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Abstract 

Several computational simulations have been 
proposed for how children solve the word 
segmentation problem, but most have been 
tested only on a limited number of languages, 
often only English.  In order to extend the 
cross-linguistic dimension of word segmenta-
tion research, a finite-state framework for test-
ing various models of word segmentation is 
sketched, and a very simple cue is tested in 
this framework.  Data is taken from Modern 
Greek, a language with phonological patterns 
distinct from English.  A small-scale simula-
tion shows using this cue performs signifi-
cantly better than chance. The utility and 
flexibility of the finite-state approach is con-
firmed; suggestions for improvement are 
noted and directions for future work outlined. 

1 Introduction 

A substantial portion of research in first-language ac-
quisition focuses on the “word segmentation prob-
lem”—how children learn to extract words (or word 
candidates) from a continuous speech signal prior to 
having acquired a substantial vocabulary. Note that the 
hardware and software constraints on the human learner 
are very different from those faced by a speech recogni-
tion system, and hence strategies appropriate for one 
may be irrelevant or disastrously inappropriate for the 
other. 

While a number of robust strategies have been pro-
posed and tested for English and a few other languages 
(discussed below), it is not clear whether or how these 
apply to other languages.  For example, the Metrical 
Segmentation Strategy (e.g., Cutler & Norris 1988) 

turns out to be very robust for English, but is not neces-
sarily applicable to other languages, simply because not 
all languages share English’s predilection for strong 
word-initial syllables (though language-appropriate 
variants of the strategy (stress-based for English) have 
been proposed, e.g., using the syllable in French (Cutler 
& Mehler, 1993) and the mora in Japanese (Otake, 
Hatano, Cutler, & Mehler, 1993)). 

Some more generic strategies (e.g., the Possible 
Word Constraint: see e.g., Norris et al. 1997, 2001) have 
been proposed and tested, primarily on English, but also 
on typologically distinct languages such as Sesotho 
(Cutler, Demuth, & McQueen, 2002).  Nevertheless, 
rigorous testing in a larger sample of languages seems 
advisable before making strong claims of universal ap-
plicability.  One interesting strategy explored in e.g., 
(Aslin et al., 1996) is the use of context around (and 
particularly before) utterance boundaries to predict word 
boundaries.  The applicability of this cue is discussed 
for both English and Turkish; a simulation on English 
data is reported.  One goal of the research presented 
here is to further explore that strategy on a different data 
set, taken from a language with phonological patterns 
quite different from English or Turkish. 

The work presented here is intended as a small part 
of a more general line of research, whose purpose is 
twofold: on the one hand I wish to understand the nature 
of the cues present in Modern Greek, on the other I wish 
to establish a framework for orderly comparison of 
word segmentation algorithms across the desired broad 
range of languages. 

1.1 Infant Studies 

At least four types of information in the speech signal 
have been identified as likely cues for infants: (1) super-
segmental cues (e.g., stress) which begins to play a role 
in (English-learning) 7.5 month-olds (Jusczyk, Houston, 
et al., 1999); (2) sub-segmental cues such as co-
articulation and allophonic alternations, which infants 



begin using between 7.5 and 10.5 months of age (Jusc-
zyk, Hohne, et al., 1999); (3) segmental cues, such as 
wordlikeness and phonotactic constraints, which seem 
to be available by 9 months of age (e.g., Jusczyk, Luce, 
et al., 1994; Mattys and Jusczyk, 2001), and (4) statisti-
cal cues from recurrent patterns e.g., of syllables, evi-
dent in English-learning 8-month-olds on an artificial 
micro-language of 4 words (Saffran et al. 1996).1 

1.2 Computational Models  

While the infant studies discussed above focus primarily 
on the properties of particular cues, computational stud-
ies of word-segmentation must also choose between 
various implementations, which further complicates 
comparisons.  In addition, several models (e.g., 
Batchelder, 2002; Brent’s MLDP-1, 1999a; Davis, 
2000; de Marcken, 1996; Olivier, 1968) simultaneously 
address the question of vocabulary acquisition, using 
previously learned word-candidates to bootstrap later 
segmentations.  While these models are highly interest-
ing both from their view of the long-term process of 
language acquisition and their high success rate, they 
are hard to relate to the infant studies discussed above.  
Hence, it is beyond the scope of this paper to discuss 
them at length.2 

