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Abstract

We present Minimum Bayes-Risk (MBR) de-
coding for statistical machine translation. This
statistical approach aims to minimize expected
loss of translation errors under loss functions
that measure translation performance. We de-
scribe a hierarchy of loss functions that incor-
porate different levels of linguistic information
from word strings, word-to-word alignments
from an MT system, and syntactic structure
from parse-trees of source and target language
sentences. We report the performance of the
MBR decoders on a Chinese-to-English trans-
lation task. Our results show that MBR decod-
ing can be used to tune statistical MT perfor-
mance for specific loss functions.

1 Introduction

Statistical Machine Translation systems have achieved
considerable progress in recent years as seen from their
performance on international competitions in standard
evaluation tasks (NIST, 2003). This rapid progress has
been greatly facilitated by the development of automatic
translation evaluation metrics such as BLEU score (Pa-
pineni et al., 2001), NIST score (Doddington, 2002)
and Position Independent Word Error Rate (PER) (Och,
2002). However, given the many factors that influence
translation quality, it is unlikely that we will find a single
translation metric that will be able to judge all these fac-
tors. For example, the BLEU, NIST and the PER metrics,
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though effective, do not take into account explicit syntac-
tic information when measuring translation quality.

Given that different Machine Translation (MT) eval-
uation metrics are useful for capturing different aspects
of translation quality, it becomes desirable to create MT
systems tuned with respect to each individual criterion. In
contrast, the maximum likelihood techniques that under-
lie the decision processes of most current MT systems do
not take into account these application specific goals. We
apply the Minimum Bayes-Risk (MBR) techniques devel-
oped for automatic speech recognition (Goel and Byrne,
2000) and bitext word alignment for statistical MT (Ku-
mar and Byrne, 2002), to the problem of building au-
tomatic MT systems tuned for specific metrics. This is
a framework that can be used with statistical models of
speech and language to develop decision processes opti-
mized for specific loss functions.

We will show that MBR decoding can be applied to
machine translation in two scenarios. Given an automatic
MT metric, we design a loss function based on the met-
ric and use MBR decoding to tune MT performance un-
der the metric. We also show how MBR decoding can
be used to incorporate syntactic structure into a statistical
MT system by building specialized loss functions. These
loss functions can use information from word strings,
word-to-word alignments and parse-trees of the source
sentence and its translation. In particular we describe
the design of a Bilingual Tree Loss Function that can ex-
plicitly use syntactic structure for measuring translation
quality. MBR decoding under this loss function allows
us to integrate syntactic knowledge into a statistical MT
system without building detailed models of linguistic fea-
tures, and retraining the system from scratch.

We first present a hierarchy of loss functions for trans-
lation based on different levels of lexical and syntactic
information from source and target language sentences.
This hierarchy includes the loss functions useful in both
situations where we intend to apply MBR decoding. We



then present the MBR framework for statistical machine
translation under the various translation loss functions.
We finally report the performance of MBR decoders op-
timized for each loss function.

2 Trandation Loss Functions

We now introduce translation loss functions to measure
the quality of automatically generated translations. Sup-
pose we have a sentence F' in a source language for
which we have generated an automatic translation E’
with word-to-word alignment A’ relative to . The word-
to-word alignment A’ specifies the words in the source
sentence F' that are aligned to each word in the transla-
tion E'. We wish to compare this automatic translation
with a reference translation E with word-to-word align-
ment A relative to F'.

We will now present a three-tier hierarchy of trans-
lation loss functions of the form L((E', A"), (E, A); F)
that measure (E’, A') against (E, A). These loss func-
tions will make use of different levels of information from
word strings, MT alignments and syntactic structure from
parse-trees of both the source and target strings as illus-
trated in the following table.

Loss Function Functional Form

Lexical
Target Language Parse-Tree
Bilingual Parse-Tree

L(E,E)
L(Tg,Ts)
L((Tg,A),(Te, A"); Tr)

We start with an example of two competing English
translations for a Chinese sentence (in Pinyin without
tones), with their word-to-word alignments in Figure 1.
The reference translation for the Chinese sentence with
its word-to-word alignment is shown in Figure 2. In this
section, we will show the computation of different loss
functions for this example.

