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Abstract

In this paper, we propose a machine learning al-
gorithm for shallow semantic parsing, extend-
ing the work of Gildea and Jurafsky (2002),
Surdeanu et al. (2003) and others. Our al-
gorithm is based on Support Vector Machines
which we show give an improvement in perfor-
mance over earlier classifiers. We show perfor-
mance improvements through a number of new
features and measure their ability to general-
ize to a new test set drawn from the AQUAINT
corpus.

1 Introduction

Automatic, accurate and wide-coverage techniques that
can annotate naturally occurring text with semantic argu-
ment structure can play a key role in NLP applications
such as Information Extraction, Question Answering and
Summarization. Shallow semantic parsing — the process
of assigning a simple WHo did WHAT to WHOM, WHEN,
WHERE, WHY, How, etc. structure to sentences in text,
is the process of producing such a markup. When pre-
sented with a sentence, a parser should, for each predicate
in the sentence, identify and label the predicate’s seman-
tic arguments. This process entails identifying groups of
words in a sentence that represent these semantic argu-
ments and assigning specific labels to them.

In recent work, a number of researchers have cast this
problem as a tagging problem and have applied vari-
ous supervised machine learning techniques to it (Gildea
and Jurafsky (2000, 2002); Blaheta and Charniak (2000);
Gildea and Palmer (2002); Surdeanu et al. (2003); Gildea
and Hockenmaier (2003); Chen and Rambow (2003);
Fleischman and Hovy (2003); Hacioglu and Ward (2003);
Thompson et al. (2003); Pradhan et al. (2003)). In this
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paper, we report on a series of experiments exploring this
approach.

For the initial experiments, we adopted the approach
described by Gildea and Jurafsky (2002) (G&J) and eval-
uated a series of modifications to improve its perfor-
mance. In the experiments reported here, we first re-
placed their statistical classification algorithm with one
that uses Support Vector Machines and then added to the
existing feature set. We evaluate results using both hand-
corrected TreeBank syntactic parses, and actual parses
from the Charniak parser.

2 Semantic Annotation and Corpora

We will be reporting on results using PropBank! (Kings-
bury et al., 2002), a 300k-word corpus in which predi-
cate argument relations are marked for part of the verbs
in the Wall Street Journal (WSJ) part of the Penn Tree-
Bank (Marcus et al., 1994). The arguments of a verb are
labeled ARGO to ARGS, where ARGO is the PROTO-
AGENT (usually the subject of a transitive verb) ARG1
is the PROTO-PATIENT (usually its direct object), etc.
PropBank attempts to treat semantically related verbs
consistently. In addition to these CORE ARGUMENTS,
additional ADJUNCTIVE ARGUMENTS, referred to as
ARGMs are also marked. Some examples are ARGM-
Loc, for locatives, and ARGM-TwmPp, for temporals. Fig-
ure 1 shows the syntax tree representation along with the
argument labels for an example structure extracted from
the PropBank corpus.

Most of the experiments in this paper, unless speci-
fied otherwise, are performed on the July 2002 release
of PropBank. A larger, cleaner, completely adjudicated
version of PropBank was made available in Feb 2004.
We will also report some final best performance numbers
on this corpus. PropBank was constructed by assigning
semantic arguments to constituents of the hand-corrected
TreeBank parses. The data comprise several sections of
the WSJ, and we follow the standard convention of using

1http://www. cis.upenn.edu/"ace/



Section-23 data as the test set. Section-02 to Section-
21 were used for training. In the July 2002 release, the
training set comprises about 51,000 sentences, instantiat-
ing about 132,000 arguments, and the test set comprises
2,700 sentences instantiating about 7,000 arguments. The
Feb 2004 release training set comprises about 85,000 sen-
tences instantiating about 250,000 arguments and the test
set comprises 5,000 sentences instantiating about 12,000
arguments.

