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Abstract

This paper describes the CMU Let’s Go!! bus
information system, an experimental system
designed to study the use of spoken dialogue
interfaces by non-native speakers. The differ-
ences in performance of the speech recogni-
tion and language understanding modules of
the system when confronted with native and
non-native spontaneous speech are analyzed.
Focus is placed on the linguistic mismatch be-
tween the user input and the system’s expecta-
tions, and on its implications in terms of lan-
guage modeling and parsing performance. The
effect of including non-native data when build-
ing the speech recognition and language under-
standing modules is discussed. In order to close
the gap between non-native and native input, a
method is proposed to automatically generate
confirmation prompts that are both close to the
user’s input and covered by the system’s lan-
guage model and grammar, in order to help the
user acquire idiomatic expressions appropriate
to the task.

1 Introduction

1.1 Spoken Dialogue Systems and Non-Native
Speakers

Spoken dialogue systems rely on models of human lan-
guage to understand users’ spoken input. Such models
cover the acoustic and linguistic space of the common
language used by the system and the user. In current
systems, these models are learned from large corpora of
recorded and transcribed conversations matching the do-
main of the system. In most of the cases, these cor-
pora are gathered from native speakers of the language
because they are the main target of the system and be-

cause developers and researchers are often native speak-
ers themselves. However, when the common language
is not the users’ native language, their utterances might
fall out of this “standard” native model, seriously degrad-
ing the recognition accuracy and overall system perfor-
mance. As telephone-based information access systems
become more common and available to the general pub-
lic, this inability to deal with non-native speakers (or with
any “non-standard” subgroup such as the elderly) is a
serious limitation since, at least for some applications,
(e.g. tourist information, legal/social advice) non-native
speakers represent a significant portion of the everyday
user population.

1.2 Previous Work on Non-Native Speech
Recognition

Over the past ten years, extensive work has been done
on non-native speech recognition. Early research aimed
at endowing Computer Assisted Language Learning soft-
ware with speech recognition capabilities (e.g. (Eske-
nazi and Hansma, 1998), (Witt and Young, 1997)). Usu-
ally such systems are targeted at one specific popula-
tion, that is, people who share the same native language
(L1). Thus, most research in non-native speech recog-
nition uses knowledge of the L1, as well as databases
of accented speech specially recorded from speakers of
the target population. Ideally, by training acoustic mod-
els on target non-native speech, one would capture its
specific characteristics just as training on native speech
does. However collecting amounts of non-native speech
that are large enough to fully train speaker-independent
models is a hard and often impractical task. Therefore, re-
searchers have resorted to using smaller amounts of non-
native speech to retrain or adapt models that were orig-
inally trained on large corpora of native speech. As for
native speech, such methods were mostly applied to read
speech, with some success (e.g. (Mayfield Tomokiyo and
Waibel, 2001)).

Unfortunately, we know from past research on na-



tive speech recognition that read speech models perform
poorly on conversational speech (Furui, 2001), which is
the style used when talking to spoken dialogue systems.
A few studies have built and used databases of non-native
conversational speech for evaluation (Byrne et al., 1998),
and training (Wang and Schultz, 2003).

In all those cases, the native language of the speaker is
known in advance. One exception is (Fischer et al., 2001)
who apply multilingual speech recognition methods to
non-native speech recognition. The authors train acoustic
models on a database comprising native speech from five
European languages (English, Spanish, French, German
and Italian) and use them to recognize non-native English
from speakers of 10 European countries. However, their
task is the recognition of read digit strings, quite different
from conversational speech.

Also, because of the difficulty researchers have to
record large amounts of spontaneous non-native speech,
no thorough study of the impact of the linguistic differ-
ences between native and non-native spontaneous speech
has been conducted to our knowledge. The two spon-
taneous non-native speech studies cited above, report
perplexity and out-of-vocabulary (OOV) word rate (for
(Wang and Schultz, 2003)) but do not provide any analy-
sis.