2.1 Lexical LossFunctions

The first class of loss functions uses no informa-
tion about word alignments or parse-trees, so that
L((E',A"),(E,A); F) can be reduced to L(E, E"). We
consider three loss functions in this category: The BLEU
score (Papineni et al., 2001), word-error rate, and the
position-independent word-error rate (Och, 2002). An-
other example of a loss function in this class is the MT-
eval metric introduced in Melamed et al. (2003). A loss
function of this type depends only on information from
word strings.

BLEU score (Papineni et al.,, 2001) computes the
geometric mean of the precision of n-grams of vari-
ous lengths (n € {1..N}) between a hypothesis and
a reference translation, and includes a brevity penalty
(v(E, E") < 1) if the hypothesis is shorter than the refer-

ence. We use N = 4.

N '
BLEU(E,E') = ex lo ’M)* E,E"),
(E,E') = exp (E 9 = (B, E')
where p,,(E, E') is the precision of n-grams in the hy-
pothesis E'. The BLEU score is zero if any of the n-gram
precisions p, (E, E") is zero for that sentence pair. We
note that 0 < BLEU(E,E') < 1. We derive a loss
function from BLEU score as

LgLgu(E,E') = 1 - BLEU(E, E').

Word Error Rate (WER) is the ratio of the string-edit
distance between the reference and the hypothesis word
strings to the number of words in the reference. String-
edit distance is measured as the minimum number of edit
operations needed to transform a word string to the other
word string.

Position-independent Word Error Rate (PER) mea-
sures the minimum number of edit operations needed
to transform a word string to any permutation of the
other word string. The PER score (Och, 2002) is then
computed as a ratio of this distance to the number of
words in the reference word string.

2.2 Target Language Parse-Tree Loss Functions

The second class of translation loss functions uses infor-
mation only from the parse-trees of the two translations,
so that L((E, A),(E', A"); F) = L(Tg,Tg). This loss
function has no access to any information from the source
sentence or the word alignments.

Examples of such loss functions are tree-edit distances
between parse-trees, string-edit distances between event
representation of parse-trees (Tang et al., 2002), and tree-
kernels (Collins and Duffy, 2002). The computation of
tree-edit distance involves an unconstrained alignment of
the two English parse-trees. We can simplify this prob-
lem once we have a third parse tree (for the Chinese sen-
tence) with node-to-node alignment relative to the two
English trees. We will introduce such a loss function in
the next section. We did not perform experiments involv-
ing this class of loss functions, but mention them for com-
pleteness in the hierarchy of loss functions.

2.3 Bilingual Parse-Tree L oss Functions

The third class of loss functions uses information from
word strings, alignments and parse-trees in both lan-
guages, and can be described by

L((EaA)7 (ElaAl);F) = L((TE7A)7 (TE'7AI);TF)'

We will now describe one such loss function using the
example in Figures 1 and 2. Figure 3 shows a tree-
to-tree mapping between the source (Chinese) parse-tree
and parse-trees of its reference translation and two com-
peting hypothesis (English) translations.



= ar guangdong ’s high—tech products 3.76 billion US dollars

A

F jin=nian gian liangyue guangdong gao xinjishu chanpin chukou sangidianliuyi meiyuan

Al

E2 thé first two months of this yéar guangdong exported high—tech products 3.76 billion US dollars

Figure 1: Two competing English translations for a Chinese sentence with their word-to-word alignments.
E export of high—tech products in guangdong in first two months this year reached 3.76 billion US dollars

F jin—nian gian liangyue guangdong gao xinjishu chanpin chukou sangidianliuyi meiyuan

Figure 2: The reference translation for the Chinese sentence from Figure 1 with its word-to-word alignments. Words in
the Chinese (English) sentence shown as unaligned are aligned to the NULL word in the English (Chinese) sentence.

We first assume that a node n in the source tree T can
be mapped to a node m in T' (and a node m' in T") using
word alignment A (and A’ respectively). We denote the
subtree of T rooted at node m by ¢,,, and the subtree of
T' rooted at node m' by ¢! ,. We will now describe a
simple procedure that makes use of the word alignment
A to construct node-to-node alignment between nodes in
the source tree T and the target tree 7.

2.3.1 Alignment of Parse-Trees

For each node n in the source tree T'r we consider the
subtree t,, rooted at n. We first read off the source word
sequence corresponding to the leaves of ¢,,. We next con-
sider the subset of words in the target sentence that are
aligned to any word in this source word sequence, and
select the leftmost and rightmost words from this sub-
set. We locate the leaf nodes corresponding to these two
words in the target parse tree 7', and obtain their closest
common ancestor node m € T'. This procedure gives us
a mapping fromanode n € T to anode m € T and this
mapping associates one subtree ¢, € TF to one subtree
tm €T.

