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Abstract

We present a technique for augmenting
annotated training data with hierarchical word
clusters that are automatically derived from a
large unannotated corpus. Cluster
membership is encoded in features that are
incorporated in a discriminatively trained
tagging model. Active learning is used to
select training examples. We evaluate the
technique for named-entity tagging.
Compared with a state-of-the-art HMM-based
name finder, the presented technique requires
only 13% as much annotated data to achieve
the same level of performance. Given a large
annotated training set of 1,000,000 words, the
technique achieves a 25% reduction in error
over the state-of-the-art HMM trained on the
same material.

1 Introduction

At a recent meeting, we presented name-tagging
technology to a potential user. The technology had
performed well in formal evaluations, had been applied
successfully by several research groups, and required
only annotated training examples to configure for new
name classes. Nevertheless, it did not meet the user's
needs.

To achieve reasonable performance, the HMM-based
technology we presented required roughly 150,000
words of annotated examples, and over a million words
to achieve peak accuracy. Given a typical annotation
rate of 5,000 words per hour, we estimated that setting
up a name finder for a new problem would take four
person days of annotation work — a period we

considered reasonable. However, this user's problems
were too dynamic for that much setup time. To be
useful, the system would have to be trainable in
minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce
training requirements to no more than a few hours. It
seemed that three existing ideas could be combined in a
way that might reduce training requirements
sufficiently to achieve the objective.

First were techniques for producing word clusters from
large unannotated corpora (Brown et al., 1990; Pereira
et al., 1993; Lee and Pereira, 1999). The resulting
clusters appeared to contain a great deal of implicit
semantic information. This implicit information, we
believed, could serve to augment a small amount of
annotated data. Particularly promising were techniques
for producing hierarchical clusters at various scales,
from small and highly specific to large and more
general. To benefit from such information, however,
we would need an automatic learning mechanism that
could effectively exploit it.

Fortunately, a second line of recent research provided a
potential solution. Recent work in discriminative
methods (Lafferty et al., 2001; Sha and Pereira, 2003,
Collins 2002) suggested a framework for exploiting

large numbers of arbitrary input features. These
methods seemed to have exactly the right
characteristics for incorporating the

statistically-correlated hierarchical word clusters we
wished to exploit.

Combining these two methods, we suspected, would be
sufficient to drastically reduce the number of annotated
examples required. However, we also hoped that a
third technique, active learning (Cohn et al., 1996;



McCallum and Nigam, 1998), would be particularly
effective when used in conjunction with hierarchical
word clusters. Specifically, active learning attempts to
select examples for annotation by estimating the
system's certainty about the answer, requesting a human
judgment only for those cases where it is most
uncertain. Unfortunately, the issue often comes down to
whether a specific word has previously been observed in
training: if the system has seen the word, it is certain, if
not, it is uncertain. Word clusters at various scales, we
hoped, would permit more subtle distinctions to
influence the system's certainty, increasing the method’s
effectiveness earlier in the process when fewer training
examples have been annotated.

2 Word Clustering

We view clustering here as a method for estimating the
probabilities of low frequency events, particularly events
that are likely to go unobserved in a small annotated
training corpus. For example, a clustering mechanism
may choose to place AT&T in the same cluster as other
company names based on contextual similarity. Then,
even if the word A7&T was not previously annotated as
a company, it may nonetheless be possible to infer that
AT&T indeed is a company because it occupies a cluster
that is populated mostly by other company names.
Likewise, cluster membership can be used to exploit
information from neighboring words. For example, if
the word reported has previously been observed to
follow person names, but the word announced has not
yet been seen, it may be possible to guess that the word
preceding announced is a person based on the fact that
reported and announced occupy the same cluster.

A practical obstacle to using clusters for this purpose is
selecting an appropriate level of granularity: too small,
and the clusters provide insufficient generalization; too
large, and they inappropriately overgeneralize.
Hierarchical clusters provide one way around the
problem by avoiding commitment to any particular
granularity in advance.

However, the dominant trend during the past decade
toward generative models has made integration of such
hierarchical clusters difficult. Because the nested
clusters surrounding each word are highly correlated, it
is unreasonable to treat them as independent.
Unfortunately, any treatment in a generative framework
other than independent requires considerable ingenuity.