[arGo He] [predicate talked] for [araMm-Tmp about
20 minutes].
S
QJ\Q
NP VP
] D_/\
PRP VBD PP
! /\
He — yolked

ARGO predicate IN NP

or
about 20 minutes
NULL ARGM - TMP
Figure 1: Syntax tree for a sentence illustrating the Prop-
Bank tags.

3 Problem Description

The problem of shallow semantic parsing can be viewed
as three different tasks.

Argument ldentification — This is the process of identi-
fying parsed constituents in the sentence that represent
semantic arguments of a given predicate.

Argument Classification — Given constituents known to
represent arguments of a predicate, assign the appropri-
ate argument labels to them.

Argument ldentification and Classification — A combina-
tion of the above two tasks.

Each node in the parse tree can be classified as either
one that represents a semantic argument (i.e., a NON-
NuLL node) or one that does not represent any seman-
tic argument (i.e., a NUuLL node). The NON-NULL nodes
can then be further classified into the set of argument la-
bels. For example, in the tree of Figure 1, the node IN
that encompasses “for” is a NULL node because it does
not correspond to a semantic argument. The node NP
that encompasses “about 20 minutes” is a NON-NULL
node, since it does correspond to a semantic argument
— ARGM-TMP.

4 Baseline Features

Our baseline system uses the same set of features in-
troduced by G&J. Some of the features, viz., predicate,
voice and verb sub-categorization are shared by all the
nodes in the tree. All the others change with the con-
stituent under consideration.

e Predicate — The predicate itself is used as a feature.

e Path — The syntactic path through the parse tree
from the parse constituent to the predicate being
classified. For example, in Figure 1, the path from
ARGO - “He” to the predicate talked, is represented
with the string NPTS|VP|VBD. T and | represent
upward and downward movement in the tree respec-
tively.

e Phrase Type — This is the syntactic category (NP,
PP, S, etc.) of the phrase/constituent corresponding
to the semantic argument.

e Position — This is a binary feature identifying
whether the phrase is before or after the predicate.

e \Voice — Whether the predicate is realized as an ac-
tive or passive construction.

e Head Word — The syntactic head of the phrase. This
is calculated using a head word table described by
(Magerman, 1994) and modified by (Collins, 1999,
Appendix. A).

e Sub-categorization — This is the phrase struc-
ture rule expanding the predicate’s parent node
in the parse tree. For example, in Figure 1, the
sub-categorization for the predicate talked is
VP—VBD-PP.

5 Classifier and Implementation

We formulate the parsing problem as a multi-class clas-
sification problem and use a Support Vector Machine
(SVM) classifier (Hacioglu et al., 2003; Pradhan et al,
2003). Since SVMs are binary classifiers, we have to con-
vert the multi-class problem into a number of binary-class
problems. We use the ONE vs ALL (OVA) formalism,
which involves training n binary classifiers for a n-class
problem.

Since the training time taken by SVMs scales exponen-
tially with the number of examples, and about 80% of the
nodes in a syntactic tree have NuLL argument labels, we
found it efficient to divide the training process into two
stages, while maintaining the same accuracy:

1. Filter out the nodes that have a very high probabil-
ity of being NuLL. A binary NuLL vs NON-NuULL
classifier is trained on the entire dataset. A sigmoid
function is fitted to the raw scores to convert the
scores to probabilities as described by (Platt, 2000).

2. The remaining training data is used to train OVA
classifiers, one of which is the NULL-NON-NuULL
classifier.

With this strategy only one classifier (NULL vS NON-
NuLL) has to be trained on all of the data. The remaining
OVA classifiers are trained on the nodes passed by the
filter (approximately 20% of the total), resulting in a con-
siderable savings in training time.



In the testing stage, we do not perform any filtering
of NuLL nodes. All the nodes are classified directly
as NuLL or one of the arguments using the classifier
trained in step 2 above. We observe no significant per-
formance improvement even if we filter the most likely
NULL nodes in a first pass.