2.3.2 Loss Computation between Aligned
Parse-Trees

Given the subtree alignment between T and T, and
Tr and T', we first identify the subset of nodes in Tr for
which we can identify a corresponding node in both T
and 7'.

Nrp={ne€Tr:m#enNm' # e}

The Bilingual Parse-Tree (BiTree) Loss Function can
then be computed as

BiTreeLoss((T, A), (Ter, A'); Tr) = . d(tm, ty),
nENgp
1
where d(¢,t') is a distance measure between sub-trees
t and t'. Specific Bi-tree loss functions are determined
through particular choices of d. In our experiments, we
used a 0/1 loss function between sub-trees ¢ and ¢'.

N1 tA
d(t,t) = { 0 otherwise. 2

We note that other tree-to-tree distance measures can
also be used to compute d, e.g. the distance function
could compare if the subtrees ¢ and ¢ have the same
headword/non-terminal tag.

The Bitree loss function measures the distance be-
tween two trees in terms of distances between their cor-
responding subtrees. In this way, we replace the string-
to-string (Levenshtein) alignments (for WER) or n-gram
matches (for BLEU/PER) with subtree-to-subtree align-
ments.

The Bitree Error Rate (in %) is computed as a ratio of
the Bi-tree Loss function to the number of nodes in the
set Np.

The complete node-to-node alignment between the
parse-tree of the source (Chinese) sentence and the parse
trees of its reference translation and the two hypothesis
translations (English) is given in Table 1. Each row in
this table shows the alignment between a node in the Chi-
nese parse-tree and nodes in the reference and the two hy-
pothesis parse-trees. The computation of the Bitree Loss
function and the Bitree Error Rate is presented in the last
two rows of the table.



T : Reference Trandation (English) - .

NP2 PP1 PP2 VBD1 NP9
NN1 IN1 NP3 IN3 NP6  reached CD2 CD3 NNP2 NNS3
export of NP4 PP2 in NP7 NP8 376 hillion US dollars *
J1 NNS1 IN2 NP5 JJ2. CD1 NNS2 DTl NN2
high-tech  products in  NNP1 first two months this year N
guangdong .z
Tr : Source Sentence(Chinese) VP1
LCP1 VP2
NP1 LC1 VV1 NP2 QP1
NT1 gian liangyue NP3 ADJPL ... NP3.\ CD1 CLP1
e ‘ . ~ <
N
.‘. \
jin-nian .- NR2 JJ1 NN1 NN2 NN3y sangidianliuyi M1
' \
|
guangdong gao  xinjishu  chanpin  chukoul meiyuan
1
!
S N NPlI
PP1 NP4 NP5

NP1 VP1 NP2

NP2 PP1 VEDL NP4 NP5 DT1 1 cDi NNst NI %N“\ QPL NNP2  NNS3
/\ ‘ /\ /\ the fist two months of DT2 NNL

D1 1 CD1 NNSI N1 NP3 exported JJ2 NNS2 CD1 CD2 NNP2 NNS3 NP4 2 NNS2  CD2  CD3 US  dollars

N | |

the first two months of DT2 NN1 NNP1  high-tech products 3.76 bhillion ~ US dollars this year Nl\‘lPl POSL  high-tech  products 376 billion

this year  Guangdong

T : Hypothesis Trandation 1 (English) T : Hypothesis Trandation 2 (English)

‘ Guangdong s

Figure 3: An example showing a parse-tree for a Chinese sentence and parse-trees for its reference translation and
two competing hypothesis translations. We show a sample alignment for one of the nodes in the Chinese tree with its
corresponding nodes in the three English trees. The complete node-to-node alignment between the parse-trees of the
Chinese sentence and the three English sentences is given in Table 1.



