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Abstract to part-of-speech tags and syntactic chunks, and then to

features based on Treebank-based syntactic parses of the

We describe a methodology for rapid exper- source and target sentences.

imentation in statistical machine translation
which we use to add a large number of features 2 Log-linear Models for Statistical MT

to a baseline system exploiting features from a

wide range of levels of syntactic representation. ~ The goal is the translation of a text given in some source
Feature values were combined in a log-linear  language into a target language. We are given a source

model to select the highest scoring candidate  (‘Chinese’) sentencd = f{/ = fi,...,f;,.... f/,
translation from am-best list. Feature weights which is to be translated into a target (‘English’) sentence
were optimized directly against the BLEU eval- e=c¢el =e,...,e,...,e; Among all possible target

uation metric on held-out data. We present re-  sentences, we will choose the sentence with the highest
sults for a small selection of features at each  probability:

level of syntactic representation. N e
€1 = argr?ax {Pre]fi)} (1)
e
1 Introduction '
Despite the enormous progress in machine translat As an alternative to the often usgd source-channel ap-
(MT) due to the use of statistical techniques in rece%}qaCh (Brovvp etal., ,19%3)' we directly model the pos-
years, state-of-the-art statistical systems often produ ror probablhtyPr(el.\f i? (Och and Ney, 20.02) us-
translations with obvious errors. Grammatical errors mci:ﬁg a log-linear combination of feature functions. _In
this framework, we have a set @ff feature functions
clude lack of a main verb, wrong word order, and wron

. : (el f{),m = 1,..., M. For each feature function,
choice of function words. Frequent problems of a Iesﬁqere exists a model parameﬁen m=1,.... M. The
grammatical nature include missing content words angwect translation probability is given by:

incorrect punctuation.

In this paper, we attempt to address these problems by exp[ZM hon (el )]
exploring a variety of new features for scoring candidate Pr(ef|f{) = - = (2)
translations. A high-quality statistical translation system Ze/{ eXP> e Amhim (€1, f1)]

is our baseline, and we add new features to the exist-

ing set, which are then combined in a log-linear modelVe obtain the following decision rule:

To allow an easy integration of new features, the base-

line system provides an-best list of candidate transla- AT

tions \>//vhich ig then reranked using the new features. This ‘= argmax { Z Ambim (€1, f{ } (3)

framework allows us to incorporate different types of fea-

tures, including features based on syntactic analyses ©he standard criterion for training such a log-linear

the source and target sentences, which we hope will achodel is to maximize the probability of the parallel train-

dress the grammaticality of the translations, as well asg corpus consisting of sentence pair§(f;, e;) : s =

lower-level features. As we work ambest lists, we can 1,...,S}. However, this does not guarantee optimal per-

easily use global sentence-level features. formance on the metric of translation quality by which
We begin by describing our baseline system and theur system will ultimately be evaluated. For this reason,

n-best rescoring framework within which we conductedve optimize the parameters directly against the BLEU

our experiments. We then present a selection of new feazetric on held-out data. This is a more difficult optimiza-

tures, progressing from word-level features to those baséidn problem, as the search space is no longer convex.



achievements H B Language Model Features As a language model
cconomic EJ feature, we use a standard backing off word-based tri-

gram language model (Ney, Generet, and Wessel, 1995).

marked i estmenorone) |i The baseline system actually includes four different lan-
cities ﬂ guage model features trained on four different corpora:
border | L7 (riht—cont inuous) the news part of the bilingual training data, a large Xin-
hua news corpus, a large AFP news corpus, and a set of
open [ — Chinese news texts downloaded from the web.
14 HB Word/Phrase Penalty  This word penalty feature
s || perione-consinvous) counts the length in words of the target sentence. Without
avirs | IR this feature, the sentences produced tend to be too short.

- . - The phrase penalty feature counts the number_ of phrases
B otm At oaEFE Ah @F 2@ AR BF  50qyced, and can allow the model to prefer either short
or long phrases.
Figure 1: Example segmentation of Chinese sentence andPhrases from Conventional Lexicon ~ The baseline
its English translation into alignment templates. alignment template system makes use of the Chinese-
English lexicon provided by LDC. Each lexicon entry is
a potential phrase translation pair in the alignment tem-
However, certain properties of the BLEU metric can beplate system. To score the use of these lexicon entries
exploited to speed up search, as described in detail fwhich have no normal translation probability), this fea-
Och (2003). We use this method of optimizing featurdure function counts the number of times such a lexicon

weights throughout this paper. entry is used.
) . Additional Features A major advantage of the log-
2.1 Baseline MT System: Alignment Templates linear modeling approach is that it is easy to add new

