
Correction Grammars for Error Handling in a Speech Dialog System

Hirohiko Sagawa Teruko Mitamura Eric Nyberg
Language Technologies Institute, Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.
{hsagawa, teruko, ehn}@cs.cmu.edu

Abstract

Speech recognition errors are inevitable in a
speech dialog system. This paper presents an
error handling method based on correction
grammars which recognize the correction
utterances which follow a recognition error.
Correction grammars are dynamically created
from existing grammars and a set of
correction templates. We also describe a
prototype dialog system which incorporates
this error handling method, and provide
empirical evidence that this method can
improve dialog success rate and reduce the
number of dialog turns required for error
recovery.

1 Introduction

In a dialog system, speech recognition errors are
inevitable and often make smooth communication
between a user and a system difficult. Figure 1 shows an
example of a dialog between a user and a system which
illustrates a system error. The system misrecognized
“Tokyo” in the user’s utterance (U1) as “Kyoto” (S3). If
the system correctly recognized the user’s utterance, the
user could answer “yes” at U3 and the weather is
reported (S6). However, in this case, the user must
correct the error at U3 and the turns from S4 to U5 are
required to recover from the error. The dialog system
must recognize the user’s response to the system error
(correction utterance). Otherwise, more turns (or a

complete restart) will be required to correct the error.
Therefore, an error handling method which corrects a
system error and returns to the normal dialog flow
smoothly is an important requirement for practical
dialog systems.

Recent work related to error handling in speech
dialog systems has mainly focused on error detection.
Walker et al. (2000), Bosch et al. (2001) and
Kazemzadeh et al. (2003) extracted several parameters
(e.g., acoustic, lexical and semantic) from a dialog
corpus, and analyzed the differences between correction
utterances and the other utterances in a dialog. They
also tried to detect system errors by using these
parameters as input to machine learning methods.
However, the issue of error recovery is not addressed.

Danieli (1996) and LuperFoy & Duff (1996)
proposed error detection methods based on plan
matching. An error is detected when the intention or the
parameter expressed in the user’s utterance is not
consistent with the system’s assumptions and/or
limitations. In these studies, the correction utterances
are assumed to be recognized correctly.

Kitaoka et al. (2003) proposed a method to detect
system errors based on the similarity of speech patterns
and hypotheses overlapping in the recognition result.
They also proposed a method to improve the recognition
accuracy for correction utterances by selecting a speech
recognition grammar according to the results of the
error detection.

The previous studies assumed that the rules for
speech recognition or natural language processing of
correction utterances were prepared in advance (Danieli ,
1996; LuperFoy & Duff, 1996). These rules are
indispensable because the correction utterance often
includes the information required to correct the error.
The correction utterance depends on the dialog context,
especially on the user’s utterances prior to the system
error. Therefore it is difficult for the system designer to
prepare these rules in advance when the dialog flow
becomes complex. To solve this problem, a method that
can automatically create the rules to interpret correction
utterances is desirable.

In this paper, we will propose a method to
dynamically create the rules to recognize correction
utterances and repair recognition errors based on the
dialog context. A prototype dialog system which
incorporates the proposed method has been developed,

S1: Please tell me the area.
U1: Tokyo.
S2: Please tell me the date.
U2: Tomorrow.
S3: Would you like to know the weather for Kyoto

tomorrow?
U3: No, Tokyo.
S4: Did you say Tokyo?
U4: Yes.
S5: Would you like to know the weather for Tokyo

tomorrow?
U5: Yes.
S6: The weather for Tokyo tomorrow is fine.

Correction utterance

System error

Figure 1. Example of a dialog with a system error

and we present experimental results which show the
effectiveness of the approach.

2 CAMMIA Dialog System

Our current approach focuses on dialog systems which
incorporate speech recognition modules utilizing regular
grammars. The CAMMIA system is an example of such
a dialog system (Nyberg et al., 2002).

The CAMMIA system is a client-server dialog
management system based on VoiceXML. Each dialog
scenario in this system is described in the format of
DialogXML. The system has the initiative in the dialog,
and dialogs are oriented around slot-filling for particular
queries or requests. The server sends a VoiceXML data
file to the client VoiceXML interpreter for a particular
dialog turn, compiled from the DialogXML scenario
according to the current dialog context. The VoiceXML
data includes system prompts, names of grammar files
and valid transitions to subsequent dialog states. The
client interacts with the user according to the
VoiceXML data.

Figure 2 shows an example of a grammar rule used
in the CAMMIA system. The regular grammar rule can
be represented as a transition network. The following
sentences are recognized by the rule in Figure 2:

• I would like to know the weather for Tokyo.
• I would like to know the weather for Tokyo tomorrow.

3 Error Handling Based on Correction
Grammars

To recognize the user’s utterances in a dialog system, a
grammar for potential user utterances must be prepared
in advance for each dialog context. For error handling, it
is also necessary to anticipate correction utterances and
prepare a correction grammar. We propose a method to
automatically create the correction grammar based on
the current dialog context; error detection and repair is
implemented using the correction grammar.