In this paper, while acknowledging the importance of
acoustic mismatch between native models and non-native
input, we focus on linguistic mismatch in the context of
a task-based spoken dialogue system. This includes dif-
ferences in word choices which influences the number of
OOV words, and syntax which affects the performance of
the speech recognizer’s language model and of the natu-
ral language understanding (NLU) grammar.

1.3 Non-Native Speakers as Language Learners

All the research on non-native speech recognition de-
scribed in the previous section sees non-native speakers
as a population whose acoustic characteristics need to
be modeled specifically but in a static way, just like one
would model the acoustics of male and female voices dif-
ferently. A different approach to the problem is to see
non-native speakers as engaged in the process of acquir-
ing the target language’s acoustic, phonetic and linguistic
properties. In this paradigm, adapting dialogue systems
to non-native speakers does not only mean being able to
recognize and understand their speech as it is, but also
to help them acquire the vocabulary, grammar, and pho-
netic knowledge necessary to fulfill the task the system
was designed for.

This idea follows decades of language teaching re-
search that, since the mid sixties, has emphasized the
value of learning language in realistic situations, in order
to perform specific tasks. Immersion is widely consid-
ered as the best way to learn to speak a language and mod-

ern approaches to foreign language teaching try to mimic
its characteristics. If the student cannot be present in the
country the language is spoken in, then the student should
be put into a series of situations imitating the linguistic
experience that he/she would have in the target country.
Thus, most current language teaching methods, following
the Communicative Approach (Littlewood, 1981) have
focused on creating exercises where the student is forced
to use language quickly in realistic situations and thus to
learn from the situation itself as well as from reactions to
the student’s actions.

From a different viewpoint, (Bortfeld and Brennan,
1997) showed in a psycholinguistic study that non-native
speakers engaged in conversation-based tasks with native
speakers do not only achieve the primary goal of the task
through collaborative effort but also acquire idiomatic ex-
pressions about the task from the interaction.

The research described in this paper, has the dual goal
of improving the accessibility of spoken dialogue systems
to non-native speakers and of studying the usability of a
computer for task-based language learning that simulates
immersion.

The next section gives an overview of the CMU Let’s
Go!! bus information system that we built and use in
our experiments. Section 3 describes and analyzes the re-
sults of experiments aimed at comparing the accuracy of
speech recognition and the quality of language modeling
on both native and non-native data. Section 4 describes
the use of automatically generated confirmation prompts
to help the user speak the language expected by the sys-
tem. Finally, section 5 draws conclusions and presents
future directions of research.

2 Overview of the System

2.1 The CMU Let’s Go!! Bus Information System

In order to study the use of spoken dialogue systems by
non-native speakers in a realistic setting, we built Let’s
Go!!, a spoken dialogue system that provides bus sched-
ule information for the Pittsburgh area(Raux et al., 2003).
As shown in Figure 1, the system is composed of five ba-
sic modules: the speech recognizer, the parser, the dia-
log manager, the language generator, and the speech syn-
thesizer. Speech recognition is performed by the Sphinx
II speech recognizer (Huang et al., 1992). The Phoenix
parser (Ward and Issar, 1994) is in charge of natural lan-
guage understanding. The dialogue manager is based
on the RavenClaw framework (Bohus and Rudnicky,
2003). Natural language generation is done by a simple
template-based generation module, and speech synthe-
sis by the Festival speech synthesis system (Black et al.,
1998). The original system uses a high quality limited-
domain voice recorded especially for the project but for
some experiments, lower quality, more flexible voices



Figure 1: General architecture of the Let’s Go!! bus in-
formation system.

have been used. All modules communicate through the
Galaxy-II (Seneff et al., 1998) framework.

2.2 Definition of the Domain

The Port Authority of Allegheny County, which man-
ages the buses in Pittsburgh provided the full database of
bus routes and schedules. Overall, this database contains
more than 10,000 bus stops but we restricted our system
to 5 routes and 559 bus stops in areas where international
students are likely to travel since they are our main target
population at present.