Node n € Tr Nodem € T | Node mi € Ti | L(tm,tm;) || Node mz € To | L(tm,tm,)
VP1 S S 1 NP1 1
LCP NP6 NP1 1 NP1 1
NP1 NP8 NP3 1 NP3 1
NT1 NP8 NP3 1 NP3 1

jin-nian NP8 NP3 1 NP3 1
LC1 first NP1 1 NP2 1
gian first NP1 1 NP2 1
VP2 S S 1 NP1 1
\AY NP7 NP2 1 NP2 1

liangyue NP7 NP2 1 NP2 1
NP2 S S 1 NP1 1
NP3 Guangdong Guangdong 0 NP4 1
NR2 Guangdong Guangdong 0 NP4 1

guangdong Guangdong Guangdong 0 NP4 1

ADJP1 reached high-tech 1 high-tech 1
JJ1 reached high-tech 1 high-tech 1
gao reached high-tech 1 high-tech 1
NP3 NP1 VP1 1 NP3 1
NN2 products products 0 products 0

chanpin products products 0 products 0
NN3 export exported 1 products 1

chukou export exported 1 products 1
QP1 NP9 NP5 0 NP1 1

CLP1 NP9 NP5 0 NP1 1

M1 NP9 NP5 0 NP1 1

meiyuan NP9 NP5 0 NP1 1

BiTree Loss Loss(E, E1) 17 Loss(E, E») 24
BiTree Error Rate (%) 17/26 = 65.4 24/26 =92.3

Table 1: Bi-Tree Loss Computation for the parse-trees shown in Figure 3. Each row shows a mapping between a node
in the parse-tree of the Chinese sentence and the nodes in parse-trees of its reference translation, hypothesis translation

1 and hypothesis translation 2.

2.4 Comparison of Loss Functions

In Table 2 we compare various translation loss functions
for the example from Figure 1. The two hypothesis trans-
lations are very similar at the word level and therefore the
BLEU score, PER and the WER are identical. However
we observe that the sentences differ substantially in their
syntactic structure (as seen from Parse-Trees in Figure 3),
and to a lesser extent in their word-to-word alignments
(Figure 1) to the source sentence. The first hypothesis
translation is parsed as a sentence S — NP V P while
the second translation is parsed as a noun phrase. The Bi-
tree loss function which depends both on the parse-trees
and the word-to-word alignments, is therefore very differ-
ent for the two translations (Table 2). While string based
metrics such as BLEU, WER and PER are insensitive to
the syntactic structure of the translations, BiTree Loss is
able to measure this aspect of translation quality, and as-
signs different scores to the two translations.

We provide this example to show how a loss function
which makes use of syntactic structure from source and
target parse trees, can capture properties of translations
that string based loss functions are unable to measure.

Loss Functions L(E,E\) | L(E,E) |
BLEU (%) 26.4 26.4
WER (%) 70.6 70.6

PER (%) 235 23.5
BiTree Error Rate (%) 65.4 92.3

Table 2: Comparison of the different loss functions for
hypothesis and reference translations from Figures 1, 2.

3 Minimum Bayes-Risk Decoding

Statistical Machine Translation (Brown et al., 1990) can
be formulated as a mapping of a word sequence F' in a
source language to word sequence E’ in the target lan-
guage that has a word-to-word alignment A’ relative to F.
Given the source sentence F, the MT decoder 6(F) pro-
duces a target word string E’ with word-to-word align-
ment A’. Relative to a reference translation E with word
alignment A, the decoder performance is measured as
L((E, A),§(F)). Our goal is to find the decoder that has
the best performance over all translations. This is mea-
sured through Bayes-Risk :

R(6(F)) = Ep(p,a,r)[L((E, A),6(F))].



The expectation is taken under the true distribution
P(E, A, F) that describes translations of human quality.

Given a loss function and a distribution, it is well
known that the decision rule that minimizes the Bayes-
Risk is given by (Bickel and Doksum, 1977; Goel and
Byrne, 2000):

§(F) = argmin E L((E,A),(E'" A"); F)P(E, A|F).
ELAY B
3)

We shall refer to the decoder given by this equation
as the Minimum Bayes-Risk (MBR) decoder. The MBR
decoder can be thought of as selecting a consensustrans-
lation: For each sentence F', Equation 3 selects the trans-
lation that is closest on an average to all the likely trans-
lations and alignments. The closeness is measured under
the loss function of interest.

This optimal decoder has the difficulties of search
(minimization) and computing the expectation under the
true distribution. In practice, we will consider the space
of translations to be an N-best list of translation alterna-
tives generated under a baseline translation model. Of
course, we do not have access to the true distribution
over translations. We therefore use statistical transla-
tion models (Och, 2002) to approximate the distribution
P(E,A|F).