To create the correction grammar, the system must
know the user’s utterances prior to the error, because
correction utterances typically depend on them. If the
user’s utterances are consistent with what the system is
expecting, the correction grammar can be generated
based on the grammar previously in use by the speech
recognizer. Therefore, the sequence of grammars used
in the dialog so far is stored in the grammar history as
the dialog context, and the correction grammar is
created using the grammars in this history.

Most of the forms of correction utterances can be
expected in advance because correction utterances
include many repetitions of words or phrases from
previous turns (Kazemzadeh et al., 2003). We assume
that the rules to generate the correction grammar can be
prepared as templates; the correction grammar is created
by inserting information extracted from the grammar

history into a template.
Figure 3 shows an example of a process flow in a

dialog system which performs error handling based on a
correction grammar. The “system prompt n” is the
process to output the n-th prompt to the user. The
correction grammar is created based on the grammar
used in the “user response n-1”, which is the process to
recognize the (n-1)-th user utterance, and it is used in
the “user response n” together with the “grammar n”
which is used to recognize the n-th normal user’s
utterance. The system detects the error when the user’s
utterance is recognized using the correction grammar,
and then transits into the “correction of errors” to
modify the error. The grammar history in Figure 3
stores only the grammar used in the last recognition
process. The number of grammars stored in the history
can be changed depending on the dialog management
strategy and error handling requirements.

4 Generation of Correction Grammar

The correction grammar is created as follows.

(1) Copying the grammar rules in the history
The user often repeats the same utterance when the
system misunderstood what s/he spoke. To detect
when the user repeats exactly the same utterance, the
grammar rules in the grammar history are copied into
the correction grammar.

(2) Inserting the rules in the history into the template
When the user tries to correct the system error, some

 1 2 4 “I would like to know the weather for” “Tokyo” “tomorrow” 3 “Tokyo”

Figure 2. Example of the grammar rule used in the
CAMMIA system System prompt n-1 Grammar n-1Generation of correction grammar Correction grammar n-1 Grammar n . . .

. . . Template Recognized by correction grammar ? Yes No
User response n-1System prompt n User response n Correction of errors System prompt n+1

Figure 3. Process flow: Error handling based on a

correction grammar

phrases are often added to the original utterance
(Kitaoka, 2003). The template mentioned above is
used to support this type of correction utterance. An
example of the correction grammar rule generated by
this method is shown in Figure 4. The “null” in Figure
4 implies a transition with no condition, and the “X”
shows where the original rule is embedded. In this
example, the created grammar rule in Figure 4(c)
corresponds to the following sentences:

• No, I’d like to know the weather for Tokyo.
• I said I’d like to know the weather for Tokyo.

(3) Inserting slot-values into the template
The user often repeats only words or phrases which
the system is focusing on (Kazemzadeh et al., 2003).
In a slot-filling dialog, these correspond to the slot
values. Therefore, correction grammar rules are also
created by extracting the slot values from the grammar
in the history and inserting them into the template. If
there are several slot values that can be corrected at
the same time, all of their possible combinations and
permutations are also generated. An example is shown
in Figure 5. In Figure 5(b), the slot-values are

“Tokyo” and “tomorrow”. The grammar rule in Figure
5(c) includes each slot value plus their combination(s),
and represents the following sentences:

• I said Tokyo.
• I said tomorrow.
• I said Tokyo tomorrow.

5 Prototype System with Error Handling

We have implemented the proposed error handling
method for a set of Japanese dialog scenarios in the
CAMMIA system. We added to this system: a) a
process to create a correction grammar file when the
system sends a grammar file to the client, b) a process to
repair errors based on the recognition result, and c)
transitions to the repair action when the user’s utterance
is recognized by the correction grammar.

There are two types of errors: task transition errors
and slot value errors. If the error is a task transition error,
the modification process cancels the current task and
transits to the new task as specified by the correction
utterance. When the error is a slot value error, the slot
value is replaced by the value given in the correction
utterance. However, if the new value is identical to the
old one, we assume a recognition error and the second
candidate in the recognition result is used. This
technique requires a speech recognizer that can output
N-best results; we used Julius for SAPI (Kyoto Univ.,
2002) for this experiment.

6 Experiments

We carried out an experiment to verify whether the
proposed method works properly in a dialog system. In
this experiment, dialog systems with and without the
error handling method were compared. In this
experiment, a weather information dialog was selected
as the task for the subjects and about 1200 dialog
instances were analyzed (both with and without error
handling). The dialog flow was the same as shown in
Figure 1. The grammar included 500 words for place
names, and 69 words for the date. The subjects were
instructed in advance on the utterance patterns allowed
by the system, and used only those patterns during the
experiment. A summary of the collected data is shown
in Table 1. When error handling is disabled, the system
returns to the place name query when the user denies the
system’s confirmation, e.g. it returns from U3 to S1 in
Figure 1. A comparison of the number of turns in these
two systems is shown in Table 2. “1 error” in Table 2
means that the dialog included one error and “2 errors”
means that the same error was repeated.

The success rate for the task and the average number
of turns in the dialog (including errors) are tabulated.
Dialogs including more than 3 errors were regarded as
incomplete tasks in the calculation of the success rate.
The results are shown in Table 3.