In order to improve speech recognition accuracy, we
concatenated the words in the name of each bus stop
(e.g. “Fifth andGrant”) and made them into a single en-
try in the recognizer’s lexicon. Because there are usu-
ally several variant names for each bus stop and since we
included other places such as landmarks and neighbor-
hoods, the total size of the lexicon is 9914 words.

2.3 Data Collection Experiments

To gather enough data to train and test acoustic and lan-
guage models, we had the system running, advertising
it to international students at our university, as well as
conducting several studies. In those studies, we gave sce-
narios to the participants in the form of a web page with
maps indicating the places of departure and destination,
as well as additional time and/or route preferences. There
was as little written English as possible in the descrip-
tion of the scenarios to prevent influencing the language
habits of the participants. Participants then called the sys-
tem over the phone to get the required information. One
experiment conducted in June 2003 netted 119 calls from
11 different non-native speakers (5 of them were from
India and 6 from Japan), as well as 25 calls from 4 na-
tive speakers of American English. Another experiment
in August 2003 allowed the collection of 47 calls from
6 non-native speakers of various linguistic backgrounds.
The rest of the non-native data comes from unsollicited

Native Non-Native
Word Error Rate 20.4 % 52.0 %

Table 1: Word Error Rate of the speech recognizer with a
native language model on native and non-native data.

individual callers labelled as non-native by a human an-
notator who transcribed their speech. The total size of the
spontaneous non-native corpus is 1757 utterances.

3 Recognition and Understanding of
Non-Native Speech

3.1 Recognition Accuracy

We used acoustic models trained on data consisting of
phone calls to the CMU Communicator system(Rudnicky
et al., 2000). The data was split into gender specific
sets and corresponding models were built. At recognition
time, the system runs the two sets of models in parallel
and for each utterance selects the result that has the high-
est recognition score, as computed by Sphinx. The lan-
guage model is a class-based trigram model built on 3074
utterances from past calls to the Let’s Go!! system, in
which place names, time expressions and bus route names
are each replaced by a generic class name to compensate
for the lack of training data.

In order to evaluate the performance of these models on
native and non-native speakers, we used 449 utterances
from non-native users (from the August experiment and
the unsollicited calls) and 452 from native users of the
system. The results of recognition on the two data sets
are given in Table 1. Even for native speakers, perfor-
mance was not very high with a word error rate of20.4%.
Yet, this is acceptable given the small amount of training
data for the language model and the conversational na-
ture of the speech. However, performance degrades sig-
nificantly for non-native speakers, with a word error rate
of 52.0%. The two main potential reasons for this loss
are acoustic mismatch and linguistic mismatch. Acoustic
mismatch arises from the variations between the native
speech on which the acoustic models were trained and
non-native speech, which often include different accents
and pronunciations. On the other hand, linguistic mis-
match stems from variations or errors in syntax and word
choice, between the native corpus on which the language
model was trained and non-native speech.

3.2 Impact of Linguistic Mismatch on the
Performance of the Language Model

To analyze the effect of linguistic mismatch, we com-
pared the number of out-of-vocabulary words (OOV) and
the perplexity of the model on the transcription of the test
utterances. Table 2 shows the results. The percentage of



Native Non-Native Difference Significance
% OOV words 1.2 % 3.09 % 157.5 % p < 10−4

% utt. w/ OOV words 5.9 % 14.0 % 174.5 % p < 10−5

Perplexity 22.89 36.55 59.7 % –
% words parsed 63.3 % 56.0 % 56.0 % p < 10−9

% utt. fully parsed 56.4 % 49.7 % 49.7 % p < 0.05

Table 2: The native language model and parsing grammar applied to native and non-native speech transcriptions. The
statistical significance of the difference between the native and non-native sets is computed using the chi-square test
for equality of distributions.

