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Abstract

We extend existing methods for automatic sen-
tence boundary detection by leveraging multi-
ple recognizer hypotheses in order to provide
robustness to speech recognition errors. For
each hypothesized word sequence, an HMM
is used to estimate the posterior probability of
a sentence boundary at each word boundary.
The hypotheses are combined using confusion
networks to determine the overall most likely
events. Experiments show improved detec-
tion of sentences for conversational telephone
speech, though results are mixed for broadcast
news.

1 Introduction

The output of most current automatic speech recognition
systems is an unstructured sequence of words. Additional
information such as sentence boundaries and speaker la-
bels are useful to improve readability and can provide
structure relevant to subsequent language processing, in-
cluding parsing, topic segmentation and summarization.
In this study, we focus on identifying sentence boundaries
using word-based and prosodic cues, and in particular we
develop a method that leverages additional information
available from multiple recognizer hypotheses.

Multiple hypotheses are helpful because the single best
recognizer output still has many errors even for state-
of-the-art systems. For conversational telephone speech
(CTS) word error rates can be from 20-30%, and for
broadcast news (BN) word error rates are 10-15%. These
errors limit the effectiveness of sentence boundary pre-
diction, because they introduce incorrect words to the
word stream. Sentence boundary detection error rates
on a baseline system increased by 50% relative for CTS
when moving from the reference to the automatic speech
condition, while for BN error rates increased by about
20% relative (Liu et al., 2003). Including additional rec-
ognizer hypotheses allows for alternative word choices to
inform sentence boundary prediction.

To integrate the information from different alterna-
tives, we first predict sentence boundaries in each hypoth-

esized word sequence, using an HMM structure that in-
tegrates prosodic features in a decision tree with hidden
event language modeling. To facilitate merging predic-
tions from multiple hypotheses, we represent each hy-
pothesis as a confusion network, with confidences for
sentence predictions from a baseline system. The final
prediction is based on a combination of predictions from
individual hypotheses, each weighted by the recognizer
posterior for that hypothesis.

Our methods build on related work in sentence bound-
ary detection and confusion networks, as described in
Section 2, and a baseline system and task domain re-
viewed in Section 3. Our approach integrates prediction
on multiple recognizer hypotheses using confusion net-
works, as outlined in Section 4. Experimental results are
detailed in Section 5, and the main conclusions of this
work are summarized in Section 6.

2 Related Work

2.1 Sentence Boundary Detection

Previous work on sentence boundary detection for auto-
matically recognized words has focused on the prosodic
features and words of the single best recognizer output
(Shriberg et al., 2000). That system had an HMM struc-
ture that integrates hidden event language modeling with
prosodic decision tree outputs (Breiman et al., 1984). The
HMM states predicted at each word boundary consisted
of either a sentence or non-sentence boundary classifica-
tion, each of which received a confidence score. Improve-
ments to the hidden event framework have included inter-
polation of multiple language models (Liu et al., 2003).

A related model has been used to investigate punc-
tuation prediction for multiple hypotheses in a speech
recognition system (Kim and Woodland, 2001). That sys-
tem found improvement in punctuation prediction when
rescoring using the classification tree prosodic feature
model, but it also introduced a small increase in word
error rate. More recent work has also implemented a sim-
ilar model, but used prosodic features in a neural net in-
stead of a decision tree (Srivastava and Kubala, 2003).
A maximum entropy model that included pause informa-
tion was used in (Huang and Zweig, 2002). Both finite-
state models and neural nets have been investigated for



prosodic and lexical feature combination in (Christensen
et al., 2001).

2.2 Confusion Networks

Confusion networks are a compacted representation of
word lattices that have strictly ordered word hypothesis
slots (Mangu et al., 2000). The complexity of lattice rep-
resentations is reduced to a simpler form that maintains
all possible paths from the lattice (and more), but trans-
forms the space to a series of slots which each have word
hypotheses (and null arcs) derived from the lattice and as-
sociated posterior probabilities. Confusion networks may
also be constructed from an N-best list, which is the case
for these experiments. Confusion networks are used to
optimize word error rate (WER) by selecting the word
with the highest probability in each particular slot.

3 Tasks & Baseline

This work specifically detects boundaries of sentence-
like units called SUs. An SU roughly corresponds to a
sentence, except that SUs are for the most part defined as
units that include only one independent main clause, and
they may sometimes be incomplete as when a speaker
is interrupted and does not complete their sentence. A
more specific annotation guideline for SUs is available
(Strassel, 2003), which we refer to as the “V5” standard.
In this work, we focus only on detecting SUs and do not
differentiate among the different types (e.g. statement,
question, etc.) that were used for annotation. We work
with a relatively new corpus and set of evaluation tools,
which are described below.

