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Abstract

When estimating a mixture of Gaussians there
are usually two choices for the covariance type
of each Gaussian component. Either diag-
onal or full covariance. Imposing a struc-
ture though may be restrictive and lead to de-
graded performance and/or increased compu-
tations. In this work, several criteria to esti-
mate the structure of regression matrices of a
mixture of Gaussians are introduced and eval-
uated. Most of the criteria attempt to estimate
a discriminative structure, which is suited for
classification tasks. Results are reported on
the 1996 NIST speaker recognition task and
performance is compared with structural EM,
a well-known, non-discriminative, structure-
finding algorithm.

1 Introduction

Most state-of-the-art systems in speech and speaker
recognition use mixtures of Gaussians when fitting a
probability distribution to data. Reasons for this choice
are the easily implementable estimation formulas and the
modeling power of mixtures of Gaussians. For example,
a mixture of diagonal Gaussians can still model depen-
dencies on the global level. An established practice when
applying mixtures of Gaussians is to use either full or di-
agonal covariances. However, imposing a structure may
not be optimum and a more general methodology should
allow for joint estimation of both the structure and pa-
rameter values.1.

The first question we have to answer is what type of
structure we want to estimate. For mixtures of Gaussians
there are three choices. Covariances, inverse covariances
or regression matrices. For all cases, we can see as se-
lecting a structure by introducing zeros in the respective
matrix. The three structures are distinctively different and
zeros in one matrix do not, in general, map to zeros in an-
other matrix. For example, we can have sparse covariance

1Here, we describe the Maximum Likelihood estimation
methodology for both structure and parameters. One alterna-
tive is Bayesian estimation.

but full inverse covariance or sparse inverse covariance
and full regression matrix.

There are no clear theoretical reasons why one choice
of structure is more suitable than others. However, in-
troducing zeros in the inverse covariance can be seen as
deleting arcs in an Undirected Graphical Model (UGM)
where each node represents each dimension of a single
Gaussian (Bilmes, 2000). Similarly, introducing zeros in
the regression matrix can be seen as deleting arcs in a Di-
rected Graphical Model (DGM). There is a rich body of
work on structure learning for UGM and DGM and there-
fore the view of a mixture of Gaussians as a mixture of
DGM or UGM may be advantageous. Under the DGM
framework, the problem of Gaussian parameter estima-
tion can be cast as a problem of estimating linear regres-
sion coefficients. Since the specific problem of selecting
features for linear regression has been encountered in dif-
ferent fields in the past, we adopt the view of a mixture
of Gaussians as a mixture of DGM.

In (Bilmes, 2000), the problem of introducing zeros in
regression matrices of a mixture of Gaussians was pre-
sented. The approach taken was to set to zero the pairs
with the lowest mutual information, i.e.bmi,j = 0 ⇐⇒
I(Xi, Xj) ≈ 0, wherem is the Gaussian index andbi,j is
the (i, j) element of regression matrixB. The approach
was tested for the task of speech recognition in a lim-
ited vocabulary corpus and was shown to offer the same
performance with the mixture of full-covariance Gaus-
sians with 30% less parameters. full covariances. One
issue with the work in (Bilmes, 2000) is that the structure-
estimation criterion that was used was not discriminative.
For classification tasks, like speaker or speech recog-
nition, discriminative parameter estimation approaches
achieve better performance than generative ones, but are
in general hard to estimate especially for a high num-
ber of classes. In this work, a number of discrimina-
tive structure-estimation criteria tailored for the task of
speaker recognition are introduced. We avoid the com-
plexities of discriminative parameter estimation by esti-
mating a discriminative structure and then applying gen-
erative parameter estimation techniques. Thus, overall
the models attempt to model the discriminability between
classes without the numerical and implementation diffi-
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Figure 1: A Directed Graphical Model

culties that such techniques have. A comparison of the
new discriminative structure-estimation criteria with the
structural EM algorithm is also presented.