Rather, this paper focuses on models that do not ac-
cumulate a stored vocabulary, but rely on either on sta-
tistics derived from utterance boundaries (typically 
generalized over feature matrices, as in (Aslin et al., 
1996; Christiansen et al., 1998)) or from the degree of 
predictability of the next syllable (e.g., Saffran et al., 
1996) or segment (Christiansen et al., 1998).  The intui-
tion here, first articulated by Harris (1954) is that word 
boundaries will be marked by a spike in unpredictability 
of the following phoneme.  Christiansen et al. (1998) 
also test the contribution of stress and phonemic infor-
mation in addition to that of utterance boundaries, and 
show that while stress contributes in certain circum-
stances, it is not as crucial as featural information near 
utterance boundaries.  

The general line of research herein proposed focuses 
on the same cues as (Christiansen et al., 1998) begin-
ning (in the work reported here) with segmental prob-
ability distributions at utterance boundaries.  This first 
step corresponds most closely with (Aslin et al., 1996), 
where utterance boundaries were treated as a cue on 
their own.  Aslin and his colleagues propose that “even 
the most minimal assumption about what an infant can 
recognize as a word boundary--namely, the pause after 
an utterance--is sufficient, in principle, for the learning 
the word boundaries within an utterance” (p. 133).  In 

                                                           
1 Full mention of all the studies done is not possible 

here; for a fuller review see e.g., (Johnson & Jusczyk, 2001). 
2 For useful reviews of various computational models, 

see (Brent, 1999a,b). 

that study, however, a considerable amount of context 
before such an utterance was given, namely 18-bit fea-
ture vectors of one, two, or three phonemes immediately 
preceding the final utterance boundary.  For a model 
with 30 hidden units, the following results for boundary 
detection are reported (as estimated from their bar 
graph, fig.8.8, p. 132), accompanied by the claim that 
only with two- and three-phoneme sequences is their 
system capable of learning boundary locations:  

 
 Hits  False 

Alarms 
Precision 
(H/(H+FA)) 

3 phones 62% 22% 74% 
2 phones 53% 23% 70% 
1 phone 45% 44% 51% 
Random  5% 15% 25% 

Table 1. Results reported in Aslin et al. (1996, 
Fig. 8.8, p. 132). 

 
They further claim that feature vectors are necessary for 
learning: a string of three phonemes (where each pho-
neme is represented as an atomistic unit) is not suffi-
cient information, although no comparative figures are 
listed for this condition. 

This study may be seen as a replication of (Aslin et 
al., 1996); however, it differs in several crucial re-
spects—not with an eye toward improving upon their 
results, but rather on examining further their definition 
of “minimal necessary cues.”  First, instead of training 
the transitional probabilities indirectly with connection-
ist networks, the probabilities are encoded directly 
within a finite-state framework.  Secondly, actual phone 
identities (rather than feature bundles) are used as sym-
bols.  Finally, information about a single segment is 
used.  While this very austere use of minimal informa-
tion is surely inadequate to the full task of segmentation, 
it nevertheless serves to demonstrate the gains even a 
very small amount of information can give.  Any evi-
dence of better-than-chance results would suggest that, 
for Modern Greek at least, even more minimal cues are 
possible than those Aslin et al. (1996) propose. 

The results of this study may be taken as a rough 
approximation of how predictable word boundaries are 
from (unigram) segmental information alone in the sub-
set of Modern Greek experienced by young children.  
These findings may provide an additional baseline for 
measuring and comparing the relative contributions of 
other cues such as stress as a word segmentation cue.  