For our experiments, we used TinySVM? along with

YamCha® (Kudo and Matsumoto, 2000)
(Kudo and Matsumoto, 2001) as the SVM training and
test software. The system uses a polynomial kernel with
degree 2; the cost per unit violation of the margin, C'=1;
and, tolerance of the termination criterion, e=0.001.

6 Baseline System Performance

Table 1 shows the baseline performance numbers on the
three tasks mentioned earlier; these results are based on
syntactic features computed from hand-corrected Tree-
Bank (hence LDC hand-corrected) parses.

For the argument identification and the combined iden-
tification and classification tasks, we report the precision
(P), recall (R) and the F,* scores, and for the argument
classification task we report the classification accuracy
(A). This test set and all test sets, unless noted otherwise
are Section-23 of PropBank.

Classes Task P R F1 A
%) | (%) (%)
ALL Id. 90.9 | 89.8 | 90.4
ARGS Classification - - - | 879
Id. + Classification | 83.3 | 785 | 80.8
CORE Id. 94.7 90.1 92.3
ARGS Classification - - - 91.4
Id. + Classification | 88.4 | 84.1 | 86.2

Table 1: Baseline performance on all three tasks using
hand-corrected parses.

7 System Improvements

7.1 Disallowing Overlaps

The system as described above might label two con-
stituents NON-NULL even if they overlap in words. This
is a problem since overlapping arguments are not allowed
in PropBank. Among the overlapping constituents we re-
tain the one for which the SVM has the highest confi-
dence, and label the others NuLL. The probabilities ob-
tained by applying the sigmoid function to the raw SVM
scores are used as the measure of confidence. Table 2
shows the performance of the parser on the task of iden-
tifying and labeling semantic arguments using the hand-
corrected parses. On all the system improvements, we
perform a x? test of significance at p = 0.05, and all the

thtp ://cl._aist-nara.ac.jp/ talus-Au/software/TinySVM/
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significant improvements are marked with an *. In this
system, the overlap-removal decisions are taken indepen-
dently of each other.

P R Fi

%) | (%)
Baseline | 833 | 785 80.8
No Overlaps | 854 | 78.1 | *81.6

Table 2: Improvements on the task of argument identi-
fication and classification after disallowing overlapping
constituents.

7.2 New Features

We tested several new features. Two were obtained from
the literature — named entities in constituents and head
word part of speech. Other are novel features.

1. Named Entities in Constituents — Following
Surdeanu et al. (2003), we tagged 7 named en-
tities (PERSON, ORGANIZATION, LOCATION,
PERCENT, MONEY, TIME, DATE) using ldenti-
Finder (Bikeletal., 1999) and added them as 7
binary features.

2. Head Word POS - Surdeanu et al. (2003) showed
that using the part of speech (POS) of the head word
gave a significant performance boost to their system.
Following that, we experimented with the addition
of this feature to our system.

3. Verb Clustering — Since our training data is rel-
atively limited, any real world test set will con-
tain predicates that have not been seen in training.
In these cases, we can benefit from some informa-
tion about the predicate by using predicate clus-
ter as a feature. The verbs were clustered into 64
classes using the probabilistic co-occurrence model
of Hofmann and Puzicha (1998). The clustering al-
gorithm uses a database of verb-direct-object rela-
tions extracted by Lin (1998). We then use the verb
class of the current predicate as a feature.

4. Partial Path — For the argument identification task,
path is the most salient feature. However, it is also
the most data sparse feature. To overcome this prob-
lem, we tried generalizing the path by adding a new
feature that contains only the part of the path from
the constituent to the lowest common ancestor of the
predicate and the constituent, which we call “Partial-
Path”.

5. Verb Sense Information — The arguments that a
predicate can take depend on the word sense of the
predicate. Each predicate tagged in the PropBank
corpus is assigned a separate set of arguments de-
pending on the sense in which it is used. Table 3



illustrates the argument sets for the predicate talk.
Depending on the sense of the predicate talk, either
ARG1 or ARG2 can identify the hearer. Absence of
this information can be potentially confusing to the
learning mechanism.