This paper is structured as follows. In section 2, the
view of a Gaussian as a directed graphical model is
presented. In section 3, discriminative and generative
structure-estimation criteria for the task of speaker recog-
nition are detailed, along with a description of the struc-
tural EM algorithm. In section 4, the application task is
described and the experiments are presented. Finally, in
section 5, a summary and possible connections of this
work with the speaker adaptation problem are discussed.

2 Gaussians as Directed Graphical Models

Suppose that we have a mixture ofM Gaussians:

p(x) =
M∑
m

p(z = m)N(x;µm,Σm) (1)

It is known from linear algebra that any square ma-
trix A can be decomposed asA = LDU , whereL is a
lower triangular matrix,D is a diagonal matrix andU is
an upper triangular matrix. In the special case whereA
is also symmetric and positive definite the decomposition
becomesA = UTDU whereU is an upper triangular
matrix with ones in the main diagonal. Therefore we can
writeU = I −B with bij = 0 if i >= j.

The exponent of the Gaussian function can now be
written as (Bilmes, 2000):

(x̃−Bx̃)TD(x̃−Bx̃) (2)

wherex̃ = x − µ. Thei-th element of(x̃ − Bx̃) can be
written as:

x̃i −
V∑

k=i+1

bi,kx̃k (3)

with V being the dimensionality of each vector. Equation
3 shows that the problem of Gaussian parameter estima-
tion can be casted as a linear regression problem. Regres-
sion schemes can be represented as Directed Graphical
Models. In fact, the multivariate Gaussian can be rep-
resented as a DGM as shown in Figure 1. Absent arcs
represent zeros in the regression matrix. For example the
B matrix in Figure 1 would haveb1,4 = b2,3 = 0.

We can use the EM algorithm to estimate the param-
eters of a mixture of Gaussianθ = [µmBmDm]. This

formulation offers a number of advantages over the tra-
ditional formulation with means and covariances. First,
it avoids inversion of matrices and instead solvesV + 1
linear systems ofd equations each whered = 1 : V + 1.
If the number of components and dimensionality of input
vectors are high, as it is usually the case in speech recog-
nition applications, the amount of computations saved
can be important. Second, the number of computations
scale down with the number of regression coefficients
set to zero. This is not true in the traditional formu-
lation because introducing zeros in the covariance ma-
trix may result in a non-positive definite matrix and it-
erative techniques should be used to guarantee consis-
tency (Dempster, 1972). Third, for the traditional for-
mulation, adapting a mixture of non-diagonal Gaussians
with linear transformations leads to objective functions
that cannot be maximized analytically. Instead, iterative
maximization techniques, such as gradient descent, are
used. With the new formulation even with arbitrary Gaus-
sians, closed-form update equations are possible. Finally,
the new formulation offers flexibility in tying mecha-
nisms. Regression matricesBm and variancesDm can
be tied in different ways, for example all the components
can share the same regression matrix but estimate a differ-
ent variance diagonal matrix for each component. Simi-
lar schemes were found to be succesful for speech recog-
nition (Gales, 1999) and this formulation can provide a
model that can extend such tying schemes. The advan-
tages of the new formulation are summarized in Table 1.

3 Structure Learning

In general, structure learning in DGM is an NP-hard
problem even when all the variables are observed (Chick-
ering et al., 1994). Our case is further complicated by
the fact that we have a hidden variable (the Gaussian in-
dex). Optimum structure-finding algorithms, like the one
in (Meila and Jordan, 2000) assume a mixture of trees
and therefore are making limiting assumptions about the
space of possible structures. In this paper, no prior as-
sumptions about the space of possible structures are made
but this leads to absence of guarantee for an optimum
structure. Two approaches for structure-learning are in-
troduced.