 1 X 2 “no” null “I said”
(a) Template 1 3 “I would like to know the weather for” 2 “Tokyo”

(b) Grammar rule in the history 3 4 “I would like to know the weather for” “Tokyo” 1 2 5 “no” null “I said”

(c) Created correction grammar rule

Figure 4. Correction grammar created by inserting
the original rule into a template 1 X 2 null “I said”

(a) Template 1 3 “I would like to know the weather for” 2 “Tokyo” “tomorrow”

(b) Grammar rule in the history 3 4 “Tokyo” 1 2 5 null “I said” “tomorrow” “Tokyo” “tomorrow”
(c) Created correction grammar rule

Figure 5. Correction grammar rules created by
inserting slot values into a template

7 Discussion

The task completion rate was improved from 86.4% to
93.4% when the proposed error handling method was
used. The average number of turns was reduced by 3
turns as shown in Table 3. This result shows that the
proposed error handling method was working properly
and effectively.

One reason that the success rate was improved is
that the proposed method prevents the repetition of
errors. When the error handling method is not
implemented, errors can be easily repeated. The error
handling method can avoid repeated errors by selecting
the second candidate in the recognition result even when
the correction utterance is also misrecognized. There
were 7 dialogs in which the correction utterance was
correctly recognized by selecting the second candidate.

However, there were 13 dialogs in which the error
was not repaired by one correction utterance. There are
two explanations. One is that there are insertion errors
in speech recognition which causes words not spoken to
appear in the recognition result. For example, the
system prompt S4 for U3 in Figure 1 becomes as
follows:

S4: Did you say Tokyo yesterday?
In this case, the user has to speak more correction
utterances. The second explanation is that the
recognition result did not always include the correct
result within the first two candidates. It is not clear that
extending the repair mechanism to always consider
additional recognition candidates (3rd, 4th, etc.) is a
viable technique, given the drop off in recognition
accuracy; more study is required.

8 Conclusions

In this paper, we proposed an error handling method
based on dynamic generation of correction grammars to
recognize the user corrections which follow system
errors. The correction grammars detect system errors
and also repair the dialog flow, improving task

completion rates and reducing the average number of
dialog turns. We developed a prototype dialog system
using the proposed method, and demonstrated
empirically that the success rate improved by 7.0%, and
the number of turns was reduced by 3.

The creation of rules for correction utterances based
on the dialog history could be applicable to dialog
systems which use speech recognition or natural
language processing and other kinds of rules beyond
regular grammars; we plan to study this in future work.
We are also planning to develop an algorithm to
improve the precision of corrections that are based on
the set of recognition candidates for the correction
utterance and an error recovery strategy. We also plan to
apply the proposed method to other types of dialogs,
such as user-initiative dialogs and mixed-initiative
dialogs.

References
Abe Kazemzadeh, Sungbok Lee and Shrikanth

Narayanan. 2003. Acoustic Correlates of User
Response to Error in Human-Computer Dialogues,
Proceedings of ASRU 2003: 215-220.

Antal van den Bosch, Emiel Krahmer and Marc
Swerts. 2001. Detecting problematic turns in
human-machine interactions: Rule-Induction
Versus Memory-Based Learning Approaches,
Proceedings of ACL 2001: 499-507.

Eric Nyberg, Teruko Mitamura, Paul Placeway,
Michael Duggan, Nobuo Hataoka. 2002. Dynamic
Dialog Management with VoiceXML, Proceedings
of HLT-2002.

Kyoto University, 2002, Julius Open-Source Real-
Time Large Vocabulary Speech Recognition
Engine, http://julius.sourceforge.jp.

Marilyn Walker, Jerry Wright and Irene Langkilde.
2000. Using Natural Language Processing and
Discourse Features to Identify Understanding
Errors in a Spoken Dialogue System, Proceedings
of ICML-2000: 1111-1118.

Morena Danieli. 1996. On the Use of Expectations for
Detecting and Repairing Human-Machine
Miscommunication, Proceedings of AAAI
Workshop on Detection, Repair and Prevention of
Human-Machine Miscommunication: 87-93.

Norihide Kitaoka, Kaoko Kakutani and Seiichi
Nakagawa. 2003. Detection and Recognition of
Correction Utterance in Spontaneously Spoken
Dialog, Proceedings of EUROSPEECH 2003: 625-
628.

Susann LuperFoy and David Duff. 1996. Disco: A
Four-Step Dialog Recovery Program, The
Proceedings of the AAAI Workshop on Detection,
Repair and Prevention of Human-Machine
Miscommunication: 73-76.

Table 1. Summary of the collected data
 w/o error handling w/ error handling

of users 2 male, 1 female 2 male, 1 female
of dialog 603 596

of error dialog 66 61

Table 2. Number of turns in the dialog
 No error 1 error 2 errors
w/o error handling 13 19
w/ error handling

7
11 13

Table 3. Success rate and average number of turns
 Success rate Ave. # turns
w/o error handling 86.4% 14.6
w/ error handling 93.4% 11.6

