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Abstract

Tokenization in the bioscience domain is often
difficult. New terms, technical terminology, and
nonstandard orthography, all common in
bioscience text, contribute to this difficulty.
This paper will introduce the tasks of
tokenization, normalization before introducing
BAccHANT, a system built for bioscience text
normalization. Casting tokenization /
normalization as a problem of punctuation
classification motivates using machine learning
methods in the implementation of this system.
The evaluation of BAccHANT's performance
included error analysis of the system's
performance inside and outside of named
entities (NEs) from the GENIA corpus, which
led to the creation of a normalization system
trained solely on data from inside NEs,
BAccHANT-N. Evaluation of this new system
indicated that normalization systems trained on
data inside NEs perform better than systems
trained both inside and outside NEs, motivating
a merging of tokenization and named entity
tagging processes as opposed to the standard
pipelining approach.

1 Introduction

For the purposes of this paper, a token can be defined as
the smallest discrete unit of meaning in a document
relevant to the task at hand, the smallest entity of
information that cannot be further reduced in form and
still carry that information. This definition of a token is

dependent on both the type of information we wish to
extract from a document, and the nature of the document
itself; that is, tokenization is task-specific. For example,
tokenizing technical reports in order to search them by
keyword may require a conservative tokenization
scheme; e.g. a document containing the term "2.0-
gigahertz processor" would not want to tokenize "2.0"
away from "gigahertz" for fear that the document would
be missed if the user searched for that exact phrase.
However, if the same set of documents was being
tokenized to build a database of processor speeds, "2.0"
would need to be tokenized away from "gigahertz" in
order to store its speed

Tokenization is often straightforward; discovering
the words in the sentence, "I saw a cat." is not difficult,
as the tokens are bounded by punctuation, including
space characters. However, discovering the words in the
sentence, "I studied E. coli in a 2.5% solution." presents
some problems. The period following “E.” is being used
to indicate an acronym instead of a sentence boundary,
and must be recognized as such. Even if we were not to
concern ourselves with sentence boundaries, deciding
that any period simply ends a token, the sentence would
again present a problem since we would not want to
tokenize the 2 from the 5 in "2.5".

The difficulty in tokenization stems from ambiguous
punctuation. In order to tokenize, one must be able to
tell with certainty when a piece of punctuation ends a
token. 

The bioscience domain presents additional
difficulties to tokenizing. Bioscience literature contains
technical terminology and includes ambiguous
punctuation, similar to the E. coli sentence above. The
domain is dynamic, with thousands of researchers
adding to the literature (the MEDLINE database adds
approximately 400,000 new entries consisting of journal



articles and abstracts per year (MEDLINE Fact Sheet,
2002)). Bioscience literature contains heterogeneous
orthographics; for example, the literature contains the
terms "NF-kappaB", "NF-kappa B", and "NF-kappa-B,"
and while each refers to the same protein, tokenizers
using spaces and dashes as breaking criteria will return a
different tokenization of each term though one standard
tokenization would be preferable.

The problem of nonstandard orthography is of
particular importance for document retrieval. Consider
the NF-kappaB example above; if a document repository
contains documents with different orthographic versions
of NF-kappaB, a researcher searching for NF-kappaB
would have to search for all possible orthographic
variations and would miss documents containing
unanticipated orthography. Normalization attempts to
solve this problem by removing orthographic variation
from tokens, bringing them to one normalized form. For
example, if all three versions of NF-kappaB had all
spaces and dashes removed, all three would look like
“NFkappaB,” and a document retrieval system would
find all instances in a search. A related strategy, query
expansion, attempts to solve the same problem by
accounting for as many orthographic variants of the user
query as possible, and searching for all of them.
Normalization acts as a special case of tokenization by
deciding which instances of punctuation break a token,
and removing all punctuation that does not break the
token in order to bring it to a normalized form.

The remainder of this paper will consider work
relevant to tokenization and normalization for the
bioscience domain. Casting tokenization, and by
extension normalization, as a classification problem
motivates the creation of BAccHANT, a machine
learning system designed to normalize bioscience text.
Evaluation of this system includes an evaluation of the
system's performance inside and outside of named
entities, and results from this evaluation motivate the
creation of a new system, BAccHANT-N, trained solely
on date from inside NEs. The improvement in
performance of BAccHANT-N over BAccHANT when
normalizing inside NE text indicates that named entity
information is useful for bioscience text tokenization
tasks, motivating future work in systems that perform
tokenization and NE tagging concurrently.