[[ Talk T sense 1. speak [ sense 2: persuade/dissuade ]|
I | Tag [ Description [ Tag [ Description i
ARGO | Talker ARGO | Talker
ARG1 | Subject ARG1 | Talked to

ARG2 | Hearer ARG2 | Secondary action

Table 3: Argument labels associated with the two senses
of predicate talk in PropBank corpus.

We added the oracle sense information extracted
from PropBank, to our features by treating each
sense of a predicate as a distinct predicate.

6. Head Word of Prepositional Phrases — Many ad-
junctive arguments, such as temporals and locatives,
occur as prepositional phrases in a sentence, and
it is often the case that the head words of those
phrases, which are always prepositions, are not very
discriminative, eg., “in the city”, “in a few minutes”,
both share the same head word “in” and neither
contain a named entity, but the former is ARGM-
Loc, whereas the latter is ARGM-TMP. Therefore,
we tried replacing the head word of a prepositional
phrase, with that of the first noun phrase inside the
prepositional phrase. We retained the preposition in-
formation by appending it to the phrase type, eg.,
“PP-in” instead of “PP”.

7. First and Last Word/POS in Constituent — Some
arguments tend to contain discriminative first and
last words so we tried using them along with their
part of speech as four new features.

8. Ordinal constituent position — In order to avoid
false positives of the type where constituents far
away from the predicate are spuriously identified as
arguments, we added this feature which is a concate-
nation of the constituent type and its ordinal position
from the predicate.

9. Constituent tree distance — This is a finer way of
specifying the already present position feature.

10. Constituent relative features — These are nine fea-
tures representing the phrase type, head word and
head word part of speech of the parent, and left and
right siblings of the constituent in focus. These were
added on the intuition that encoding the tree context
this way might add robustness and improve general-
ization.

11. Temporal cue words — There are several temporal
cue words that are not captured by the named entity
tagger and were considered for addition as a binary
feature indicating their presence.

12. Dynamic class context — In the task of argument
classification, these are dynamic features that repre-
sent the hypotheses of at most previous two nodes
belonging to the same tree as the node being classi-
fied.

8 Feature Performance

Table 4 shows the effect each feature has on the ar-
gument classification and argument identification tasks,
when added individually to the baseline. Addition of
named entities improves the F; score for adjunctive ar-
guments ARGM-Loc from 59% to *68% and ARGM-
TmP from 78.8% to *83.4%. But, since these arguments
are small in number compared to the core arguments, the
overall accuracy does not show a significant improve-
ment. We found that adding this feature to the NuLL vs
NON-NuULL classifier degraded its performance. It also
shows the contribution of replacing the head word and the
head word POS separately in the feature where the head
of a prepositional phrase is replaced by the head word
of the noun phrase inside it. Apparently, a combination
of relative features seem to have a significant improve-
ment on either or both the classification and identification
tasks, and so do the first and last words in the constituent.

Features Class ARGUMENT ID
Acc.

P | R | F1
Baseline 87.9 93.7 88.9 91.3
+ Named entities 88.1 - - -
+ Head POS *88.6 94.4 | 90.1 | *922
+ Verb cluster 88.1 94.1 | 89.0 91.5
+ Partial path 88.2 93.3 88.9 91.1
+ \erb sense 88.1 93.7 89.5 91.5
+ Noun head PP (only POS) *88.6 94.4 | 90.0 | *922

*89.8 940 | 894 91.7
*89.9 94.7 | 905 | *92.6
*89.0 944 | 911 | *92.7
*89.4 938 | 894 91.6

+ Noun head PP (only head)
+ Noun head PP (both)

