice tree handles cases where there are 3 seg-
ments in the RS, etc. The 5+-choice tree is differ-
ent from the others: it handles cases where there 
are 5 segments in the RS to choose from, and 
cases where there are more than 5. The value of N 
is arbitrary; e.g., for N=8, the trees go from “2-
choice”  up to “9+-choice” .  

Suppose a left-to-right decoder with an N=4 
SCM is translating a sentence with seven phrases. 
Initially, when the DSH is empty, the 5+-choice 
tree assigns probabilities to each of these seven. It 
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will use the 5+-choice tree twice more, to assign 
probabilities to six RS, then to five. To extend the 
hypothesis, it will then use the 4-choice tree, the 3-
choice tree, and finally the 2-choice tree. Disperps 
for this SCM are calculated on test corpus DSHs in 
the same left-to-right way, using the tree for the 
number of choices in the RS to find the probability 
of each segment choice. 

Segments need labels, so the N-choice DT can 
assign probabilities to the N segments in the RS. 
We currently use a “ following”  labeling scheme. 
Let X be the original source position of the last 
word put into the DSH, plus 1. In Figure 2, this 
was word 7, so X=8. In our scheme, the RS seg-
ment whose first word is closest to X is labeled 
“A” ; the second-closest segment is labeled “B” , 
etc. Thus, segments are labeled in order of the 
(Koehn, 2004) penalty; the “A”  segment gets the 
lowest penalty. Ties between segments on the right 
and the left of X are broken by first labeling the 
right segment. In Figure 2, the labels for the RS 
are “A”  = [8 9], “B”  = [6], “C”  = [4], “D”  = [2 3].  

 

 

 

 

 

 

 
 
Figure 3. Some question types for  choice DTs 

Figure 3 shows the main types of questions used 
for tree-growing, comprising position questions 
and word-based questions. Position questions 
pertain to location, length, and ordering of seg-
ments. Some position questions ask about the dis-
tance between the first word of a segment and the 
“ following”  position X: e.g., if the answer to 
“pos(A)-pos(X)=0?”  is yes, then segment A comes 
immediately after the last DSH segment in the 
source, and is thus highly likely to be chosen. 
There are also questions relating to the “ leftmost”  
and “parallel”  predictors (above, sec. 2.2). The 
fseg() and bseg() functions count segments in the 

RS from left to right and right to left respectively, 
allowing, e.g., the question whether a given seg-
ment is the second last segment in the RS. The 
only word-based questions currently implemented 
ask whether a given word is contained in a given 
segment (or anywhere in the DSH, or anywhere in 
the RS). This type could be made richer by allow-
ing questions about the position of a given word in 
a given segment, questions about syntax, etc.  

Figure 4 shows an example of a 5+-choice DT. 
The “+”  in its name indicates that it will handle 
cases where there are 5 or more segments in the 
RS. The counts stored in the leaves of this DT rep-
resent the number of training data items that ended 
up there; the counts are used to estimate probabili-
ties. Some smoothing will be done to avoid zero 
probabilities, e.g., for class C in node 3.  

 

Figure 4. Example of a 5+-choice tree 

For “+”  DTs, the label closest to the end of the 
alphabet (“E”  in Figure 4) stands for a class that 
can include more than one segment. E.g., if this 
5+-choice DT is used to estimate probabilities for a 
7-segment RS, the segment closest to X is labeled 
“A” , the second closest “B” , the third closest “C” , 
and the fourth closest “D” . That leaves 3 segments, 
all labeled “E” . The DT shown yields probability 
Pr(E) that one of these three will be chosen. Cur-
rently, we apply a uniform distribution within this 
“ furthest from X”  class, so the probability of any 
one of the three “E”  segments is estimated as 
Pr(E)/3.  