Interestingly, before generative models began to
dominate parsing, the Spatter parser (Magerman, 1995)

achieved extremely promising results using a non-
generative statistical model. Of particular interest is
the fact that Spatter used hierarchical word clusters for
estimating its lexical attachment probabilities.
However, the statistical decision trees underlying
Spatter’s probability model never gained widespread
acceptance, and indeed, our own limited experience
with them yielded mixed results.

In the past few years, researchers have begun to view
generative models as instances of a broader class of
linear (or log-linear) models, and have introduced
discriminative methods (e.g. conditional random fields)
to estimate the model parameters. These estimation
methods do not impose the same strict independence
conditions as generative models.

Armed with modern discriminative training methods, it
seemed reasonable to us to revisit hierarchical
clustering.

Specifically, we picked up where Spatter left off, with
the clustering algorithm of (Brown et al., 1990). We
implemented this algorithm twice as part of our work.
The first implementation derived directly from the
description given in the Brown paper. Then, in the
hope of achieving greater efficiency, we reverse-
engineered the clustering software in Spatter. While
the mathematical details differ slightly between the two
algorithms, both aim to cluster together words so as to
minimize the bigram language-model perplexity of the
unsupervised corpus. In practice, we observed no
significant differences in accuracy when using one or
the other in our experiments. All experimental results
given in this paper are with the Spatter clustering
algorithm.

The result of running the clustering algorithm is a
binary tree, where each word occupies a single leaf
node, and where each leaf node contains a single word.
The root node defines a cluster containing the entire
vocabulary. Interior nodes represent intermediate size
clusters containing all of the words that they dominate.
Thus, nodes higher in the tree correspond to larger
word clusters, while lower nodes correspond to smaller
clusters.

A particular word can be assigned a binary string by
following the traversal path from the root to its leaf,
assigning a 0 for each left branch, and a 1 for each
right branch. The following are example bit strings
from the Spatter clustering algorithm:



lawyer 1000001101000
newspaperman  100000110100100
stewardess 100000110100101
toxicologist 10000011010011

slang 1000001101010

babysitter 100000110101100
conspirator 1000001101011010
womanizer 1000001101011011
mailman 10000011010111

salesman 100000110110000
bookkeeper 1000001101100010
troubleshooter 10000011011000110
bouncer 10000011011000111
technician 1000001101100100

janitor 1000001101100101
saleswoman 1000001101100110

Nike 1011011100100101011100
Maytag 10110111001001010111010
Generali 10110111001001010111011

Gap 1011011100100101011110
Harley-Davidson 10110111001001010111110

Enfield 101101110010010101111110
genus 101101110010010101111111
Microsoft 10110111001001011000
Ventritex 101101110010010110010
Tractebel 1011011100100101100110
Synopsys 1011011100100101100111
WordPerfect 1011011100100101101000
John 101110010000000000
Consuelo 101110010000000001

Jeffrey 101110010000000010
Kenneth 10111001000000001100
Phillip 101110010000000011010
WILLIAM 101110010000000011011
Timothy 10111001000000001110
Terrence 101110010000000011110
Jerald 101110010000000011111
Harold 101110010000000100
Frederic 101110010000000101
Wendell 10111001000000011

Table 1: Sample bit strings
3 Discriminative Name Tagger

To implement discriminative training, we followed the
averaged perceptron approach of (Collins, 2002). Our
decision was based on three criteria. First, the method
performed nearly as well as the currently best global
discriminative model (Sha and Pereira, 2003), as
evaluated on one of the few tasks for which there are
any published results (noun phrase chunking). Second,
convergence rates appeared favorable, which would
facilitate multiple experiments. Finally, and most
important, the method appeared far simpler to
implement than any of the alternatives.

We implemented the averaged perceptron training

algorithm exactly as described by Collins. However,
we did not implement cross-validation to determine
when to stop training. Instead, we simply iterated for 5
epochs in all cases, regardless of the training set size or
number of features used. Furthermore, we did not
implement features that occurred in no training
instances, as was done in (Sha and Pereira, 2003). We
suspect that these simplifications may have cost several
tenths of a point in performance.