+ First word in constituent
+ Last word in constituent

+ First POS in constituent 88.4 944 | 906 | *925
+ Last POS in constituent 88.3 93.6 | 89.1 91.3
+ Ordinal const. pos. concat. 87.7 93.7 | 89.2 91.4
+ Const. tree distance 88.0 93.7 | 895 915
+ Parent constituent 87.9 942 | 902 | *92.2
+ Parent head 85.8 94.2 | 905 | *92.3
+ Parent head POS *885 || 943 | 903 | *92.3
+ Right sibling constituent 87.9 94.0 | 89.9 91.9
+ Right sibling head 87.9 94.4 | 89.9 *92.1
+ Right sibling head POS 88.1 94.1 89.9 92.0
+ Left sibling constituent *88.6 93.6 | 89.6 91.6
+ Left sibling head 86.9 939 | 86.1 89.9
+ Left sibling head POS *88.8 935 | 89.3 91.4
+ Temporal cue words *88.6 - - -
+ Dynamic class context 88.4

Table 4: Effect of each feature on the argument identifi-
cation and classification tasks when added to the baseline
system.



We tried two other ways of generalizing the head word:
i) adding the head word cluster as a feature, and ii) replac-
ing the head word with a named entity if it belonged to
any of the seven named entities mentioned earlier. Nei-
ther method showed any improvement. We also tried gen-
eralizing the path feature by i) compressing sequences of
identical labels, and ii) removing the direction in the path,
but none showed any improvement on the baseline.

8.1 Argument Sequence Information

In order to improve the performance of their statistical ar-
gument tagger, G&J used the fact that a predicate is likely
to instantiate a certain set of arguments. We use a similar
strategy, with some additional constraints: i) argument
ordering information is retained, and ii) the predicate is
considered as an argument and is part of the sequence.
We achieve this by training a trigram language model on
the argument sequences, so unlike G&J, we can also es-
timate the probability of argument sets not seen in the
training data. We first convert the raw SVM scores to
probabilities using a sigmoid function. Then, for each
sentence being parsed, we generate an argument lattice
using the n-best hypotheses for each node in the syn-
tax tree. We then perform a Viterbi search through the
lattice using the probabilities assigned by the sigmoid
as the observation probabilities, along with the language
model probabilities, to find the maximum likelihood path
through the lattice, such that each node is either assigned
a value belonging to the PROPBANK ARGUMENTS, of
NULL.

CORE ARGS/ P R Fq
Hand-corrected parses (%) (%)

Baseline w/o overlaps 90.0 | 86.1 88.0
Common predicate 90.8 | 86.3 88.5
Specific predicate lemma | 90.5 | 87.4 | *88.9

Table 5: Improvements on the task of argument identifi-
cation and tagging after performing a search through the
argument lattice.

The search is constrained in such a way that no two
NON-NuLL nodes overlap with each other. To simplify
the search, we allowed only NuLL assignments to nodes
having a NuLL likelihood above a threshold. While train-
ing the language model, we can either use the actual pred-
icate to estimate the transition probabilities in and out
of the predicate, or we can perform a joint estimation
over all the predicates. We implemented both cases con-
sidering two best hypotheses, which always includes a
NuLL (we add NuLL to the list if it is not among the
top two). On performing the search, we found that the
overall performance improvement was not much differ-
ent than that obtained by resolving overlaps as mentioned
earlier. However, we found that there was an improve-
ment in the CORE ARGUMENT accuracy on the combined

task of identifying and assigning semantic arguments,
given hand-corrected parses, whereas the accuracy of the
ADJUNCTIVE ARGUMENTS slightly deteriorated. This
seems to be logical considering the fact that the ADJUNC-
TIVE ARGUMENTS are not linguistically constrained in
any way as to their position in the sequence of argu-
ments, or even the quantity. We therefore decided to
use this strategy only for the CORE ARGUMENTS. Al-
though, there was an increase in F; score when the lan-
guage model probabilities were jointly estimated over all
the predicates, this improvement is not statistically signif-
icant. However, estimating the same using specific predi-
cate lemmas, showed a significant improvement in accu-
racy. The performance improvement is shown in Table 5.

9 Best System Performance

The best system is trained by first filtering the most
likely nulls using the best NuLL vs NON-NuULL classi-
fier trained using all the features whose argument identi-
fication F; score is marked in bold in Table 4, and then
training a ONE vs ALL classifier using the data remain-
ing after performing the filtering and using the features
that contribute positively to the classification task — ones
whose accuracies are marked in bold in Table 4. Table 6
shows the performance of this system.