3.1 Corpora

The system is evaluated for both conversational telephone
speech (CTS) and broadcast news (BN), in both cases us-
ing training, development and test data annotated accord-
ing to the V5 standard. The test data is that used in the
DARPA Rich Transcription (RT) Fall 2003 evaluations;
the development and evaluation test sets together com-
prise the Spring 2003 RT evaluation test sets.

For CTS, there are 40 hours of conversations available
for training from the Switchboard corpus, and 3 hours
(72 conversation sides) each of development and evalua-
tion test data drawn from both the Switchboard and Fisher
corpora. The development and evaluation set each have
roughly 6000 SUs.

The BN data consists of a set of 20 hours of news
shows for training, and 3 hours (6 shows) for testing. The
development and evaluation test data contains 1.5 hours
(3 shows) each for development and evaluation, each with
roughly 1000 SUs. Test data comes from the month of
February in 2001; training data is taken from a previous
time period.

3.2 Baseline System

The automatic speech recognition systems used were up-
dated versions of those used by SRI in the Spring 2003
RT evaluations (NIST, 2003), with a WER of 12.1%
on BN data and 22.9% on CTS data. Both systems
perform multiple recognition and adaptation passes, and
eventually produce up to 2000-best hypotheses per wave-
form segment, which are then rescored with a number of
knowledge sources, such as higher-order language mod-
els, pronunciation scores, and duration models (for CTS).
For best results, the systems combine decoding output
from multiple front ends, each producing a separate N-
best list. All N-best lists for the same waveform segment
are then combined into a single word confusion network
(Mangu et al., 2000) from which the hypothesis with low-
est expected word error is extracted. In our baseline SU
system, the single best word stream thus obtained is then
used as the basis for SU recognition.

Our baseline SU system builds on previous work on
sentence boundary detection using lexical and prosodic
features (Shriberg et al., 2000). The system takes as in-
put alignments from either reference or recognized (1-
best) words, and combines lexical and prosodic infor-
mation using an HMM. Prosodic features include about
100 features reflecting pause, duration, F0, energy, and
speaker change information. The prosody model is a de-
cision tree classifier that generates the posterior probabil-
ity of an SU boundary at each interword boundary given
the prosodic features. Trees are trained from sampled
training data in order to make the model sensitive to fea-
tures of the minority SU class. Recent prosody model im-
provements include the use of bagging techniques in deci-
sion tree training to reduce the variability due to a single
tree (Liu et al., 2003). Language model improvements
include adding information from a POS-based model, a
model using automatically-induced word classes, and a
model trained on separate data.

3.3 Evaluation

Errors are measured by a slot error rate similar to the
WER metric utilized by the speech recognition commu-
nity, i.e. dividing the total number of inserted and deleted
SUs by the total number of reference SUs. (There are
no substitution errors because there is only one sentence
class.) When recognition output is used, the words will
generally not align perfectly with the reference transcrip-
tion and hence the SU boundary predictions will require
some alignment procedure to match to the reference lo-
cation. Here, the alignment is based on the minimum
word error alignment of the reference and hypothesized
word strings, and the minimum SU error alignment if the
WER is equal for multiple alignments. We report num-
bers computed with the su-eval scoring tool from NIST.
SU error rates for the reference words condition of our



baseline system are 49.04% for BN, and 30.13% for CTS,
as reported at the NIST RT03F evaluation (Liu et al.,
2003). Results for the automatic speech recognition con-
dition are described in Section 5.

4 Using N-Best Sentence Hypotheses

The large increase in SU detection error rate in mov-
ing from reference to recognizer transcripts motivates an
approach that reduces the mistakes introduced by word
recognition errors. Although the best recognizer output is
optimized to reduce word error rate, alternative hypothe-
ses may together reinforce alternative (more accurate) SU
predictions. The oracle WER for the confusion networks
is much lower than for the single best hypothesis, in the
range of 13-16% WER for the CTS test sets.

4.1 Feature Extraction and SU Detection

Prediction of SUs using multiple hypotheses requires
prosodic feature extraction for each hypothesis, which
in turn requires a forced alignment of each hypothesis.
Thousands of hypotheses are output by the recognizer,
but we prune to a smaller set to reduce the cost of run-
ning forced alignments and prosodic feature extraction.
The recognizer outputs an N-best list of hypotheses and
assigns a posterior probability to each hypothesis, which
is normalized to sum to 1 over all hypotheses. We collect
hypotheses from the N-best list for each acoustic segment
up to 90% of the posterior mass (or to a maximum count
of 1000).