OOVs is3.09% for non-native speakers, more than2.5
times higher than it is for native speakers, which shows
the difference in word choices made by each population.
Such differences include words that are correctly used but
are not frequent in native speech. For example, when
referring to bus stops by street intersections, all native
speakers in our training set simply used “A and B”, hence
the word “intersection” was not in the language model.
On the other hand, many non-native speakers used the full
expression “the intersection of A and B”. Note that the
differencesinsidethe place name itself (e.g. “A and B” vs
“A at B”) are abstracted away by the class-based model,
since all variants are replaced by the same class name
(words like “intersection” and “corner” were kept out of
the class to reduce the number of elements in the “place”
class). In other cases non-native speakers used inappro-
priate words, such as “bus timing” for “bus schedule”,
which were not in the language model. Ultimately, OOVs
affect14.0% of the utterances as opposed to5.9% for na-
tive utterances, which is significant, since an utterance
containing an OOV is more likely to contain recognition
errors even on its in-vocabulary words, since the OOV
prevents the language model from accurately matching
the utterance. Differences between the native and non-
native set in both OOV rate and the ratio of utterances
containing OOVs were statistically significant.

We computed the perplexity of the model on the utter-
ances that did not contain any OOV. The perplexity of the
model on this subset of the non-native test set is36.55,
59.7% higher than that on the native set. This reflects
differences in syntax and selected constructions. For ex-
ample, although native speakers almost always used the
same expression to request a bus departure time (“When
does the bus leave ...?”), non-natives used a wider variety
of sentences (e.g. “Which time I have to leave?”, “What
the next bus I have to take?”). Both the difference be-
tween native and non-native and the larger variability of
non-native language account for the larger perplexity of
the model over the non-native set. This results seems to
disagree with what (Wang and Schultz, 2003) found in
their study, where the perplexity was larger on the native
set. Unfortunately, they do not describe the data used to

train the language model so it is hard to draw any conclu-
sions. But one main difference is that their experiment
focused only on German speakers of English, whereas
we collected data from a much more diverse population.

3.3 Impact of the Linguistic Mismatch on Language
Understanding

The Phoenix parser used in the natural language under-
standing module of the system is a robust, context-free
grammar-based parser. Grammar rules, including op-
tional words, are compiled into a grammar network that
is used to parse user input. When no complete parse
is found, which is often the case with spoken language,
Phoenix looks for partial parses and returns the parse for-
est that it is most confident in. Confidence is based on
internal measures such as the number of words covered
by the parses and the number of parse trees in the parse
forest (for an equal number of covered words, a smaller
number of parse trees is preferred).

The grammar rules were hand written by the devel-
opers of the system. Initially, since no data was avail-
able, choices were made based on their intuition and on
a small scale Wizard-of-Oz experiment. Then, after the
first version of the system was made available, the gram-
mar was extended according to actual calls to the system.
The grammar has thus undergone continuous change, as
is often the case in spoken dialogue systems.

The grammar used in this experiment (the “native”
grammar) was designed based for native speech without
adaptation to non-native data. It provides full parses of
sentences like “When is the next bus going to the air-
port?”, but also, due to the robustness of the parser, partial
parses to ungrammatical sentences like “What time bus
leave airport?”. Once compiled, the grammar network
consisted of 1537 states and 3076 arcs. The two bot-
tom rows of Table 2 show the performance of the parser
on human-transcribed native and non-native utterances.
Both the number of words that could be parsed and the
number of sentences for which a full parse was obtained
are larger for native speakers (resp.63.3% and56.4%)
than non-native (56% and49.7%), although the relative
differences are not as large as those observed for the lan-



Figure 2: Comparison of the relative gain obtained by
using a language model and grammar that includes some
non-native data over the original purely native model, on
transcribed native and non-native speech.

guage model. This can be attributed to the original dif-
ficulty of the task since even native speech contains a
lot of disfluencies that make it difficult to parse. As a
consequence, robust parsers such as Phoenix, which are
designed to be flexible enough to handle native disfluen-
cies, can deal with some of the specificities of non-native
speech. Yet, the chi-square test shows that the difference
between the native and non-native set is very significant
for the ratio of words parsed and mildly so for the ratio
of fully parsed sentences. The weak significance of the
latter can be partly explained by the small number of ut-
terances in the corpora.