2 Constructing a Finite-State Model  

2.1 Data   

The Greek CHILDES corpus (Stephany, 1995) is a da-
tabase of conversations between children and caretak-



ers, broadly transcribed, currently with no notations for 
lexical stress. Audio tapes exist, but are currently un-
available for general use (Stephany, p.c.).  However, the 
transcriptions themselves give an indication at the pho-
nemic level of the sort of input Greek children are likely 
to have in learning their language.  In order to preserve 
adequate unseen data for future simulations and experi-
ments, only a small subset of the total Greek CHILDES 
corpus was used.  

As in other studies, only adult input was used for 
training and testing. In addition, non-segmental infor-
mation such as punctuation, dysfluencies, parenthetical 
references to real-world objects, etc. were removed.  
Word boundaries are represented by the symbol #, ut-
terance boundaries by $, following Brent (1999a).  Each 
line of the file was assumed to be an independent utter-
ance.  Spaces were assumed to represent word bounda-
ries without comment or correction; however, it is worth 
noting that the transcribers sometimes departed from 
standard orthographic practice with respect to certain 
types of word-clitic combinations.  The text also con-
tains a significant number of unrealized final vowels 
(apocopy), such as [in] for /ine/ 'is'.  Such variation was 
not regularized, but treated as part of the learning task.  

The training corpus contains 367 utterance tokens 
with a total of 1066 word tokens (319 types).  Whereas 
the average number of words per utterance (2.9) is com-
parable to the Korman (1984) corpus used by 
Christiansen et al. (3.0), utterances and words were 
slightly longer in terms of phonemes (12.8 and 4.4 pho-
nemes respectively, compared to 9.0 and 3.0).  (Statis-
tics on the corpus used in (Aslin et al., 1996) were not 
provided.) 

The test corpus consists of utterances by adults to 
the same child as in the training corpus.  Utterances 
with dysfluencies, missing words, or other irregularities 
were discarded; the remaining utterances include 273 
utterance tokens with a total of 699 words (229 types). 

2.2 Model Design 

This model differs from incremental models such as 
(Brent 1999a) in that it pre-compiles statistics for the 
candidate word-final phonemes off-line, over the entire 
corpus.  These probabilities are thus static.  While this 
difference is not intended as a strong theoretical claim, 
it reflects the fact that even before infants seem to be 
learning the word segmentation process, they have al-
ready been exposed to a large amount of linguistic ma-
terial.  The information gleaned from the corpus is 
represented in three separate (but composible) finite-
state machines: 
 
(1) Like most models in the literature, this model as-
sumes (for sake of convenience and simplicity) that the 
child hears the correct sequence of the actual segments 
produced within an utterance. Hence, the model does 

not take into account the possibility of mishearing a 
segment, as that would add undue complication at this 
stage.  This assumption translates into the finite-state 
domain as a simple acceptor (or equivalently, an iden-
tity transducer) over the segment sequence for a given 
utterance.3  

 
(2) An optional source of knowledge used is the number 
of words in a given utterance.  This is naturally a strong 
assumption to make; it is included primarily to provide 
comparisons with baselines used by Brent (1999a) and 
Christiansen et al. (1998), which provide pseudo-
random baselines that make reference either to number 
of boundaries directly or information concerning aver-
age word length.  Results are given both with and with-
out this constraint. 
 
(3) The main item under examination is naturally the 
relative likelihood of breaking the word after a given 
segment S.   
 
The third information source was tested in three vari-
ants.  The first one is of course the approximation sug-
gested by Aslin et al. (1996), that P(#|S) may be 
approximated by using P($|S), the probability of an ut-
terance-break given the segment. This approximation 
yields the ranking e>s>o>u>i>a>m>n, with /e/ most 
likely to end an utterance.  This information source was 
compared to two related alternatives, which were used 
as upper and lower bounds to measure the effectiveness 
of the utterance-boundary approximation of word 
boundaries.  As an upper bound (3U), the true value for 
P(#|S) is used, corresponding to training on labeled data, 
or a store of already-learned vocabulary.4  The lower 
bound (3L) consists of the seven final segments 
{a,e,i,o,u,n,s}, but the frequency ranking replaced by an 
equi-probable assumption.  In a sense, this is equivalent 
to a grammar book listing the possible final segments of 
Greek without regard to their actual likelihood.  Finally, 
these three variants are compared with a random walk 
for which no information is used, but boundaries are 
inserted completely by chance.  Each of these three 
types of knowledge was modeled by means of a finite 
state machine, using the AT&T finite-state tools.5   