Next, forced alignment and prosodic feature extraction
are run for all segments in this pruned set of hypothe-
ses. Statistics for prosodic feature normalization (such as
speaker and turn F0 mean) are collected from the single
best hypothesis. After obtaining the prosodic features,
the HMM predicts sentence boundaries for each word se-
quence hypothesis independently. For each hypothesis,
an SU prediction is made at all word boundaries, result-
ing in a posterior probability for SU and no SU at each
boundary. The same models are used as in the 1-best pre-
dictions – no parameters were re-optimized for the N-best
framework. Given independent predictions for the indi-
vidual hypotheses, we then build a system to incorporate
the multiple predictions into a single hypothesis, as de-
scribed next.

4.2 Combining Hypotheses

The prediction results for an individual hypothesis are
represented in a confusion network that consists of a
series of word slots, each followed by a slot with SU and
no SU, as shown in Figure 1 with hypothetical confi-
dences for the between-word events. (This representation
is a somewhat unusual form because the word slots have
only a single hypothesis.) The words in the individual
hypotheses have probability one, and each arc with an

SU or no SU token has a confidence (posterior prob-
ability) assigned from the HMM. The overall network
has a score associated with its N-best hypothesis-level
posterior probability, scaled by a weight corresponding to
the goodness of the system that generated that hypothesis.
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Figure 1: Confusion network for a single hypothesis.

The confusion networks for each hypothesis are
then merged with the SRI Language Modeling Toolkit
(Stolcke, 2002) to create a single confusion network
for an overall hypothesis. This confusion network is
derived from an alignment of the confusion networks
of each individual hypothesis. The resulting network
contains slots with the word hypotheses from the N-best
list and slots with the combined SU/no SU probability,
as shown in Figure 2. The confidences assigned to each
token in the new confusion network are a weighted
linear combination of the probabilities from individual
hypotheses that align to each other, compiled from
the entire hypothesis list, where the weights are the
hypothesis-level scores from the recognizer.
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Figure 2: Confusion network for a merged hypothesis.

Finally, the best decision at each point is selected by
choosing the words and boundaries with the highest prob-
ability. Here, the words and SUs are selected indepen-
dently, so that we obtain the same words as would be
selected without inserting the SU tokens and guarantee
no degradation in WER. The key improvement is that the
SU detection is now a result of detection across all recog-
nizer hypotheses, which reduces the effect of word errors
in the top hypothesis.

5 Experiments

Table 1 shows the results in terms of slot error rate on
the four test sets. The middle column indicates the per-
formance on a single hypothesis, with the words derived
from the pruned set of N-best hypotheses. The right col-
umn indicates the performance of the system using mul-
tiple hypotheses merged with confusion networks.

Multiple hypotheses provide a reduction of error for
both test sets of CTS (significant at p � .02 using the Mc-
Nemar test), but give insignificant (and mixed) results for
BN. The small increase in error for the BN evaluation set



WER SU error rate
Single Best Confusion Nets

BN Dev 12.2 55.79% 54.45%
BN Eval 12.0 57.78% 58.42%
CTS Dev 23.6 44.14% 42.72%
CTS Eval 22.2 44.95% 44.01%

Table 1: Word and SU error rates for single best vs. con-
fusion nets.

may be due to the fact that the 1-best parameters were
tuned on different news shows than were represented in
the evaluation data.

We expected a greater gain from the use of confusion
networks in CTS than BN, given the previously shown
impact of WER on 1-best SU detection. Additionally,
incorporating a larger number of N-best hypotheses has
improved results in all experiments so far, so we would
expect this trend to continue for additional increases, but
time constraints limited our ability to run these larger ex-
periments. One possible explanation for the relatively
small performance gains is that we constrained the con-
fusion network topology so that there was no change in
the word recognition results. We imposed this constraint
in our initial investigations to allow us to compare per-
formance using the same words. It it possible that better
performance could be obtained by using confusion net-
work topologies that link words and metadata.

A more specific breakout of error improvement for the
CTS development set is given in Table 2, showing that
both recall and precision benefit from using the N-best
framework. Including multiple hypotheses reduces the
number of SU deletions (improves recall), but the pri-
mary gain is in reducing insertion errors (higher preci-
sion). The same effect holds for the CTS evaluation set.

Single Best Confusion Nets Change

Deletions 1623 1597 -1.6%
Insertions 872 818 -6.2%
Total 2495 2415 -3.2%

Table 2: Errors for CTS development set

6 Conclusion

Detecting sentence structure in automatic speech recog-
nition provides important information for language pro-
cessing or human understanding. Incorporating multiple
hypotheses from word recognition output can improve
overall detection of SUs in comparison to prediction on a
single hypothesis. This is especially true for CTS, which
suffers more from word errors and can therefore benefit

from considering alternative hypotheses.
Future work will involve a tighter integration of SU de-

tection and word recognition by including SU events di-
rectly in the recognition lattice. This will provide oppor-
tunities to investigate the interaction of automatic word
recognition and structural metadata, hopefully resulting
in reduced WER. We also plan to extend these methods
to additional tasks such as disfluency detection.
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