3.4 Effect of Additional Non-Native Data on
Language Modeling and Parsing

In order to study the improvement of performance pro-
vided by mixing native and non-native data in the lan-
guage model, we built a second language model (the
“mixed” model), using the 3074 sentences of the native
model to which were added 1308 sentences collected
from non-native calls to the system not included in the
test set. Using this model, we were able to reduce the
OOV rate by56.6% and perplexity by23.6% for our non-
native test set. While the additional data also improved
the performance of the model on native utterances, the
improvement was relatively smaller than for non-native
speakers (12.1%). As can be seen by comparing Tables
2 and 3, this observation is also true of OOV rate (56.6%
improvement for non-native vs50.0% for native) and the
proportion of sentences with OOVs (43.1% vs 55.7%).
Figure 2 shows the relative improvement due to the mixed
LM over the native LM on the native and non-native set.

We also evaluated the impact of additional non-native
data on natural language understanding. In this case,
since we wrote the grammar manually and incrementally

over time, it is not possible to directly “add the non-
native data” to the grammar. Instead, we compared the
June 2003 version of the grammar, which is mostly based
on native speech, to its September 2003 version, which
contains modifications based on the non-native data col-
lected during the summer. This part is therefore an eval-
uation of the impact of the human grammar design done
by the authors based on additional non-native data. At
that point, the compiled grammar had grown to contain
1719 states and 3424 arcs which represents an increase
of respectively11.8% and11.3% over the “native” gram-
mar. Modifications include the addition of new words
(e.g. “reach” as a synonym of “arrive”), new constructs
(e.g. “What is the next bus?”) and the relaxation of some
syntactic constraints to accept ungrammatical sentences
(e.g. “I want to arrive the airport at five” instead of “I
want to arrive at the airport at five”). Using this new
grammar, the proportion of words parsed and sentences
fully parsed improved by respectively10.4% and11.3%
for the native set and by17.3% and11.7% for the non-
native set. We believe that, as for the language model, the
reduction in the number of OOVs is the main explana-
tion behind the better improvement in word coverage ob-
served for the non-native set compared to the native set.
The reduction of the difference between the native and
non-native sets is also reflected in the weaker significance
levels for all ratios except that of fully parsed utterances,
in 3, larger p-values meaning that there is a larger proba-
bility that the differences between the ratios were due to
spurious differences between the corpora rather than to
their (non-)nativeness.

This confirms that even for populations with a wide
variety of linguistic backgrounds, adding non-native data
does reduce the linguistic mismatch between the model
and new, unseen, non-native speech. Another explana-
tion is that, on a narrow domain such as bus schedule
information, the linguistic variance of non-native speech
is much larger than that of native speech. Therefore,
less data is required to accurately model native speech
than non-native speech. It also appears from these results
that, in the context of task-based spoken dialogue sys-
tems, higher-level modules, such as the natural language
understanding module, are less sensitive to explicit mod-
eling of non-nativeness. This can be explained by the fact
that such modules were designed to be flexible in order to
compensate for speech recognition errors. This flexibility
benefits non-native speakers as well, regardless of addi-
tional recognition errors.

3.5 Effect of Additional Non-Native Data on Speech
Recognition

Unfortunately, the reduction of linguistic mismatch was
not observed on recognition results. While using the new
language model improved word error rate on both native



Native Non-Native Difference Significance
% OOV words 0.6 % 1.34 % 123.3 % p < 0.05
% utt. w/ OOV words 2.9 % 6.2 % 113.8 % p < 0.01
Perplexity 20.12 27.92 38.8 % –
% words parsed 69.9 % 65.7 % 65.7 % p < 10−3

% utt. fully parsed 62.8 % 55.5 % 55.5 % p < 0.05

Table 3: The mixed language model and parsing grammar applied to native and non-native speech transcriptions.
Significance is computed using the chi-square test, except for perplexity where the relative difference is reported.