Our baseline MT system is the alignment template systefgatures. In this paper, we explore a variety of features

described in detail by Och, Tillmann, and Ney (1999)0ased on successively deeper syntactic representations of
and Och and Ney (2004). In the following, we give athe source and target sentences, and their alignment. For
short description of this baseline model. each of the new features discussed below, we added the

The probability model of the alignment template sysfeature value to the set of baseline features, re-estimated
tem for translating a sentence can be thought of in distinégature weights on development data, and obtained re-
stages. First, the source sentence wgitare groupedto sults on test data.
phrasesgf(. For each phrasgan alignment templateis
chosen and the sequence of chosen alignment templaf®s Experimental Framework
is reordered (according tof<). Then, every phras¢

produces its translation(using the corresponding align- We worked with the Chinese-English data from the recent

ment template). Finally, the sequence of phrase% evaluations, as both large amounts of sentence-aligned
constitutes the Sequence’ of words training corpora and multiple gold standard reference

Our baseline system incorporated the following featurd@nslations are available. This is a standard data set,
functions: making it possible to compare results with other systems.

Alignment Template Selection Each alignment _In _additio_n, working on Chinese allows us to use the ex-.
template is chosen with probabilig(z|f), estimated by isting Chinese syntactlc treebank and parsers based onit.
relative frequency. The corresponding feature function in FOr the baseline MT system, we distinguish the fol-
our log-linear model is the log probability of the product'o"‘_’"’,‘g three different sentence- or chunk-aligned parallel
of p(z|f) for all used alignhment templates used. training corpora:

Word Selection  This feature is based on the lexical
translation probabilitieg(e|f), estimated using relative
frequencies according to the highest-probability word-
level alignment for each training sentence. A translation
probability conditioned on the source and target position
within the alignment template(e| f, 7, j) is interpolated
with the position-independent probabilitye| f).

Phrase Alignment  This feature favors monotonic
alignment at the phrase level. It measures the ‘amount
of non-monotonicity’ by summing over the distance (in e development corpus (dev) This is the training cor-
the source language) of alignment templates which are pus used in discriminative training of the model-
consecutive in the target language. parameters of the log-linear translation model. In

e training corpus (train) : This is the basic training
corpus used to train the alignment template transla-
tion model (word lexicon and phrase lexicon). This
corpus consists of about 170M English words. Large
parts of this corpus are aligned on a sub-sentence
level to avoid the existence of very long sentences
which would be filtered out in the training process
to allow a manageable word alignment training.



most experiments described in this report this cor-

pus consists of 993 sentences (about 25K words) i‘ﬁable 1. Oracle BLEU scores for different sizes of the
both languages n-best list. The avBLEUr3 scores are computed with

respect to three reference translations averaged over the

e test corpus (test) This is the test corpus used 0oy gifferent choices of holding out one reference.
assess the quality of the newly developed feature

functions. It consists of 878 sentences (about 25K avBLEUr3[%] | BLEUr4
words). n m | opt opt
human 35.8 -
For development and test data, we have four English (ref- 1 283 283 31.6
erence) translations for each Chinese sentence. 4 20.1 30.8 34.5
3.1 Reranking,n-best lists, and oracles (132 ggg ggé g;g
For each sentence in the development, test, and the blind 256 31.3 37.8 42.8
test corpus a set of 16,384 different alternative transla- 1024 | 31.7 40.0 45.3
tions has been produced using the baseline system. For 4096 | 32.0 41.8 47.3

extracting thew-best candidate translations, an A* search
is used. These-best candidate translations are the basis

for discriminative training of the model parameters anCﬁ'he first method provides the theoretical upper bound of

for re-ranking. . ; :
. . . what BLEU score can be obtained by rescoring a given
We usedn-best reranking rather than mplementmgteest list. Using this method with a 1000-best list, we ob-

new search algorithms. The development of efﬂmer‘iain oracle translations that outperform the BLEU score

search algorithms for long-range dependencies is Ve@?the human translations. The oracle translations achieve

complicated and a research topic in itself. The rerankl-lso/0 against the human BLEU score on the test data

ing strategy enabled us to quickly try out a lot of neW(.'Fable 1), while the first best translations obtain 79.2%

dependencies, which would not have been be possiblelif -

thepsearch algorithm had to be changed for ea(?h new dagglnst the human BLEU Score. The secon(_:i method uses

pendency % different references for selection and scoring. Here, us-
On the other hand, the usewfest list rescoring lim- ing an 1000-best list, we obtain oracle translations with a

: . . . : relative human BLEU score of 88.5%.

its the possibility of improvements to what is available .