A set of 16 tags was used to tag 8 name classes (the
seven MUC classes plus the additional null class). Two
tags were required per class to account for adjacent
elements of the same type. For example, the string
Betty Mary and Bobby Lou would be tagged as
PERSON-START PERSON-START NULL-START
PERSON-START PERSON-CONTINUE.

Our model uses a total of 19 classes of features. The
first seven of these correspond closely to features used
in a typical HMM name tagger. The remaining twelve
encode cluster membership.  Clusters of wvarious
granularity are specified by prefixes of the bit strings.
Short prefixes specify short paths from the root node
and therefore large clusters. Long prefixes specify long
paths and small clusters. We used 4 different prefix
lengths: 8 bit, 12 bit, 16 bit, and 20 bit. Thus, the
clusters decrease in size by about a factor of 16 at each
level. The complete set of features is given in Table 2.

1 Tag + PrevTag
2. Tag+ CurWord
3. Tag+ CapAndNumFeatureOfCurWord
4. ReducedTag + CurWord
//collapse start and continue tags
Tag + PrevWord
Tag + NextWord
Tag + DownCaseCurWord
Tag + Pref8ofCurrWord
9. Tag + Prefl2ofCurrWord
10. Tag + Prefl 6ofCurrWord
11. Tag + Pref20ofCurrWord
12. Tag + Pref8ofPrevWord
13. Tag + Prefl2ofPrevWord
14. Tag + Prefl6ofPrevWord
15. Tag + Pref20ofPrevWord
16. Tag + Pref8ofNextWord
17. Tag + Prefl2ofNextWord
18. Tag + Prefl 6ofNextWord
19. Tag + Pref20ofNextWord

Table 2: Feature Set

4 Active Learning

We used only a rudimentary confidence measure to



perform active learning, introducing no additional
features beyond those used in training and decoding.
The confidence score we assign to a sentence is just the
un-normalized difference in perceptron scores between
the highest scoring theory and the second highest
scoring alternative. To apply active learning, we simply

1. Compute the confidence score for every
sentence in the available pool.

. Sort the results into ascending order.

Request annotations for a block of sentences
beginning at the top of the list.

To compute the confidence scores efficiently, we use
a combination of the forward Viterbi and backward
Viterbi scores at each word. We define the
confidence at a word to be the difference between
the summed forward and backward scores of the best
and second best tags for that word. The confidence
for the entire sentence is then just the minimum of
the scores at each word position.

5 Experimental Results

We performed our experiments using the seven MUC-6
name categories: person, organization, location, date,
time, percent, and monetary amount. For annotated
data, we used text from Sections 02-23 of the Wall
Street Journal Treebank corpus that had previously been
annotated with the MUC name classes. Sections 02-21
were used as training material, and Section 23 was used
as test (note that the syntactic trees were not used in any
way). Scoring was performed using the MUC scorer.

For unsupervised clustering data, we used the Wall
Street Journal subset of the Continuous Speech
Recognition (CSR-III) collection (LDC catalog #
LDC95T6). This portion of the collection contains
approximately 100 million words.

Active learning experiments were performed by
permitting the system to choose examples from among
the pool of annotated data, rather than presenting the
examples in their natural chronological order. This
approach, previously used in [Boschee et al, 2002],
permits simulation of human-in-the-loop experiments
that are inexpensive to run and repeatable because they
don’t actually involve a human annotator. However,
because the pool of pre-annotated examples is limited,
the results are most meaningful for small training sets.
Once the system has selected the most useful examples
from the pool, it is forced to choose among the

F-Measure

remainder that it previously rejected as less useful. At
the extreme where all available examples are used, our
experimental framework prevents active learning from
exhibiting any benefit whatsoever since the system is
left no choice in selecting examples.