Figure 3: Word Error Rate on Native and Non-Native
Data using a Native and a Mixed Language Model

and non-native utterances (resp. to17.8% and 47.8%,
see Figure 3 ), the impact was relatively larger for native
speech. This is an indication that acoustics play a promi-
nent role in the loss of accuracy of speech recognition on
non-native speech. Acoustic differences between native
and non-native speakers are likely to be larger than the
linguistic ones, since, particularly on such a limited and
common domain, it is easier for non-native speakers to
master syntax and word choice than to improve their ac-
cent and pronunciation habits. Differences among non-
native speakers of different origins are also very large
in the acoustic domain, making it hard to create a single
acoustic model matching all non-native speakers. Finally,
the fact that additional non-native data improves perfor-
mance on native speech is a sign that, generally speak-
ing, the lack of training data for the language model is a
limiting factor for recognition accuracy. Indeed, if there
was enough data to model native speech, additional non-
native data should increase the variance and therefore the
perplexity on native speech.

4 Adaptive Lexical Entrainment as a
Solution to Linguistic Mismatch

4.1 Gearing the User To the System’s Language

The previous section described the issue of recogniz-
ing and understanding non-native speech and solutions to

adapt traditional systems to non-native speakers. Another
approach is to help non-native users adapt to the system
by learning appropriate words and expressions. Lexical
entrainment is the phenomenon by which, in a conversa-
tion, speakers negotiate a common ground of expressions
to refer to objects or topics. Developers of spoken di-
alogue systems frequently take advantage of lexical en-
trainment to help users speak utterances that are within
the language model of the system. This is done by care-
fully designing the system prompts to contain only words
that are recognized by the recognition and understanding
modules (Gustafson et al., 1997). However, in the case
of non-native users, there is no guarantee that users actu-
ally know the words the system wants them to use. Also,
even if they do, some non-native speakers might prefer
to use other words, which they pronounce better or that
they better know how to use. For those reasons, we be-
lieve that to be optimal, the system must try to match the
user’s choice of words in its own prompts. This idea is
motivated by the observations of (Bortfeld and Brennan,
1997), who showed that this type of adaptation occurs
in human-human conversations between native and non-
native speakers.

The role of the system’s “native” prompts is to take
the users through the shortest path from their current lin-
guistic state to the system’s expectations. In fact, this is
not only true for non-native speakers and lexical entrain-
ment is often described as a negotiation process between
the speakers (Clark and Wilkes-Gibbs, 1986). However,
while it is possible for limited-domain system design-
ers to establish a set of words and constructions that are
widely used among native speakers, the variable nature
of the expressions mastered by non-native speakers make
adaptation a desirable feature of the system.

4.2 Automatic Generation of Corrective Prompts

In this study, not all prompts were modified to match the
user’s choice of words. Instead, the focus was placed on
confirmation prompts that both ensure proper understand-
ing between the user and the system and lexically entrain
the user towards the system’s expected input. Two ques-
tions arise: how to generate the prompts and when to
trigger them. Our approach has been to design a list of
target prompts that fit the system’s language model and



grammar and find the closest target prompt to each user
input. The distance between a user utterance as recog-
nized by Sphinx and each of the target utterances is com-
puted by the same dynamic programming algorithm that
is traditionally used to compute word error rate in speech
recognition evaluation. It determines the number of word
insertions, deletions and substitutions that lead from the
target prompt to the user’s utterance. The target prompt
that is closest, i.e. that requires the fewest operations to
match the input, is selected. In addition, words that rep-
resent important concepts such as places, times or bus
route numbers, are given additional weight. This follows
the assumption that a target sentence is not appropriate
if it has a missing or an extra concept compared to the
utterance. We also used this heuristic to answer the sec-
ond question: when to trigger the confirmation prompts.
The system asks for a confirmation whenever a target sen-
tence is found that contains the same concepts as the user
input and differs from it by at least one word. In this case
a prompt like “Did you mean ...” followed by the tar-
get sentence is generated. Finally, the dynamic program-
ming algorithm used to align the utterances also locates
the words that actually differ between the input and the
target. This information is sent to the speech synthesizer,
which puts particular emphasis on the words that differ.
To provide natural emphasis, the intonation of all sen-
tences is generated by the method described in (Raux and
Black, 2003) that concatenates portions of natural into-
national contours from recorded utterances into a contour
appropriate for each prompt. Since the domain-limited
voice recorded for the project does not allow us to either
generate non-recorded prompts or to modify the contour
of the utterances, we used a different, generic voice for
this version of the system.