2 Related work

As noted in Habert et al. (1998), standard methods for
evaluating the quality of tokens produced by
tokenization systems do not exist. Though a necessary
first step to tasks such as document retrieval, sentence
boundary finding, parsing, etc., there exists work
involving these tasks that take tokenization for granted
(e.g. Chang, Schutze and Altman (2002), Seki and
Mostafa (2003)), mention tokenization without detailing
the tokenization scheme (e.g. Fukuda et al. (1998)), or

indicate use of a tokenization system without
mentioning its performance (e.g. Bennet et al. (1999),
Yamamoto et al. (2003)). To the author's knowledge,
there exists no work analyzing the impact of
tokenization performance on bioinformatics tasks.

Tokenization methods for bioinformatics tasks range
from simple to complex. Bennet et al. (1999) tokenized
for noun phrase extraction, tokenizing based on
whitespace, with additional modification to take
“specialized nomenclature” into account. Yamamoto et
al. (2003) developed a morphological analyzer for
protein name tagging which tokenized, part-of-speech
tagged, and stemmed documents. Seki and Mostafa
(2003) essentially tokenized by dictionary lookup for
protein name extraction, using hand-crafted rules and
filtering to identify protein name candidates to check
against their dictionary. 

Relevant work on normalization can be found in the
proceedings of the 2003 Text REtrieval Conference
(TREC) Genomics track competition. The competition
involved two tasks. The first task was for gene or
protein X, find all MEDLINE references that focus on
the basic biology of the gene/protein from the
designated organism. Basic biology includes isolation,
structure, genetics and function of genes/proteins in
normal and disease states. The second task was to
extract GeneRIF statements from records from the
MEDLINE biomedical and health abstract repository.

Kayaalp et al. (2003) normalized by converting all
letters to lower case, and expanded queries by
identifying terms with both alphabetic and numerical
characters and searching for hyphenated variants, i.e.
JAK2 and JAK-2. de Bruijn and Martin (2003) used
morphological query expansion along with a relevance
feedback engine. Osborne et al. used a number of query
expansion strategies, including appending parenthetical
information, acronym expansions, words following
hyphens, lower and uppercase versions of terms, etc.

de Brujin and Martin (2003) and Osborne et al.
(2003) both indicate that query expansion was beneficial
to the performance of their systems. However, no
authors gave performance measures for their query
expansion methods independent of their final systems.
To the author's knowledge, there exists no work
analyzing the performance of normalization systems for
bioscience literature. 

Named entities are “proper names and quantities of
interest” (Chinchor (1998)) in a document. Named entity
tagging involves discovering and marking these entities
in a document, e.g. finding all proteins in a document
and labeling them as such. Having biomedical
documents tagged with NEs allows for better
information extraction, archival, searching, etc. of those
documents. The GENIA corpus (Kim et al. (2003)) is a
corpus of 2000 MEDLINE abstracts tagged for parts of
speech and hand-tagged for NEs. NE tags in the GENIA
corpus are based on an ontology, consisting of amino



acids, proteins, organisms and their tissues, cells, and
other.

3 Methodology

From a machine learning perspective, one way to look at
a tokenization task, including normalization, is as a
classification problem. As stated before, the problem of
tokenization is that of ambiguous punctuation – one
must be able to tell whether or not a piece of
punctuation should be included in a token. A document
can be tokenized by classifying each piece of
punctuation in the document as part of a token or as a
token boundary. Removing the pieces of punctuation
classified as part of the token will normalize the token.
Possible features for classifying punctuation may
include the piece of punctuation itself, character or
characters to the left/right of the punctuation, type of
character[s] to the left/right of the punctuation (i.e.
uppercase, lowercase, number, etc.), the length of the
sentence or article the term occurs in, the type of
sentence or article the term occurs in, etc. 

The system presented here, BAccHANT (Bioscience
And Health Article Normalizing Tokenizer), was
created to normalize MEDLINE text for the TREC
Genomics track, as presented earlier. It classifies pieces
of punctuation in bioscience text based on the
surrounding characters, determining whether the
punctuation is a token boundary or needs to be removed
for normalization.

The features chosen for BAccHANT were the
following: piece of punctuation being classified (Punc),
character to the left of the punctuation (CL), type of
character to the left of the punctuation (TL), character to
the right of the punctuation (CR), type of character to
the right of the punctuation (TR), and whether the
punctuation should be removed for normalization, or
break the token (Class). These features were chosen by
the author. Feature selection using information gain
ratio indicated that all five should be used.

Feature Values
Punc .  ,  -  (  )  /  ;  [  ]  :  \  {  }  <space>

CL / CR <the character itself>
TL / TR lower, cap, num, space, other

Class remove, break
Table 1: The features and their possible values.