To train the DTs, we generate data items from 
the second-pass DSH corpus. Each DSH generates 
several data items. E.g., moving across a seven-
segment DSH from left to right, there is an exam-
ple of the seven-choice case, then one of the six-
choice case, etc. Thus, this DSH provides three 
items for training the 5+-choice DT and one item 

     pos(A)-pos(X)<0? 
A:27 B:23 C:20 D:11 E:19  

        today �  DSH? 
A:10 B:8 C:10 D:6 E:5 

A:8 B:6 C:0 D:2 E:4 A:2 B:2 C:10 D:4 E:1 

A:17 B:15 C:10 D:5 E:14 

yes no 

yes no 

1. 

3. 

2. 5. 

4. 

1. Position Questions 
Segment Length Questions 
E.g., “ lgth(DSH)<5?”, “ lgth(B)=2?”, “ lgth(RS)<6?”, etc.  
Questions about Original Position 
Let pos(seg) = index of seg’s first word in source sentence 
E.g., “pos(A)=9?”, “pos(C) <17?”, etc.  
Questions With X (“ following”  word position)  
E.g., “pos(X)=9?”, “pos(C) – pos(X) <0?” , etc.  
Segment Order Questions  
Let fseg = segment # (forward), bseg = segment # (back-
ward) 
E.g., “fseg(D) = 1?” , “bseg(A) <5?” , etc.  
2. Word-Based Questions  
E.g., “and �  DSH?”, “November �  B?” , etc.  
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each for training the 4-choice, 3-choice, and 2-
choice DTs. The DT training method was based on 
Gelfand-Ravishankar-Delp expansion-pruning 
(Gelfand et al., 1991), for DTs whose nodes con-
tain probability distributions (Lazaridès et al., 
1996).  

4 Disperp Exper iments 

We carried out SCM disperp experiments for the 
English-Chinese task, in both directions. That is, 
we trained and tested models both for the distortion 
of English into Chinese-like phrase order, and the 
distortion of Chinese into English-like phrase or-
der. For reasons of space, details about the “dis-
torted English”  experiments won’ t be given here. 
Training and development data for the distorted 
Chinese experiments were taken from the NIST 
2005 release of the FBIS corpus of Xinhua news 
stories. The training corpus comprised 62,000 
FBIS segment alignments, and the development 
“dev”  corpus comprised a disjoint set of 2,306 
segment alignments from the same FBIS corpus. 
All disperp results are obtained by testing on “dev”  
corpus. 
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Figure 5. Several SCMs for  distor ted Chinese 

Figure 5 shows disperp results for the models 
described earlier. The y axis begins at 1.0 (mini-
mum value of disperp). The x axis shows number 
of alignments (DSHs) used to train DTs, on a log 
scale. Models A-D are fixed in advance; Model P’s 
single parameter �  was optimized once on the en-
tire training set of 62K FBIS alignments (to 0.77) 
rather than separately for each amount of training 

data. Model P, the normalized version of  Koehn’s 
distortion penalty, is superior to Models A-D, and 
the DT-based SCM is superior to Model P.  

The Figure 5 DT-based SCM had four trees (2-
choice, 3-choice, 4-choice, and 5+-choice) with 
position-based and word-based questions. The 
word-based questions involved only the 100 most 
frequent Chinese words in the training corpus. The 
system’s disperp drops from 3.1 to 2.8 as the num-
ber of alignments goes from 500 to 62K. 

Figure 6 examines the effect of allowing word-
based questions. These questions provide a signifi-
cant disperp improvement, which grows with the 
amount of training data. 

Distorted Chinese: effect of allowing word qns 
(four- DT models)
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Figure 6. Do word-based questions help? 

In the “ four-DT” results above, examples with 
five or more segments are handled by the same 
“5+-choice”  tree. Increasing the number of trees 
allows finer modeling of multi-segment cases 
while spreading the training data more thinly. 
Thus, the optimal number of trees depends on the 
amount of training data. Fixing this amount to 32K 
alignments, we varied the number of trees. Figure 
7 shows that this parameter has a significant im-
pact on disperp, and that questions based on the 
most frequent 100 Chinese words help perform-
ance for any number of trees.  
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Distorted Chinese: Disperp vs. # of trees (all 
trees grown on 32K alignments)
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Figure 7. Varying the number  of DTs  

In Figure 8 the number of the most frequent 
Chinese words for questions is varied (for a 13-DT 
system trained on 32K alignments). Most of the 
improvement came from the 8 most frequent 
words, especially from the most frequent, the 
comma “ ,” . This behaviour seems to be specific to 
Chinese. In our “distorted English”  experiments, 
questions about the 8 most frequent words also 
gave a significant improvement, but each of the 8 
words had a fairly equal share in the improvement. 