Decoder Implementation: The MBR decoder (Equa-
tion 3) on the N-best List is implemented as

N
i= argmin Y L((Ej, A)),(Ei, Ai))P(E;, Aj|F)
ie{1,2,...,N} =1
and d(F) = (E;, A;). This is a rescoring procedure that
searches for consensus under a given loss function. The
posterior probability of each hypothesis in the N-best list
is derived from the joint probability assigned by the base-
line translation model.

P(Eja Aj: F)
SN, P(E;, A, F)

The conventional Maximum A Posteriori (MAP) de-
coder can be derived as a special case of the MBR de-
coder by considering a loss function that assigns a equal

cost (say 1) to all misclassifications. Under the 0/1 loss
function,

P((E;, Aj)|F) = 4

na. @A) ={ ) e AT

1 otherwise,
(®)
the decoder of Equation 3 reduces to the MAP decoder
SMmAp(F) = argmax P(E', A'|F). (6)
(B",A7)

This illustrates why we are interested in MBR decoders
based on other loss functions: the MAP decoder is opti-
mal with respect to a loss function that is very harsh. It

does not distinguish between different types of translation
errors and good translations receive the same penalty as
poor translations.

4 Performance of MBR Decoders

We performed our experiments on the Large-Data Track
of the NIST Chinese-to-English MT task (NIST, 2003).
The goal of this task is the translation of news stories
from Chinese to English. The test set has a total of 1791
sentences, consisting of 993 sentences from the NIST
2001 MT-eval set and 878 sentences from the NIST 2002
MT-eval set. Each Chinese sentence in this set has four
reference translations.

4.1 Evaluation Metrics

The performance of the baseline and the MBR decoders
under the different loss functions was measured with re-
spect to the four reference translations provided for the
test set. Four evaluation metrics were used. These
were multi-reference Word Error Rate (MWER) (Och,
2002), multi-reference Position-independent word Error
Rate (mPER) (Och, 2002) , BLEU and multi-reference
BiTree Error Rate.

Among these evaluation metrics, the BLEU score
directly takes into account multiple reference transla-
tions (Papineni et al., 2001). In case of the other metrics,
we consider multiple references in the following way. For
each sentence, we compute the error rate of the hypothe-
sis translation with respect to the most similar reference
translation under the corresponding loss function.

4.2 Decoder Performance

In our experiments, a baseline translation model (JHU,
2003), trained on a Chinese-English parallel cor-
pus (NIST, 2003) (170M English words and 157M Chi-
nese words), was used to generate 1000-best translation
hypotheses for each Chinese sentence in the test set. The
1000-best lists were then rescored using the different
translation loss functions described in Section 2.

The English sentences in the N-best lists were parsed
using the Collins parser (Collins, 1999), and the Chinese
sentences were parsed using a Chinese parser provided to
us by D. Bikel (Bikel and Chiang, 2000). The English
parser was trained on the Penn Treebank and the Chinese
parser on the Penn Chinese treebank.

Under each loss function, the MBR decoding was per-
formed using Equation 3. We say we have a matched
condition when the same loss function is used in both the
error rate and the decoder design. The performance of
the MBR decoders on the NIST 2001+2002 test set is re-
ported in Table 3. For all performance metrics, we show
the 70% confidence interval with respect to the MAP
baseline computed using bootstrap resampling (Press et
al., 2002; Och, 2003). We note that this significance level



does meet the customary criteria for minimum signifi-
cance intervals of 68.3% (Press et al., 2002).

We observe in most cases that the MBR decoder under
a loss function performs the best under the correspond-
ing error metric i.e. matched conditions perform the best.
The gains from MBR decoding under matched conditions
are statistically significant in most cases. We note that the
MAP decoder is not optimal in any of the cases. In partic-
ular, the translation performance under the BLEU metric
can be improved by using MBR relative to MAP decod-
ing. This shows the value of finding decoding procedure
matched to the performance criterion of interest.

We also notice some affinity among the loss functions.
The MBR decoding under the Bitree Loss function per-
forms better under the WER relative to the MAP decoder,
but perform poorly under the BLEU metric. The MBR
decoder under WER and PER perform better than the
MAP decoder under all error metrics. The MBR decoder
under BLEU loss function obtains a similar (or worse)
performance relative to MAP decoder on all metrics other
than BLEU.