Classes | Task Hand-corrected parses
P R Fi A
(%) | (%) (%)
ALL Id. 952 | 925 | 9338
ARGS Classification - - - | 91.0
Id. + Classification | 88.9 | 84.6 | 86.7
CORE 1d. 96.2 | 93.0 | 94.6
ARGS Classification - - - | 939
Id. + Classification | 90.5 | 87.4 | 88.9

Table 6: Best system performance on all tasks using
hand-corrected parses.

10 Using Automatic Parses

Thus far, we have reported results using hand-corrected
parses. In real-word applications, the system will have
to extract features from an automatically generated
parse. To evaluate this scenario, we used the Charniak
parser (Chaniak, 2001) to generate parses for PropBank
training and test data. We lemmatized the predicate using
the XTAG morphology database® (Daniel et al., 1992).
Table 7 shows the performance degradation when
automatically generated parses are used.

11 Using Latest PropBank Data

Owing to the Feb 2004 release of much more and com-
pletely adjudicated PropBank data, we have a chance to

51‘tp://ftp .cis.upenn.edu/pub/xtag/morph-1.5/morph-
1.5.tar.gz



Classes | Task Automatic parses

3 R =5 A
(%) | (%) (%)

ALL 1d. 89.3 | 829 | 86.0
ARGS Classification - - - 90.0

Id. + Classification | 84.0 | 753 | 79.4

CORE Id. 920 | 833 | 874
ARGS Classification - - - | 905

Id. + Classification | 86.4 | 78.4 | 82.2

Table 7: Performance degradation when using automatic
parses instead of hand-corrected ones.

report our performance numbers on this data set. Table 8
shows the same information as in previous Tables 6 and
7, but generated using the new data. Owing to time limi-
tations, we could not get the results on the argument iden-
tification task and the combined argument identification
and classification task using automatic parses.

H ALL ARGS | Task Fi [ AT
|

Pl R
[ [ &) | [ ) |

HAND Id. 96.2 95.8 96.0
Classification - - - | 930
Id. + Classification | 89.9 | 89.0 | 89.4
[[ AutomaTiC [ Classification [ - ] - - [ 90.1 ]

Table 8: Best system performance on all tasks using
hand-corrected parses using the latest PropBank data.

12 Feature Analysis

In analyzing the performance of the system, it is useful
to estimate the relative contribution of the various feature
sets used. Table 9 shows the argument classification ac-
curacies for combinations of features on the training and
test data, using hand-corrected parses, for all PropBank
arguments.

Features Accuracy

(%)
All 91.0
All except Path 90.8
All except Phrase Type 90.8
All except HW and HW-POS 90.7
All except All Phrases *83.6
All except Predicate *82.4
All except HW and FW and LW-POS *75.1
Path, Predicate 74.4
Path, Phrase Type 47.2
Head Word 37.7
Path 28.0

Table 9: Performance of various feature combinations on
the task of argument classification.

In the upper part of Table 9 we see the degradation in
performance by leaving out one feature or a feature fam-
ily at a time. After the addition of all the new features,
it is the case that removal of no individual feature except
predicate degrades the classification performance signifi-
cantly, as there are some other features that provide com-
plimentary information. However, removal of predicate

information hurts performance significantly, so does the
removal of a family of features, eg., all phrase types, or
the head word (HW), first word (FW) and last word (LW)
information. The lower part of the table shows the per-
formance of some feature combinations by themselves.

Table 10 shows the feature salience on the task of ar-
gument identification. One important observation we can
make here is that the path feature is the most salient fea-
ture in the task of argument identification, whereas it is
the least salient in the task of argument classification. We
could not provide the numbers for argument identifica-
tion performance upon removal of the path feature since
that made the SVM training prohibitively slow, indicating
that the SVM had a very hard time separating the NuLL
class from the NON-NULL class.