4.3 Application and Example

The method described in the previous paragraph was im-
plemented in the system and tested in a small pilot study.
We manually wrote 35 different target prompts describing
departure and destination places, times and route num-
bers, based on our knowledge of the system’s language
model and grammar. An example of a confirmation di-
alogue obtained from one of these prompts is given in
Figure 4. In the first user utterance, the preposition “to” is
missing, either because it was not pronounced by the user
or because it was not recognized by the speech recog-
nition module. As a consequence, the utterance cannot
be fully parsed by the language understanding module.
In parallel, the confirmation module computes the dis-
tance between the user’s input and each of the 35 target
prompts, and identifies the closest one as “I want to go to
the airport”. At the same time it finds that the user’s utter-
ance is obtained from the target by deleting the word “to”
and therefore stresses it in the confirmation prompt. Once

S: What can I do for you?
U: I want to go the airport.
S: Sorry, I didn’t get that.

Did you mean:
I want to go TO the airport?

U: Yes
S: To the airport.

Where are you leaving from?
U: ...

Figure 4: Example of an adaptive confirmation dialogue.
The capital “TO” indicate that the word was emphasized
by the system.

the user answers “yes” to the confirmation prompt, the
target prompt is sent to the parser as if it had been uttered
by the user and the state of the dialogue is updated ac-
cordingly. If the user answers “no”, the prompt is simply
discarded. We found that this method works well when
speech recognition is only slightly degraded and/or when
the recognition errors mostly concern grammar and func-
tion words. In such cases, this approach is often able to
repair utterances that would not be parsed correctly other-
wise. However, when too many recognition errors occur,
or when they affect the values of the concepts (i.e. the
system recognizes one place name instead of another),
the users receive too many confirmation prompts to which
they must respond negatively. Combined with the diffi-
culty that non-native speakers have in understanding un-
expected synthesized utterances, this results in cognitive
overload on the user. Yet, this method provides an easy
way (since the designer only has to provide the list of tar-
get prompts) to generate adaptive confirmation prompts
that are likely to help lexical entrainment.

5 Conclusion and Future Directions

In this paper, we described the Let’s Go!! bus information
system, a dialogue system targetted at non-native speak-
ers of English. In order to investigate ways to improve the
communication between non-native users and the system,
we recorded calls from both native and non-native speak-
ers and analyzed their linguistic properties. We found
that besides the problem of acoustic mismatch that results
from the differences in accent and pronunciation habits,
linguistic mismatch is also significant and degrades the
performance of the language model and the natural lan-
guage understanding module. We are exploring two solu-
tions to reduce the linguistic gap between native and non-
native users. First we studied the impact of taking into
account non-native data to model the user’s language and
second we designed a mechanism to generate confirma-
tion prompts that both match the user’s input and a set of
predefined target utterances, so as to help the user acquire



idiomatic expressions related to the task.
Real-world systems like Let’s Go!! are in constant evo-

lution because the data that is collected from users call-
ing the system is used to refine the acoustic and linguis-
tic models of the system. In the near future, our priority
is to collect more data to improve the acoustic models
of the system and address the specific issues related to
a general non-native population, which does not share a
common native language. We will also work on integrat-
ing the confirmation prompt generation method proposed
in this work with state-of-the-art confidence annotation
methods.
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