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Abstract

In this paper, we present a unigram segmen-
tation model for statistical machine transla-
tion where the segmentation units are blocks:
pairs of phrases without internal structure. The
segmentation model uses a novel orientation
component to handle swapping of neighbor
blocks. During training, we collect block un-
igram counts with orientation: we count how
often a block occurs to the left or to the right of
some predecessor block. The orientation model
is shown to improve translation performance
over two models: 1) no block re-ordering is
used, and 2) the block swapping is controlled
only by a language model. We show exper-
imental results on a standard Arabic-English
translation task.

1 Introduction

In recent years, phrase-based systems for statistical ma-
chine translation (Och et al., 1999; Koehn et al., 2003;
Venugopal et al., 2003) have delivered state-of-the-art
performance on standard translation tasks. In this pa-
per, we present a phrase-based unigram system similar
to the one in (Tillmann and Xia, 2003), which is ex-
tended by an unigram orientation model. The units of
translation are blocks, pairs of phrases without internal
structure. Fig. 1 shows an example block translation us-
ing five Arabic-English blocks b4, - -, b5. The unigram
orientation model is trained from word-aligned training
data. During decoding, we view translation as a block
segmentation process, where the input sentence is seg-
mented from left to right and the target sentence is gener-
ated from bottom to top, one block at a time. A monotone
block sequence is generated except for the possibility to
swap a pair of neighbor blocks. The novel orientation
model is used to assist the block swapping: as shown in
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Figure 1: An Arabic-English block translation example
taken from the devtest set. The Arabic words are roman-
ized.

section 3, block swapping where only a trigram language
model is used to compute probabilities between neighbor
blocks fails to improve translation performance. (Wu,
1996; Zens and Ney, 2003) present re-ordering models
that make use of a straight/inverted orientation model that
is related to our work. Here, we investigate in detail
the effect of restricting the word re-ordering to neighbor
block swapping only.

In this paper, we assume a block generation process that
generates block sequences from bottom to top, one block
at a time. The score of a successor block b depends on its
predecessor block b' and on its orientation relative to the
block &'. In Fig. 1 for example, block b; is the predeces-
sor of block b5, and block b, is the predecessor of block
bs. The target clump of a predecessor block b’ is adja-



cent to the target clump of a successor block b. A right
adjacent predecessor block &' is a block where addition-
ally the source clumps are adjacent and the source clump
of b’ occurs to the right of the source clump of b. A left
adjacent predecessor block is defined accordingly.
During decoding, we compute the score P(b,o}) of a
block sequence b} with orientation of" as a product of
block bigram scores:
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where b; is a block and o; € {L, R, N} is a three-valued
orientation component linked to the block b; (the orienta-
tion o;_; of the predecessor block is ignored.). A block
b; has right orientation (o; = R) if it has a left adjacent
predecessor. Accordingly, a block b; has left orientation
(o; = L) if it has a right adjacent predecessor. If a block
has neither a left or right adjacent predecessor, its orien-
tation is neutral (o; = IV). The neutral orientation is not
modeled explicitly in this paper, rather it is handled as a
default case as explained below. In Fig. 1, the orienta-
tion sequence is 0} = (N, L, N, N, L), i.e. block b, and
block b5 are generated using left orientation. During de-
coding most blocks have right orientation (o = R), since
the block translations are mostly monotone.

We try to find a block sequence with orientation (b7, o)
that maximizes P(b,o}). The following three types
of parameters are used to model the block bigram score
p(bi;0i|bi71;0i71) in Eq 1

e Two unigram count-based models: p(b) and
py(0). We compute the unigram probability p(b) of
a block based on its occurrence count N (b). The
blocks are counted from word-aligned training data.
We also collect unigram counts with orientation: a
left count Ny, (b) and a right count Nr(b). These
counts are defined via an enumeration process and
are used to define the orientation model p, (0):

No(b)

(o € {L,R}) = Ni(b) + Nr(b)

e Trigram language model: The block language
model score p(b;|b;—1) is computed as the proba-
bility of the first target word in the target clump of
b; given the final two words of the target clump of
bi_1.

The three models are combined in a log-linear way, as
shown in the following section.