Before considering the impact of word clustering on
system performance, we first evaluate the
discriminative tagger relative to the baseline HMM.
For this experiment, we used all of the features
described in Section 3 except word cluster features.
The remaining features encode essentially the same
information used in the HMM, although in a slightly
different form. Results are shown in Figure 1. For
very small and very large training sets, the systems
perform about the same. Between these extremes, the
discriminative tagger exhibits somewhat, though not
distressingly, worse performance. We conjecture that
lack of smoothing in the discriminative tagger may
account for the difference.
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Figure 1: Impact of Discriminative Training

Second, we consider the impact of word -clusters.
Figure 2 compares performance of the discriminative
tagger, now with cluster features included, to the
baseline HMM. Immediately, with only 5,000 words of
training, the discriminative model significantly
outperforms the HMM. With 50,000 words of training,
performance for the discriminative model exceeds 90F,
a level not reached by the HMM until it has observed
150,000 words of training. Somewhat surprisingly, the
clusters continue to provide some benefit even with
1,000,000 words of training. At this operating point,
the discriminative tagger achieves an F-score of 96.08
compared to 94.72 for the HMM, a 25% reduction in
error.
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Figure 2: Impact of Word Clustering

Third, we consider the impact of active learning. Figure
3 shows (a) discriminative tagger performance without
cluster features, (b) the same tagger using active
learning, (c) the discriminative tagger with cluster
features, and (d) the discriminative tagger with cluster
features using active learning. Both with and without
clusters, active learning exhibits a noticeable increase in
learning rates. However, the increase in learning rate is
significantly more pronounced when cluster features are
introduced. = We attribute this increase to better
confidence measures provided by word clusters — the
system is no longer restricted to whether or not it
knows a word; it now can know something about the
clusters to which a word belongs, even if it does not
know the word.
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Figure 3: Impact of Active Learning

Finally, Figure 4 shows the impact of consolidating the
gains from both cluster features and active learning
compared to the baseline HMM. This final combination
achieves an F-score of 90 with less than 20,000 words of
training — a quantity that can be annotated in about 4
person hours — compared to 150,000 words for the

F-Measure

HMM - a quantity requiring nearly 4 person days to
annotate. At 1,000,000 word of training, the final
combination continues to exhibit a 25% reduction in
error over the baseline system (because of limitations in
the experimental framework discussed earlier, active
learning can provide no additional gain at this
operating point).
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Figure 4: Cumulative Impact of Discriminative
Training, Clustering, and Active Learning

6 Discussion

The work presented here extends a substantial body of
previous work (Blum and Mitchell, 1998; Riloff and
Jones, 1999; Lin et al., 2003; Boschee et al, 2002;
Collins and Singer, 1999; Yarowsky, 1995) that all
focuses on reducing annotation requirements through a
combination of (a) seed examples, (b) large un-
annotated corpora, and (c) training example selection.
Moreover, our work is based largely on existing
techniques for word clustering (Brown et al., 1990),
discriminative training (Collins 2002), and active
learning.

The synthesis of these techniques, nevertheless, proved
highly effective in achieving our primary objective of
reducing the need for annotated data.

Much work remains to be done. In an effort to move
rapidly toward our primary objective, we investigated
only one type of discriminative training (averaged
perceptron), only one type of clustering (bigram mutual
information), and only one simple confidence measure
for active learning. It seems likely that some additional
gains could be realized by alternative discriminative
methods (e.g. conditional random fields estimated with
conjugate-gradient training).  Similarly, alternative
clustering techniques, perhaps based on different
contextual features or different distance measures,



could further improve performance.

On the application side, it would be interesting to apply
the technique to other language problems. Applying it
to parsing would yield a rare sense of closure, knitting
together the word clustering of Magerman’s (1995)
Spatter parser — arguably the first successful broad-
coverage statistical parser — with structural elements of
the now-dominant Collins (1997) style parsers.

Because our combined method promises to require
substantially less training data, it may also prove useful
for so-called low-density languages, where limited
resources — and even more limited numbers of native
speakers — are available.

For the moment, we find the initial results encouraging.
We achieved a 25% reduction in error on a standard
named-entity problem, compared to a state-of-the-art
HMM. Our main objective, though, was not reducing
error rates but rather reducing the amount of annotation
required. At least for the named-entity task we studied,
using the method described, a single annotator could
begin work after breakfast and, by lunchtime, have
enough data annotated to achieve an F-score of 90.
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