Values for Punc and CL/CR are self-explanatory.
Values for TL/TR are as follows:
* lower: Character is lowercase
* cap: Character is a capital letter
* num: Character is a number
* space: Character is whitespace (space, tab, etc.)
* other: Character is none of the above
Values for Class are as follows:
* remove: The punctuation should be removed

* break: The punctuation should break the token
The 'remove' class is of chief importance for the

normalization task, since classifying a piece of
punctuation as 'remove' means the punctuation will be
removed for normalization. 

Sample feature vectors:
* "NF-kappaB"  ==  ['F', -, 'k', cap, lower, remove]
* "T cells" ==  ['T',  , 'c',cap, lower, remove]
* "alpha gene" == ['a',  , 'g',lower, lower, break]
* "yATF-binding" == ['F', -, 'b', cap, lower, break]
The training / testing set for BAccHANT was

constructed from 67 MEDLINE abstracts, hand
tokenized by the author using the tokenization scheme
presented in the appendix. A domain expert1 was
available for determining difficult tokenizations. The 67
abstracts yielded 17253 pieces of punctuation.
Distributions follow. The feature vectors created from
the set were used to create a decision tree, implemented
using the Weka tool set (Witten and Frank). The tree
used reduced error pruning to increase accuracy.

Punctuation
Type Total remove break

<space> 14476 463 14013
- 1103 737 366
. 637 12 625
, 577 6 571
( 186 8 178
) 186 7 179
/ 45 7 38
: 18 0 18
[ 9 6 2
] 9 7 2
; 7 2 5

Totals 17253 1255 15998
Table 2: Punctuation distribution of the MEDLINE

train/test set

4 Evaluation

The baseline used for evaluation was to simply break on
every instance of punctuation; that is, assume no
punctuation needs to be removed. This achieves an
accuracy of 92.73%, where accuracy is the percentage of
correctly classified punctuation. This baseline was
chosen for its high accuracy; however, as it is a simple
majority class baseline which always predicts 'break',
giving it a precision score of 1, a recall score of 0, and
an f-measure of 0 for the 'remove' class. 

BAccHANT was trained and tested using 10-fold
cross-validation. It achieved an accuracy of 96.60%,
which was a statistically significant improvement over
the baseline (all significance testing was done using a
two-tailed t-test with a p-value of 0.05). More detailed
results follow.

1 Dr. Vladimir Leontiev, University of Iowa, Department
of Anatomy and Cell Biology



Class
remove break

Precision 0.832 0.974
Recall 0.668 0.989

F-Measure 0.741 0.982
Table 3: Precision, recall, and f-measure

The 'break' classification reached high precision and
recall. This is unsurprising as 96.7% of all <space>
punctuation classified as 'break', and <space>
punctuation made up 83.9% of all punctuation. Commas
and periods were similarly easy to classify as 'break'. Of
more interest is the 'remove' classification, as this class
indicates punctuation to be normalized. The recall was
not as good as was hoped, with BAccHANT discovering
roughly 2 out of every 3 instances present, though it
correctly classified roughly 5 out of 6 instances it found

We suspected that punctuation was being used
differently inside of named entities vs. outside of NEs.
To investigate this suspicion, we tested BAccHANT on
NE data from the GENIA corpus. The testing set created
from GENIA consisted wholly of character data from
inside NEs. The set contained 5798 instances of
punctuation. Punctuation distribution for the GENIA
corpus test set follows.

Punctuation
Type Total remove break

<space> 4849 157 4692
- 304 192 112
. 237 4 233
, 187 2 185
( 62 3 59
) 62 3 59
/ 14 4 10
: 2 0 2
[ 0 0 0
] 0 0 0
; 0 0 0

Totals 5798 365 5433
Table 4: Punctuation distribution in the GENIA

corpus test set

The accuracy of BAccHANT on this test set was
90%. More detailed results for the 'remove' class follow.

BAccHANT  performance
Test Set All text GENIA corpus

Accuracy 0.966 0.900
Precision 0.832 0.546

Recall 0.688 0.453
F-Measure 0.741 0.500
Table 5: Accuracy, precision, recall, and F-measure

for BAccHANT tested on all text vs. inside NEs.

Precision, recall and f-measure are given for the
'remove' class

Further testing revealed that accuracy outside NEs
was near 99%. The statistically significant degradation
in performance of BAccHANT inside NEs vs.
performance both inside and outside NEs indicates that
data inside named entities is more difficult to normalize
than data outside named entities.

These results seem to indicate that a normalization
system trained solely on data inside NEs could perform
better than a system trained on both named and non-
named data when normalizing NEs. A new
normalization system trained on NE data, BAccHANT-
N, was built to test this.

The new system was trained and tested using the
GENIA corpus test set. BAccHANT-N was created
similarly to BAccHANT, with identical features, and
implemented as a decision tree using reduced error
pruning. It was trained and tested using 10-fold cross-
validation and achieved an accuracy of 96.5%. More
detailed results follow.