2 Orientation Unigram Model

The basic idea of the orientation model can be illustrated
as follows: In the example translation in Fig. 1, block b,

occurs to the left of block b;. Although the joint block
(b2, by) consisting of the two smaller blocks b, and b,
has not been seen in the training data, we can still profit
from the fact that block b2 occurs more frequently with
left than with right orientation. In our Arabic-English
training data, block b, has been seen Ny, (by) = 52 times
with left orientation, and N(b2) = 0 with right orien-
tation, i.e. it is always involved in swapping. This intu-
ition is formalized using unigram counts with orientation.
The orientation model is related to the distortion model
in (Brown et al., 1993), but we do not compute a block
alignment during training. We rather enumerate all rele-
vant blocks in some order. Enumeration does not allow
us to capture position dependent distortion probabilities,
but we can compute statistics about adjacent block prede-
Cessors.

Our baseline model is the unigram monotone model de-
scribed in (Tillmann and Xia, 2003). Here, we select
blocks & from word-aligned training data and unigram
block occurrence counts N (b) are computed: all blocks
for a training sentence pair are enumerated in some order
and we count how often a given block occurs in the par-
allel training data *. The training algorithm yields a list
of about 65 blocks per training sentence pair. In this pa-
per, we make extended use of the baseline enumeration
procedure: for each block b, we additionally enumerate
all its left and right predecessors b'. No optimal block
segmentation is needed to compute the predecessors: for
each block b, we check for adjacent predecessor blocks b’
that also occur in the enumeration list. We compute left
orientation counts Np,(b) as follows:

Np(b) = > 1.

3 b’ right adjacent predecessor of b

Here, we enumerate all adjacent predecessors b’ of block
b over all training sentence pairs. The identity of &’ is ig-
nored. Ny, (b) is the number of times the block b succeeds
some right adjacent predecessor block &'. The ’right’ ori-
entation count Ng(b) is defined accordingly. Note, that
in general the unigram count N (b) # Ny (b) + Ng(b):
during enumeration, a block b might have both left and
right adjacent predecessors, either a left or a right adja-
cent predecessor, or no adjacent predecessors at all. The
orientation count collection is illustrated in Fig. 2: each
time a block b has a left or right adjacent predecessor in
the parallel training data, the orientation counts are incre-
mented accordingly.

The decoding orientation restrictions are illustrated in
Fig 3: a monotone block sequence with right (o = R)

"We keep all blocks for which N(b) > 2 and the phrase
length isless or equal 8. No other selection criteria are applied.
For the S1 & OR model, we keep all blocks for which N (b) >
3.
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Figure 2: During training, blocks are enumerated in some
order: for each block b, we look for left and right adjacent
predecessors b'.

orientation is generated. If a block is skipped e.g. block
bs in Fig 3 by first generating block b, then block b3, the
block b5 is generated using left orientation o3 = L. Since
the block translation is generated from bottom-to-top, the
blocks b, and b4 do not have adjacent predecessors below
them: they are generated by a default model p(b;|b;—1)
without orientation component. The orientation model
is given in Eq. 2, the default model is given in Eq. 3.
The block bigram model p(b;,0; € {L, R}|b;—1,0;—1) in
Eqg. 1 is defined as:

p(biaoi S {LyR} | bi*laoifl) - (2)
= p(b;)® - p(bilbi—1)** - pe; (0;)2,

where ag + a1 + a2 = 1.0 and the orientation o;_; of the
predecessor is ignored. The «; are chosen to be optimal
on the devtest set (the optimal parameter setting is shown
in Table. 1). Only two parameters have to be optimized
due to the constraint that the «; have to sum to 1.0. The
default model p(bi,Oi = N|bi_1,0i_1) = p(bl'|bi_1) is
defined as:

]

p(bilbi—1) = p(bi)® - p(bilbi1)*, 3
where oy + o) = 1.0. The «; are not optimized sepa-
rately, rather we define: a, = —2

Straightforward normalization over all successor blocks
in Eq. 2 and in Eq. 3 is not feasible: there are tens of mil-
lions of possible successor blocks b. In future work, nor-
malization over a restricted successor set, e.g. for a given
source input sentence, all blocks b that match this sen-
tence might be useful for both training and decoding. The
segmentation model in Eq. 1 naturally prefers translations
that make use of a smaller number of blocks which leads
to a smaller number of factors in Eq. 1. Using fewer *big-
ger’ blocks to carry out the translation generally seems
to improve translation performance. Since normalization
does not influence the number of blocks used to carry out
the translation, it might be less important for our segmen-
tation model.