The first approach is to learn a discriminative struc-
ture, i.e. a structure that can discriminate between classes
even though the parameters are estimated in an ML fash-
ion. The algorithm starts from the fully connected model
and deletes arcs, i.e. setsbi,jm = 0 ∀m = 1 : M (M is the
number of Gaussian components in a mixture). After set-
ting regression coefficients to zero, maximum likelihood
parameter estimation of the sparse mixture is employed.
A number of different structure-estimation criteria were
tested for the speaker recognition task (at the right of each
equation a shorthand for each criterion is defined):



θ = [µm, Bm, Dm] θ = [µm,Σm]
Computations

• Each component m=1:M re-
quires solution of V+1 linear
systems of d equations each,
d=1:V+1.

• Computations scale down with
the number of regression coef-
ficients set to zero.

• Each component m=1:M re-
quires an inversion of a rank V
matrix.

• Iterative techniques must be
employed for the sparse case.

Adaptation Easy EM equations for estimating a
linear transformation of a mixture of
arbitrary Gaussians.

Gradient descent techniques for the
M-step of EM algorithm for estimat-
ing a linear transformation of a mix-
ture of arbitrary Gaussians.

Tying More flexible tying mechanisms
across components, i.e. components
can shareB but estimateDm.

Components can share the entireΣ.

Table 1: Comparison between viewing a mixture of Gaussians as a mixture of DGMs and the traditional representation

MI = I(Xi;Xj |target speaker s) (4)

DMIimp = I(Xi;Xj |target speaker s)−

(1/N)
∑
n

I(Xi;Xj |impostor n) (5)

MIimp =
∑
n

I(Xi;Xj |impostor n) (6)

DMIconf = I(Xi;Xj |target speaker s)−

I(Xi;Xj |target speaker k) (7)

whereI(Xi;Xj) is the mutual information between el-
ementsXi andXj of input vectorX. The mutual in-
formations are estimated by first fitting a mixture of 30
diagonal Gaussians and then applying the methods de-
scribed in (Bilmes, 1999). All butMI andMIimp are
discriminative criteria and all are based on finding the
pairs(i, j) with the lowest values and zeroing the respec-
tive regression coefficients, for every component of the
mixture. MIimp assigns the same speaker-independent
structure for all speakers. ForDMIconf target speaker
k is the most confusable for target speakers in terms of
hits, i.e. when the truth iss, speakerk fires more than
any other target speaker. We can see that different criteria
aim at different goals.MI attempts to avoid the overfit-
ting problem by zeroing regression coefficients between
least marginally dependent feature elements.DMIimp
attempts to discriminate against impostors,MIimp at-
tempts to build a speaker-independent structure which

will be more robustly estimated since there are more data
to estimate the mutual informations andDMIconf at-
tempts to discriminate against the most confusable target
speaker. The most confusable target speakerk for a given
target speakers should be determined from an indepen-
dent held-out set.

There are three main drawbacks that are shared by all
of the above criteria. First, they are limited by the fact
that all Gaussians will have the same structure. Second,
since we are estimating sparse regression matrices, it is
known that the absence of an arc is equivalent to con-
ditional independencies, yet the above criteria can only
test for marginal independencies. Third, we introduce
another free parameter (the number of regression coef-
ficients to be set to zero) which can be determined from
a held-out set but will require time consuming trial and
error techniques. Nevertheless, they may lead to better
discrimination between speakers.

The second approach we followed was one based on
an ML fashion which may not be optimum for classi-
fication tasks, but can assign a different structure for
each component. We used the structural EM (Friedman,
1997), (Thiesson et al., 1998) and adopt it for the case of
mixtures of Gaussians. Structural EM is an algorithm that
generalizes on the EM algorithm by searching in the com-
bined space of structure and parameters. One approach
to the problem of structure finding would be to start from
the full model, evaluate every possible combination of
arc removals in every Gaussian, and pick the ones with
the least decrease in likelihood. Unfortunately, this ap-
proach can be very expensive since every time we remove
an arc on one of the Gaussians we have to re-estimate all
the parameters, so the EM algorithm must be used for



each combination. Therefore, this approachalternates
parameter search with structure search and can be very
expensive even if we follow greedy approaches. On the
other hand, structural EMinterleavesparameter search
with structure search. Instead of following the sequence
Estep →Mstep → structure search, structural EM fol-
lowsEstep → structure search→ Mstep. By treating
expected data as observed data, the scoring of likelihood
decomposes and therefore local changes do not influence
the likelihood on other parameters. In essence, structural
EM has the same core idea as standard EM. IfM is the
structure,Θ are the parameters andn is the iteration in-
dex, then the naive approach would be to do:

{Mn,Θn} → {Mn+1,Θn+1} (8)

On the other hand, structural EM follows the sequence:

{Mn,Θn} → {Mn+1,Θn} → {Mn+1,Θn+1} (9)

If we replaceM with H, i.e. the hidden variables or
sufficient statistics, we will recognize the sequence of
steps as the standard EM algorithm. For a more thor-
ough discussion of structural EM, the reader is referred
to (Friedman, 1997). The paper in (Friedman, 1997) has
a general discussion on the structural EM algorithm for an
arbitrary graphical model. In this paper, we introduced a
greedy pruning algorithm with step sizeK for mixtures
of Gaussians. The algorithm is summarized in Table 2.
One thing to note about the scoring criterion is that it is
local, i.e. zeroing regression coefficientm, i, j will not
involve computations on other parameters.

4 Experiments

We evaluated our approach in the male subset of the 1996
NIST speaker recognition task (Przybocki and Martin,
1998). The problem can be described as following. Given
21 target speakers, perform 21 binary classifications (one
for each target speaker) for each one of the test sentences.
Each one of the binary classifications is a YES if the sen-
tence belongs to the target speaker and NO otherwise.
Under this setting, one sentence may be decided to have
been generated by more than one speaker, in which case
there will be at least one false alarm. Also, some of the
test sentences were spoken by non-target speakers (im-
postors) in which case the correct answer would be 21
NO. All speakers are male and the data are from the
Switchboard database (Godfrey et al., 1992). There are
approximately 2 minutes of training data for each target
speaker. All the training data for a speaker come from
the same session and the testing data come from different
sessions, but from the same handset type and phone num-
ber (matched conditions). The algorithms were evaluated
on sentence sizes of three and thirty seconds. The fea-
tures are 20-dimensional MFCC vectors, cepstrum mean

normalized and with all silences and pauses removed. In
the test data there are impostors who don’t appear in the
training data and may be of different gender than the tar-
get speakers.

A mixture of Gaussians is trained on each one of the
target speakers. For impostor modeling, a separate model
is estimated for each gender. There are 43 impostors for
each gender, each impostor with 2 minutes of speech.
Same-gender speakers are pooled together and a mixture
of 100 diagonal Gaussians is estimated on each pool. Im-
postor models remained fixed for all the experiments re-
ported in this work. During testing and because some
of the impostors are of different gender than the target
speakers, each test sentence is evaluated against both im-
postor models and the one with the highest log-likelihood
is chosen. For each test sentence the log-likelihood of
each target speaker’s model is subtracted from the log-
likelihood of the best impostor model. A decision for
YES is made if the difference of the log-likelihoods is
above a threshold. Although in real operation of the sys-
tem the thresholds are parameters that need to be esti-
mated from the training data, in this evaluation the thresh-
olds are optimized for the current test set. Therefore the
results reported should be viewed as a best case scenario,
but are nevertheless useful for comparing different ap-
proaches.

The metric used in all experiments was Equal Error
Rate (EER). EER is defined as the point where the proba-
bility of false alarms is equal to the probability of missed
detections. Standard NIST software tools were used for
the evalution of the algorithms (Martin et al., 1997).

It should be noted that the number of components per
Gaussian is kept the same for all speakers. A scheme that
allowed for different number of Gaussians per speaker
did not show any gains. Also, the number of components
is optimized on the test set which will not be the case in
the real operation of the system. However, since there are
only a few discrete values for the number of components
and EER was not particularly sensitive to that parameter,
we do not view this as a major problem.