Distorted Chinese: Disperp vs. #words (all trees 
grown on 32K alignments)
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Figure 8. Varying #words (13-DT system) 

Finally, we grew the DT system used for the MT 
experiments: one with 13 trees and questions about 
the 25 most frequent Chinese words, grown on 
88K alignments. Its disperp on the “dev”  used for 
the MT experiments (a different “dev”  from the 
one above – see Sec. 5.2) was 2.42 vs. 3.48 for the 
baseline Model P system: a 30% drop.  

5 Machine Translation Exper iments 

5.1 SCMs for Decoding 

SCMs assume that the source sentence is fully 
segmented throughout decoding. Thus, the system 
must guess the segmentation for the unconsumed 
part of the source (“ remaining source” : RS). For 
the results below, we used a simple heuristic: RS is 
broken into one-word segments. In future, we will 
apply a more realistic segmentation model to RS 
(or modify DT training to reflect accurately RS 
treatment during decoding).  

5.2 Chinese-to-English MT Exper iments  

The training corpus for the MT system’s phrase 
tables consists of all parallel text available for the 
NIST MT05 Chinese-English evaluation, except 
the Xinhua corpora and part 3 of LDC's “Multiple-
Translation Chinese Corpus”  (MTCCp3). The Eng-
lish language model was trained on the same cor-
pora, plus 250M words from Gigaword. The DT-
based SCM was trained and tuned on a subset of 
this same training corpus (above). The dev corpus 
for optimizing component weights is MTCCp3. 
The experimental results below were obtained by 
testing on the evaluation set for MTeval NIST04.  

Phrase tables were learned from the training cor-
pus using the “diag-and”  method (Koehn et al., 
2003), and using IBM model 2 to produce initial 
word alignments (these authors found this worked 
as well as IBM4). Phrase probabilities were based 
on unsmoothed relative frequencies. The model 
used by the decoder was a log-linear combination 
of a phrase translation model (only in the 
P(source|target) direction), trigram language 
model, word penalty (lexical weighting), an op-
tional segmentation model (in the form of a phrase 
penalty) and distortion model. Weights on the 
components were assigned using the (Och, 2003) 
method for max-BLEU training on the develop-
ment set. The decoder uses a dynamic-
programming beam-search, like the one in (Koehn, 
2004). Future-cost estimates for all distortion mod-
els are assigned using the baseline penalty model. 

5.3 Decoding Results 
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Figure 9. BLEU on NIST04 (95% conf. = ±0.7) 

Figure 9 shows experimental results. The “DP” 
systems use the distortion penalty in (Koehn, 2004) 
with �  optimized on “dev” , while “DT”  systems 
use the DT-based SCM. “1x”  is the default beam 
width, while “4x”  is a wider beam (our notation 
reflects decoding time, so “4x”  takes four times as 
long as “1x”). “PP” denotes presence of the phrase 
penalty component. The advantage of DTs as 
measured by difference between the score of the 
best DT system and the best DP system is 0.75 
BLEU at 1x and 0.5 BLEU at 4x. With a 95% 
bootstrap confidence interval of ±0.7 BLEU (based 
on 1000-fold resampling), the resolution of these 
results is too coarse to draw firm conclusions. 

Thus, we carried out another 1000-fold bootstrap 
resampling test on NIST04, this time for pairwise 
system comparison. Table 1 shows results for 
BLEU comparisons between the systems with the 
default (1x) beam. The entries show how often the 
A system (columns) had a better score than the B 
system (rows), in 1000 observations.  