We use a DP-based beam search procedure similar to the
one presented in (Tillmann and Xia, 2003). \We maximize
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Figure 3: During decoding, a mostly monotone block se-
quence with (o; = R) orientation is generated as shown
in the left picture. In the right picture, block swapping
generates block b3 to the left of block b5. The blocks b
and b4 do not have a left or right adjacent predecessor.

over all block segmentations with orientation (b1, o) for
which the source phrases yield a segmentation of the in-
put sentence. Swapping involves only blocks (b, ') for
which Np,(b) > 3 for the successor block b, e.g. the
blocks b, and b5 in Fig 1. We tried several thresholds for
Ny, (b), and performance is reduced significantly only if
N (b) > 30. No other parameters are used to control
the block swapping. In particular the orientation o’ of the
predecessor block b’ is ignored: in future work, we might
take into account that a certain predecessor block b’ typi-
cally precedes other blocks.

3 Experimental Results

The translation system is tested on an Arabic-to-English
translation task. The training data comes from the UN
news sources: 87.5 million Arabic and 97.1 million En-
glish words. The training data is sentence-aligned yield-
ing 3.3 million training sentence pairs. The Arabic data
is romanized, some punctuation tokenization and some
number classing are carried out on the English and the
Arabic training data. As devtest set, we use testing
data provided by LDC, which consists of 1043 sen-
tences with 25 889 Arabic words with 4 reference trans-
lations. As a blind test set, we use MT 03 Arabic-English
DARPA evaluation test set consisting of 663 sentences
with 16 278 Arabic words.

Three systems are evaluated in our experiments: SO is the
baseline block unigram model without re-ordering. Here,
monotone block alignments are generated: the blocks
b; have only left predecessors (no blocks are swapped).
This is the model presented in (Tillmann and Xia, 2003).
For the S1 model, the sentence is translated mostly
monotonously, and only neighbor blocks are allowed to
be swapped (at most 1 block is skipped). The S1 & OR
model allows for the same block swapping as the S1
model, but additionally uses the orientation component
described in Section 2: the block swapping is controlled



Table 1. Effect of the orientation model on Arabic-
English test data: LDC devtest set and DARPA MT 03
blind test set.

Test Unigram Setting BLEUr4n4
Model (Oé()/Oél/OéQ)

Dev test S1 .74/.26 0.344 £ 0.012
S0 77/.23 0.355 £ 0.013
S1& OR | .66/.27/.07 | 0.368 £ 0.014
Test S1 .74/.26 0.336 + 0.017
S0 717/.23 0.339 £ 0.016
S1& OR | .66/.27/.07 | 0.356 £ 0.017

Table 2: Arabic-English example blocks from the de-
vtest set: the Arabic phrases are romanized. The example
blocks were swapped in the development test set transla-
tions. The counts are obtained from the parallel training
data.

| Arabic-English blocks

[ Ne(®) [ Ne(d) |

(exhibition” | 'mErD") 97 32
("added’ | "'WADA(f") 285 68
(sald [wgAT) 872 801
("suggested | 'AqtrH") 356 729
(terrorist attacks' | hjmAt ArhAbyp’) 14 27

by the unigram orientation counts. The S0 and S1 mod-
els use the block bigram model in Eq. 3: all blocks b
are generated with neutral orientation (o = N), and only
two components, the block unigram model p(b;) and the
block bigram score p(b;|b;—1) are used.

Experimental results are reported in Table 1: three BLEU
results are presented for both devtest set and blind test
set. Two scaling parameters are set on the devtest set and
copied for use on the blind test set. The second column
shows the model name, the third column presents the op-
timal weighting as obtained from the devtest set by car-
rying out an exhaustive grid search. The fourth column
shows BLEU results together with confidence intervals
(Here, the word casing is ignored). The block swapping
model S1 & OR obtains a statistical significant improve-
ment over the baseline S0 model. Interestingly, the swap-
ping model .S1 without orientation performs worse than
the baseline SO model: the word-based trigram language
model alone is too weak to control the block swapping:
the model is too unrestrictive to handle the block swap-
ping reliably. Additionally, Table 2 presents devtest set
example blocks that have actually been swapped. The
training data is unsegmented, as can be seen from the
first two blocks. The block in the first line has been seen
3 times more often with left than with right orientation.
Blocks for which the ratio » = ﬁ,’;% is bigger than 0.25
are likely candidates for swapping in our Arabic-English

experiments. The ratio r itself is not currently used in the
orientation model. The orientation model mostly effects
blocks where the Arabic and English words are verbs or
nouns. As shown in Fig. 1, the orientation model uses
the orientation probability pr,(b2) for the noun block b5,
and only the default model for the adjective block b,. Al-
though the noun block might occur by itself without ad-
jective, the swapping is not controlled by the occurrence
of the adjective block b; (which does not have adjacent
predecessors). We rather model the fact that a noun block
b is typically preceded by some block &’. This situation
seems typical for the block swapping that occurs on the
evaluation test set.
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