Class
remove break

Precision 0.833 0.980
Recall 0.789 0.985

F-Measure 0.811 0.983
Table 6: Precision, recall, and F-measure for

BAccHANT-N tested on named entity data.

Below is a results summary table, giving accuracy
for both classes, and precision, recall, and f-measure for
the 'remove' class across all systems presented.
BAccHANT-N showed statistically significant
improvement over BAccHANT when normalizing
named entity data. These results show that a system
trained on data inside NEs shows improvement in
performance over a system trained on data from inside
and outside NEs.

Baseline BAccHANT
Training

set
All Text Named

Entities
Test set All NE All NE All NE

Accuracy 0.927 0.914 0.966 0.900 0.965
Precision 1 1 0.832 0.546 0.833

Recall 0 0 0.688 0.453 0.789
F-Measure 0 0 0.741 0.500 0.811

Table 7: Results summary across all systems.
Precision, recall, and f-measure are given for the
'remove' class.

5 Future Work

Currently, BAccHANT looks only at one character to
either side of the piece of punctuation to be classified.



By expanding the number of characters examined from
one to a certain number of characters (a window),
accuracy should increase. Since BAccHANT decision
tree learns based on context, greater context may allow
for better learning, and a window of characters will
expand context.

Also, a window of characters will introduce new
features to learn from. Since a decision tree's features
determine how it learns from context, adding better
features to the decision tree may help the tree learn
better. Examples of new features include:

* Mixed case - does the window include both
uppercase and lowercase characters? 

* Mixed type - does the window include a mix of
letters, numbers, and other character types?

* Boundary size - is there a definite token boundary
within the character window, and if so, how far into the
window is the boundary?

Error analysis of BAccHANT on named entity
tagged data led to the creation of a normalization system
trained on data from inside NEs which performed better
than BAccHANT, and hence would be a better choice
for normalizing inside NEs. However, this normalizer
would necessarily need to be run on named entity tagged
data, as it has not been trained to deal with text outside
of NEs. To accomplish this, a system to simultaneously
tag named entities and normalize at the same time would
be desirable. This could be accomplished via
hierarchical hidden Markov models (Fine et. al., 1998).
A system of this type involves "tiering" hidden Markov
models within each other. This model could be used to
statistically compute the most likely name for a section
of text, and then normalize appropriately in one pass. As
hidden Markov models have been used both for name-
finding (Bikel et al. (1997)) and tokenization (Cutting et
al. (1992)), this seems to be a promising research
possibility.

6 Conclusion

This paper has introduced a system to normalize
bioscience and health articles based on learning features
surrounding punctuation which may need to be removed
for normalization. The system performed significantly
better than the baseline system.

By analyzing the system's performance on named
entity data from the GENIA corpus, it was discovered
that named entities seemed to be more difficult to
normalize than surrounding non-named text. This
finding led to the creation of another normalization
system trained on named entity data, which showed
significant improvement over the first system when
tested on named entities. This improvement seems to
indicate that a system which would compute named
entities in parallel with normalization would be useful.
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Appendix - Hand tokenizing MEDLINE
abstracts for normalization

The goal of this tokenization scheme is to process
plain-text MEDLINE abstracts into a tokenized gold
standard. The format will be one token per line, with
breaking punctuation occupying a line by itself.

The rule of thumb for tokenizing in this fashion is,
include only punctuation critical for the unique naming
of proteins, genes, compounds, etc. found in bioscience
literature. Else, the punctuation should be broken on. 

Expanded forms of acronyms present an ambiguity
problem for tokenization. While we want to keep the
acronym “NF-kappa B” as one token, its expanded form
“nuclear factor-kappa beta” should be tokenized on all
punctuation. While the heterogeneous orthography of
“NF-kappa B” must be taken into account since “NF-
kappaB” and “NF-kappa-B” both appear in the
literature, the literature does not contain instances of
“nuclearfactor-kappa beta” or “kappabeta”. 

Dashes represent the greatest punctuation ambiguity
in the literature, with two out of three instances being
removed for normalization. In particular, break if:

* there is a prefix before the dash, as in “anti-DNA”
or “non-IL”.

* the dash indicates a number range, as in “1-3
hours”.

* the token candidate following the dash is some
kind of modifying noun, gerund or adjective as in “REL-
binding” or “Duffy-negative”.

* there are multiple dashes stringing a number of
tokens together, as in “neck-spine-torso axis”.

* the dash indicates a negative number.

The gold standards used for training and testing are
available from the author by request, or by download at:

http://que.info-science.uiowa.edu/~bob/name-gold
(data from inside named entities)

http://que.info-science.uiowa.edu/~bob/all-gold
(data from inside and outside named entities)