H Features

P R R
%) | (%)
All 9.2 | 925 | 938

All except HW 95.1 923 | 937
All except Predicate 945 | 919 | 93.2

Table 10: Performance of various feature combinations
on the task of argument identification

13 Comparing Performance with Other
Systems

We compare our system against 4 other shallow semantic
parsers in the literature. In comparing systems, results are
reported for all the three types of tasks mentioned earlier.

13.1 Description of the Systems

The Gildea and Palmer (G&P) System.

The Gildea and Palmer (2002) system uses the same
features and the same classification mechanism used by
G&aJ. These results are reported on the December 2001
release of PropBank.

The Surdeanu et al. System.

Surdeanu et al. (2003) report results on two systems
using a decision tree classifier. One that uses exactly the
same features as the G&J system. We call this “Surdeanu
System 1.” They then show improved performance of an-
other system — “Surdeanu System Il,” which uses some
additional features. These results are are reported on the
July 2002 release of PropBank.

The Gildea and Hockenmaier (G&H) System

The Gildea and Hockenmaier (2003) system uses fea-
tures extracted from Combinatory Categorial Grammar
(CCG) corresponding to the features that were used by
G&J and G&P systems. CCG is a form of dependency
grammar and is hoped to capture long distance relation-
ships better than a phrase structure grammar. The fea-
tures are combined using the same algorithm as in G&J



and G&P. They use a slightly newer — November 2002 re-
lease of PropBank. We will refer to this as “G&H System
1.

The Chen and Rambow (C&R) System

Chen and Rambow report on two different systems,
also using a decision tree classifier. The first “C&R Sys-
tem I” uses surface syntactic features much like the G&P
system. The second “C&R System 11" uses additional
syntactic and semantic representations that are extracted
from a Tree Adjoining Grammar (TAG) — another gram-
mar formalism that better captures the syntactic proper-
ties of natural languages.

Classifier Accuracy

(%)
SVM 88
Decision Tree (Surdeanu et al., 2003) 79
Gildea and Palmer (2002) 77

Table 11: Argument classification using same features
but different classifiers.

13.2 Comparing Classifiers

Since two systems, in addition to ours, report results us-
ing the same set of features on the same data, we can
directly assess the influence of the classifiers. G&P sys-
tem estimates the posterior probabilities using several dif-
ferent feature sets and interpolate the estimates, while
Surdeanu et al. (2003) use a decision tree classifier. Ta-
ble 11 shows a comparison between the three systems for
the task of argument classification.

13.3 Argument Identification (NULL vs NON-NULL)

Table 12 compares the results of the task of identify-
ing the parse constituents that represent semantic argu-
ments. As expected, the performance degrades consider-
ably when we extract features from an automatic parse as
opposed to a hand-corrected parse. This indicates that the
syntactic parser performance directly influences the argu-
ment boundary identification performance. This could be
attributed to the fact that the two features, viz., Path and
Head Word that have been seen to be good discriminators
of the semantically salient nodes in the syntax tree, are
derived from the syntax tree.

H Classes ‘ System [ Hand [ Automatic |
[ PTRTH [ PTRTH
ALL SVM 95 92 94 89 83 86
ARGS Surdeanu System I1 - - 89 - - -
Surdeanu System | 85 | 84 85

Table 12: Argument identification

13.4 Argument Classification

Table 13 compares the argument classification accuracies
of various systems, and at various levels of classification

granularity, and parse accuracy. It can be seen that the
SVM System performs significantly better than all the
other systems on all PropBank arguments.

H Classes ‘ System [ Hand | Automatic ||
| Accuracy | Accuracy ||
ALL SVM 91 90
ARGS G&P 7 74
Surdeanu System |1 84 -
Surdeanu System | 79 -
CORE SVM 93.9 90.5
ARGS C&R System 11 93.5 -
C&R System | 92.4

Table 13: Argument classification

13.5 Argument Identification and Classification

Table 14 shows the results for the task where the system
first identifies candidate argument boundaries and then
labels them with the most likely argument. This is the
hardest of the three tasks outlined earlier. SVM does a
very good job of generalizing in both stages of process-

ing.