                                                           
3 While modeling the mishearing of segments is beyond 

the scope of this study, a weighted transducer could in prin-
ciple represent a segmental confusion matrix in a modular 
way and augment the current identity transducer.  For 
further discussion of issues in using “unsanitized data,” 
(Sundaram, 2003) may be helpful. 

4   The resulting ranking, o>i>e>s>a>u>n>j>m>p, is 
rather different than the one above, reflecting the frequency 
of masculine and feminine articles /o/ and /i/, which are 
never utterance-final. 

5  FSM Library Version 3.7, freely available from 
http://www.research.att.com/sw/tools/fsm/ 



 
(1) Segments: Linear FSA (trivially equivalent to an 
identity transducer). 
 
(2) Number of words: Unweighted FSA. 
 
(3U) Upper bound: Weighted FST, with weights corre-
sponding to -Log(P(#|S)) for a word boundary 
and -Log(1-P(#|S)) for an arc with no word boundary. 
 
(3) Utterance-Boundary Probabilities: Same as (3U), 
with weights corresponding to -Log(P($|S)) for a word 
boundary and -Log(1-P($|S)) for no word boundary.  In 
the condition where (2) was not used, a weight of -1.7 
(determined empirically on the training data) was added 
to the word-boundary arc, to offset the tendency of 
P($|S) to underestimate P(#|S). 
 
(3L) Unweighted (or equally weighted) version of (3).  
In the condition where (2) was not used, a weight of 
(-0.5) was added to the arc that adds boundaries, which 
caused the FST to insert word boundaries after every 
instance of a vowel, /n/, or /s/.  

3 Results  

Six different conditions were tested, corresponding to 
the three variants FSTs (3), (3U), and (3L), both with and 
without the exact-word constraint in FSM (2).  Each of 
these were composed (separately) with the “segment 
identity” acceptor (1) for a given utterance. The output-
projection of the best path from each resulting FST was 
converted back into text and compared to the text of the 
original utterance.  Scores for both boundaries and 
words are reported (where a word is counted as cor-
rectly segmented only if both its left and right bounda-
ries are correctly placed).  In the case where several 
best-paths of equal cost exist, the average scores for 
precision and recall are counted. 

The results with and without the number of words 
known are shown in Tables 2 and 3, following.  In both 
cases, the precision scores patterned as expected. The 
upper bound condition (representing a supervised case, 
where statistics on the word boundaries are available for 
the training data) proved the most accurate on the test 
data.  This suggests (as has been confirmed for English 
in such studies as Brent 1999a) that the learning of pat-
terns over already-acquired vocabulary has perhaps the 
largest effect in the acquisition of new vocabulary.  

The utterance-based approximation, corresponding 
most closely to (Aslin et al., 1996), seems to be slightly 
better overall than the lower bound.  Without the num-
ber of words known, (3) has an F-score of 20.2 for 
words and 70.2 for boundaries, whereas (3L) has F-
scores of only 17.0 (word) and 68.0 (boundaries), 
though this difference may not be significant.  This dif-

ference was less than expected, given preliminary ex-
amination of the training data; it may be that once the 
set of allowable word-final phonemes is observed, the 
relative probabilities of those phonemes is not as use-
fully learned from utterance boundaries.  However, the 
lower bound (corresponding to purely symbolic knowl-
edge of the allowable word-final segments) is signifi-
cantly better than the random walk, suggesting that any 
knowledge, no matter how rudimentary, begins to make 
a difference. 