5 Discussion

We have described the formulation of Minimum Bayes-
Risk decoders for machine translation. This is a general
framework that allows us to build special purpose de-
coders from general purpose models. The procedure aims
at direct minimization of the expected risk of translation
errors under a given loss function. In this paper we have
focused on two situations where this framework could be
applied.

Given an MT evaluation metric of interest such as
BLEU, PER or WER, we can use this metric as a loss
function within the MBR framework to design decoders
optimized for the evaluation criterion. In particular, the
MBR decoding under the BLEU loss function can yield
further improvements on top of MAP decoding.

Suppose we are interested in improving syntactic struc-
ture of automatic translations and would like to use an
existing statistical MT system that is trained without any
linguistic features. We have shown in such a situation
how MBR decoding can be applied to the MT system.
This can be done by the design of translation loss func-
tions from varied linguistic analyzes. We have shown the
construction of a Bitree loss function to compare parse-
trees of any two translations using alignments with re-
spect to a parse-tree for the source sentence. The loss
function therefore avoids the problem of unconstrained
tree-to-tree alignment. Using an example, we have shown
that this loss function can measure qualities of transla-
tion that string (and ngram) based metrics cannot cap-
ture. The MBR decoder under this loss function gives
improvements under an evaluation metric based on the
loss function.

We present results under the Bitree loss function as
an example of incorporating linguistic information into
a loss function; we have not yet measured its correla-
tion with human assessments of translation quality. This
loss function allows us to integrate syntactic structure into
the statistical MT framework without building detailed
models of syntactic features and retraining models from
scratch. However, we emphasize that the MBR tech-
niques do not preclude the construction of complex mod-
els of syntactic structure. Translation models that have
been trained with linguistic features could still benefit by
the application of MBR decoding procedures.

That machine translation evaluation continues to be
an active area of research is evident from recent work-
shops (AMTA, 2003). We expect new automatic MT
evaluation metrics to emerge frequently in the future.
Given any translation metric, the MBR decoding frame-
work will allow us to optimize existing MT systems for
the new criterion. This is intended to compensate for any
mismatch between decoding strategy of MT systems and
their evaluation criteria. While we have focused on de-
veloping MBR procedures for loss functions that mea-
sure various aspects of translation quality, this frame-
work can also be used with loss functions which measure
application-specific error criteria.

We now describe related training and search proce-
dures for NLP that explicitly take into consideration task-
specific performance metrics. Och (2003) developed a
training procedure that incorporates various MT evalua-
tion criteria in the training procedure of log-linear MT
models. Foster et al. (2002) developed a text-prediction
system for translators that maximizes expected benefit to
the translator under a statistical user model. In parsing,
Goodman (1996) developed parsing algorithms that are
appropriate for specific parsing metrics. There has also
been recent work that combines 1-best hypotheses from
multiple translation systems (Bangalore et al., 2002); this
approach uses string-edit distance to align the hypotheses
and rescores the resulting lattice with a language model.

In future work we plan to extend the search space of
MBR decoders to translation lattices produced by the
baseline system. Translation lattices (Ueffing et al., 2002;
Kumar and Byrne, 2003) are a compact representation of
a large set of most likely translations generated by an MT
system. While an N-best list contains only a limited re-
ordering of hypotheses, a translation lattice will contain
hypotheses with a vastly greater number of re-orderings.
We are developing efficient lattice search procedures for
MBR decoders. By extending the search space of the de-
coder to a much larger space than the N-best list, we ex-
pect further performance improvements.

MBR is a promising modeling framework for statisti-
cal machine translation. It is a simple model rescoring
framework that improves well-trained statistical models



Performance Metrics
Decoder BLEU (%) | mMWER(%) | mPER (%) | mBiTree Error Rate(%)
70% Confidence Intervals +/-0.3 +/-0.9 +/-0.6 +/-1.0
MAP (baseline) 31.2 64.9 41.3 69.0
MBR
BLEU 315 65.1 41.1 68.9
WER 31.3 64.3 40.8 68.5
PER 31.3 64.6 40.4 68.6
BiTree Loss 30.7 64.1 411 68.0

Table 3: Translation performance of the MBR decoder under various loss functions on the NIST 2001+2002 Test set.
For each metric, the performance under a matched condition is shown in bold. Note that better results correspond to

higher BLEU scores and to lower error rates.

by tuning them for particular criteria. These criteria could
come from evaluation metrics or from other desiderata
(such as syntactic well-formedness) that we wish to see
in automatic translations.
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