H Classes ‘ System [ Hand [ Automatic |
[ PTRIAR [ PTRJF
ALL SVM 89 85 87 84 75 79
ARGS G&H System | 76 | 68 72 | 71 | 63 67
G&P 71 64 67 58 50 54
CORE SVM System 90 87 89 86 78 82
ARGS G&H System | 82 79 80 76 73 75
C&R System Il - - - 65 75 70

Table 14: Identification and classification

14 Generalization to a New Text Source

Thus far, in all experiments our unseen test data was
selected from the same source as the training data.
In order to see how well the features generalize to
texts drawn from a similar source, we used the classifier
trained on PropBank training data to test data drawn from
the AQUAINT corpus (LDC, 2002). We annotated 400
sentences from the AQUAINT corpus with PropBank
arguments. This is a collection of text from the New
York Times Inc., Associated Press Inc., and Xinhua
News Service (PropBank by comparison is drawn from
Wall Street Journal). The results are shown in Table 15.

Task P R Fq A

%) | (%) (%)

ALL 1d. 758 | 714 | 735 -
ARGS Classification - - - 83.8
Id. + Classification | 65.2 | 615 | 63.3 -

CoRE | Id. 884 | 744 | 80.8 -
ARGS Classification - - - 84.0
Id. + Classification 75.2 63.3 | 68.7 -

Table 15: Performance on the AQUAINT test set.

There is a significant drop in the precision and recall
numbers for the AQUAINT test set (compared to the pre-



cision and recall numbers for the PropBank test set which
were 84% and 75% respectively). One possible reason
for the drop in performance is relative coverage of the
features on the two test sets. The head word, path and
predicate features all have a large number of possible val-
ues and could contribute to lower coverage when moving
from one domain to another. Also, being more specific
they might not transfer well across domains.

Features Arguments | non-Arguments
H | e |
Predicate, Path 87.60 291
Predicate, Head Word 48.90 26.55
Cluster, Path 96.31 4.99
Cluster, Head Word 83.85 60.14
Path 99.13 15.15
Head Word 93.02 90.59

Table 16: Feature Coverage on PropBank test set using
parser trained on PropBank training set.

Features Arguments | non-Arguments

(%) (%)
Predicate, Path 62.11 4.66
Predicate, Head Word 30.26 17.41
Cluster, Path 87.19 10.68
Cluster, Head Word 65.82 45.43
Path 96.50 29.26
Head Word 84.65 83.54

Table 17: Coverage of features on AQUAINT test set us-
ing parser trained on PropBank training set.

Table 16 shows the coverage for features on the hand-
corrected PropBank test set. The tables show feature
coverage for constituents that were Arguments and con-
stituents that were NuLL. About 99% of the predicates in
the AQUAINT test set were seen in the PropBank train-
ing set. Table 17 shows coverage for the same features on
the AQUAINT test set. We believe that the drop in cover-
age of the more predictive feature combinations explains
part of the drop in performance.

15 Conclusions

We have described an algorithm which significantly im-
proves the state-of-the-art in shallow semantic parsing.
Like previous work, our parser is based on a supervised
machine learning approach. Key aspects of our results
include significant improvement via an SVM classifier,
improvement from new features and a series of analytic
experiments on the contributions of the features. Adding
features that are generalizations of the more specific fea-
tures seemed to help. These features were named enti-
ties, head word part of speech and verb clusters. We also
analyzed the transferability of the features to a new text
source.

We would like to thank Ralph Weischedel and Scott Miller of
BBN Inc. for letting us use their named entity tagger — Iden-
tiFinder; Martha Palmer for providing us with the PropBank
data, Valerie Krugler for tagging the AQUAINT test set with
PropBank arguments, and all the anonymous reviewers for their
helpful comments.
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