   A �  
vs. B 

�
 

DP,  
no PP 

DP, PP DT,  
no PP 

DT, PP 

DP,  
no PP 

x 2.95% 99.45% 99.55% 

DP, PP 97.05% x 99.95% 99.95% 

DT,  
no PP 

0.55% 0.05% x 65.68% 

DT, PP 0.45% 0.05% 34.32% x 

Table 1. Pairwise compar ison for  1x systems 

The table shows that both DT-based 1x systems 
performed better than either of the DP systems 
more than 99% of the time (underlined results). 
Though not shown in the table, the same was true 
with 4x beam search. The DT 1x system with a 
phrase penalty had a higher score than the DT 1x 
system without one about 66% of the time. 

6 Summary and Discussion 

In this paper, we presented a new class of probabil-
istic model for distortion, based on the choices 
made during translation. Unlike some recent dis-
tortion models (Kumar and Byrne, 2005; Tillmann 
and Zhang, 2005; Tillmann, 2004) these Segment 
Choice Models (SCMs) allow phrases to be moved 
globally, between any positions in the sentence. 
They also lend themselves to quick offline com-
parison by means of a new metric called disperp. 
We developed a decision-tree (DT) based SCM 
whose parameters were optimized on a “dev”  cor-
pus via disperp. Two variants of the DT system 
were experimentally compared with two systems 
with a distortion penalty on a Chinese-to-English 
task. In pairwise bootstrap comparisons, the sys-
tems with DT-based distortion outperformed the 
penalty-based systems more than 99% of the time. 

The computational cost of training the DTs on 
large quantities of data is comparable to that of 
training phrase tables on the same data - large but 
manageable – and increases linearly with the 
amount of training data. However, currently there 
is a major problem with DT training: the low pro-
portion of Chinese-English sentence pairs that can 
be fully segment-aligned and thus be used for DT 
training (about 27%). This may result in selection 
bias that impairs performance. We plan to imple-
ment an alignment algorithm with smoothed phrase 
tables (Johnson et al. 2006) to achieve segment 
alignment on 100% of the training data. 

Decoding time with the DT-based distortion 
model is roughly proportional to the square of the 
number of tokens in the source sentence. Thus, 
long sentences pose a challenge, particularly dur-
ing the weight optimization step. In experiments on 
other language pairs reported elsewhere (Johnson 
et al. 2006), we applied a heuristic: DT training 
and decoding involved source sentences with 60 or 
fewer tokens, while longer sentences were handled 
with the distortion penalty. A more principled ap-
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proach would be to divide long source sentences 
into chunks not exceeding 60 or so tokens, within 
each of which reordering is allowed, but which 
cannot themselves be reordered.  

The experiments above used a segmentation 
model that was a count of the number of source 
segments (sometimes called “phrase penalty” ), but 
we are currently exploring more sophisticated 
models. Once we have found the best segmentation 
model, we will improve the system’s current naïve 
single-word segmentation of the remaining source 
sentence during decoding, and construct a more 
accurate future cost function for beam search. An-
other obvious system improvement would be to 
incorporate more advanced word-based features in 
the DTs, such as questions about word classes 
(Tillmann and Zhang 2005, Tillmann 2004).  

We also plan to apply SCMs to rescoring N-best 
lists from the decoder. For rescoring, one could 
apply several SCMs, some with assumptions dif-
fering from those of the decoder. E.g., one could 
apply right-to-left SCMs, or “distorted target”  
SCMs which assume a target hypothesis generated 
the source sentence, instead of vice versa.  

Finally, we are contemplating an entirely differ-
ent approach to DT-based SCMs for decoding. In 
this approach, only one DT would be used, with 
only two output classes that could be called “C”  
and “N” . The input to such a tree would be a par-
ticular segment in the remaining source sentence, 
with contextual information (e.g., the sequence of 
segments already chosen). The DT would estimate 
the probability Pr(C) that the specified segment is 
“chosen”  and the probability Pr(N) that it is “not 
chosen” . This would eliminate the need to guess 
the segmentation of the remaining source sentence.  
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