 

Table 2: Test Results with Constraint (2) 
 

Words Word Boundaries  
Precision Recall Precision Recall 

Upper 
bound 

219/720 
(30.4%) 

219/699 
(31.3%) 

737/993 
(74.2%) 

737/972 
(75.8%) 

Utt-
prob. 

159/860 
(18.5%) 

159/699 
(22.7%) 

739/1133 
(65.2%) 

739/972 
(76.0%) 

Lower 
bound 

195/1599 
(12.2%) 

195/699 
(27.9%) 

967/1872 
(51.7%) 

967/972 
(99.5%) 

Random 
Walk 

39/1569 
(2.5%) 

39/699 
(5.6%) 

767/1842 
(41.6%) 

767/972 
(78.9%) 

Table 3: Test Results without Constraint (2) 

4 Discussion 

4.1 Comparisons with Aslin et al. (1996) 

Obviously, the cues of preceding and following seg-
ments are in and of itself insufficient to predict a word 
boundary with any reasonable degree of accuracy, just 
as Christiansen et al. (1998) found that no one cue was 
sufficient for English.  However, a few comparisons 
with Aslin’s et al. (1996) data in Table 1 may be useful, 
although they should be interpreted cautiously given the 
differences in the training and testing corpora between 
their study and this one.  Their results for the single-
phoneme condition have nearly equal hits and false 
alarms—a precision of about 51%.  They apparently do 
not consider this sufficient evidence of learning, al-
though it is significantly better than their random base-
line.  Similarly, the worst non-random condition 

Words Word Boundaries  
Precision Recall Preci-

sion 
Recall 

Upper 
bound   

277/699 
(39.6%) 

277/699 
(39.6%) 

751/972 
(77.3%)  

751/972 
(77.3%)  

Utt-
prob.  

226/699 
(32.4%) 

226/699 
(32.4%) 

721/972 
(74.2%)  

721/972 
(74.2%)  

Lower 
bound  

221/699 
(31.6%) 

221/699 
(31.6%) 

708/972 
(72.9%)  

708/972 
(72.9%)  

Random 
Walk 

119/699 
(17.0%) 

119/699 
(17.0%) 

639/972 
(65.7%) 

639/972 
(65.7%) 



reported here (lower bound without constraint (2)) also 
has a precision of 51%.  This, too, is difficult to call 
“learning,” as it represents the heuristic of always in-
serting a word boundary any time there could be one.  
The only fact that has been learned is which segments 
cannot be (excepting foreign loan-words) word-final.   

However, if the criterion for learning (or at least 
satisfactory performance) is hits exceeding false alarms, 
then the utterance-boundary statistical heuristic, with 
739 hits and only 396 false alarms, is nearly as accurate 
as Table 1’s two-phoneme condition.  While further 
information (whether phonological features, longer 
strings of phonemes, or some other cue) is needed to 
reach the 74% accuracy of Table 1’s three-phoneme 
condition, it seems that even these very basic cues come 
closer to Aslin’s et al. (1996) results than might be sup-
posed.  Importantly, the same general trend was shown--
that utterance-final information translates into word-
boundary information not only for English, but for other 
languages such as Modern Greek as well. 

A number of further directions are possible under 
this framework, including:  

 
(1) Using transitional probability (P(Sk+1| Sk)) and mu-
tual information measures over two adjacent segments 
as cues to the likelihood of word boundaries between 
those two segments, as suggested in e.g., (Brent, 1999a).  

 
(2) Developing more plausible models for approximat-
ing word-length distributions from utterance-length in-
formation, distances between stressed vowels, pause 
information, and other salient cues available to children.  

 
(3) Incorporating stress cues (as potentially signaling 
both beginnings and approaching ends of content 
words) both alone and in combination with segmental 
cues.  

 
Preliminary work on each of these avenues is currently 
underway.  While some of these heuristics may require 
the use of other techniques in addition to finite-state 
techniques, the general finite-state framework is ex-
pected to prove useful as an organizing tool for compar-
ing various cues in a simple, rational, and transparent 
way.  
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