Table 3 shows the EER obtained for different base-
line systems. Each cell contains two EER numbers, the
left is for 30-second test utterances and the right for 3-
second. For theDiagonal case 35 components were
used, while for thefull case 12 components were used.
The Random case corresponds to randomly zeroing
10% of the regression coefficients of a mixture of 16 com-
ponents. This particular combination of number of pa-
rameters pruned and number of components was shown
to provide the best results for a subset of the test set.
All structure-finding experiments are with the same num-
ber of components and percent of regression coefficients
pruned.

Table 4 shows the EER obtained for different baseline



Algorithm : Finding both structure and parameter values using structural EM

Start with the full model for a given number of Gaussians

while (number of pruned regression coefficients< T )
E− step: Collect sufficient statistics for given structure, i.e,γm(n) = p(zn = m|xn,Mold)

StructureSearch: Remove one arc from a Gaussian at a time, i.e. setbmi,j = 0.
The score associated with zeroing a single regression coefficient is.
Scorem,i,j = 2Di

mb
m
i,j

∑N
n γm(n)x̃jn,m(x̃in,m −Bimx̃n,m) +Di

m(bmi,j)
2∑N

n γm(n)x̃jn,m
Order coefficients in ascending order of score.P is the set of the firstK coefficients.
Set the new structureMnew asMnew = Mold\{P}.

M− step: Calculate the new parameters givenMnew.
This step can be followed by a number of EM iterations to obtain better parameter values.
end

Table 2: The Structural EM algorithm for a mixture of Gaussians

Full Diagonal Random
6.3/10.3 5.6/9.0 6.3/10.3

Table 3: Baseline EER, left number is for 30-second test
utterances and right number for 3-second

sparse structures.SEM is structural EM. The first col-
umn is zeroing the pairs with the minimum values of the
corresponding criterion and the second column is zeroing
the pairs with the maximum values. The second column
is more of a consistency check. If the min entry of crite-
rion A is lower than the min entry of criterion B then the
max entry of criterion A should be higher than the max
entry of criterion B. For the structural EM, pruning step
sizes of 50 and 100 were tested and no difference was
observed.

min max
MI 6.3/10.0 6.6/10.6

DMIimp 5.9/9.0 6.6/10.3
MIimp 6.3/10.3 6.3/10.3

DMIconf 5.9/9.3 6.6/10.3
SEM 6.3/9.6 6.6/10.3

Table 4: EER for different sparse structures, left number
is for 30 second test utterances and right number for 3-
second.

From Table 4 we can see improved results from the
full-covariance case but results are not better than the
diagonal-covariance case. All criteria appear to perform
similarly. Table 4 also shows that zeroing the regression
coefficients with the maximum of each criterion func-
tion does not lead to systems with much different perfor-
mance. Also from Table 3 we can see that randomly ze-
roing regression coefficients performs approximately the

same as taking the minimum or maximum. These num-
bers, seem to suggest that the structure of a mixture of
Gaussians is not a critical issue for speaker recognition,
at least with the current structure-estimation criteria used.

5 Summary-Future work

In this work the problem of estimating sparse regression
matrices of mixtures of Gaussians was addressed. Dif-
ferent structure-estimation criteria were evaluated, both
discriminative and generative. The general problem of
finding the optimum structure of a mixture of Gaussians
has direct applications in speaker identification as well as
speech recognition.

Interesting connections can be drawn with Maximum
Likelihood Linear Regression (MLLR) speaker adapta-
tion (Leggetter and Woodland, 1995). Not surprisingly,
the estimation equations for the regression matrix bare
resemblance with the MLLR equations. However, re-
searchers have thus far barely looked into the problem of
structure-finding for speaker adaptation, focusing mostly
on parameter adaptation. An interesting new topic for
speaker adaptation could be joint structure and parameter
adaptation.
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