: . L Based on the results of the oracle experiment, and
in the n-best list. Hence, it is important to analyze the

quality of then-best lists by determining how much of anm order to make rescoring computationally feasible for

improvement would be possible given a perfect rerankinfealtures requiring significant computation for each hy-
Pro P 9 bS ; Sothesis, we used the top 1000 translation candidates for
algorithm. We computed theracle translations that is,

. . . our experiments. The baseline system’s BLEU score is
the set of translations from ourbest list that yields the 31.6% on the test set (equivalent to the 1-best oracle in
best BLEU scoré. g ’ . _

We use the following two methods to compute thel’al:_)le 1). Thisis the_) benchmark against Whl_ch the contri-
BLEU score of an oracle translation: utions Qf the additional feqtures described in the remain-

' der of this paper are to be judged.

1. optimal oracledpt ): We select the oracle sentences .

which give the highest BLEU score compatedhe 3.2 Preprocessing

set of 4 reference translations Then, we compute As a precursor to developing the various syntactic fea-

BLEU score of oracle sentences usihg same set tures described in this report, the syntactic represen-

of reference translations tations on which they are based needed to be com-
puted. This involved part-of-speech tagging, chunking,

d parsing both the Chinese and English side of our
raining, development, and test sets.

Applying the part-of-speech tagger to the often un-
grammatical MT output from our-best lists sometimes

three references to score that have not been cho- led to unexpect.ed results. Often the tagger tries to “fix
sen to select the oracleThen, these 4 3-referenceUp” ungrammatical sentences, for example by looking for

BLEU scores are averaged. a verb when none is present:

!Note that due to the corpus-level holistic nature of the ChinaNNP 14.CD openJJ bordeNN

BLEU score it is not trivial to compute the optimal setof oracle  CitiesSNNSachievementsVBZ remarkablelJ

translations. We use a greedy search algorithm for the orac'lg ith rachi th b
translations that might find only a local optimum. Empirically, 'ce, @lthougnachievementsias never been seen as a

we do not observe a dependence on the starting point, hence ¥@&b in the tagger’s training data, the prior for a verb
believe that this does not pose a significant problem. in this position is high enough to cause a present tense

2. round-robin oracler( ): We select four differ-
ent sets of oracle sentences which give the highe
BLEU scorecompared to each of the 4 references
translations. Then, we compute for each set of or-
acle sentences a BLEU scomsing always those



verb tag to be produced. In addition to the inaccurawe used GIZA++ to train the model. The training data is
cies of the MT system, the difference in genre from the subset (30 million words on the English side) of the en-
tagger’s training text can cause problems. For examplére corpus that was used to train the baseline MT system.
while our MT data include news article headlines with nd=or a missing translation word pair or unknown words,
verb, headlines are not included in the Wall Street Journatheret(f;le;) = 0 according to the model, a constant
text on which the tagger is trained. Similarly, the tagget(f;le;) = 10~ was used as a smoothing value.

is trained on full sentences with normalized punctuation, The average %BLEU score (average of the best four
leading it to expect punctuation at the end of every seramong different 20 search initial points) is 32.5. We also
tence, and produce a punctuation tag even when the etiied p(e|f;M1) as feature function, but did not obtain

dence does not support it: improvements which might be due to an overlap with the
word selection feature in the baseline system.

ChinaNNP 's.POS economidJ The Model 1 score is one of the best performing fea-

developmenhN and CC openingVBG tures. It seems to 'fix’ the tendency of our baseline sys-

up-RP 14CD borderNN cities NNS tem to delete content words and it improves word selec-

remarkableJJachievements. tion coherence by the triggering effect. It is also possible

that the triggering effect might work on selecting a proper

The same issues affect the parser. For example tgh_noun combination, or a verb-preposition combina-
parser can create verb phrases where none exist, as in

following example in which the tagger correctly did not
identify a verb in the sentence: 4.2 Lexical Re-ordering of Alignment Templates

s As shown in Figure 1 the alignment templates (ATS)

NP/\ used in the baseline system can appear in various con-

m A figurations which we will callleft/right-monotoneand
N o b s N P left/right-continuousWe built 2 out of these 4 models to
/\ distinguish two types of lexicalized re-ordering of these
J NRS ATS

The left-monotone modelcomputes the total proba-
bility of all ATs being left monotone: where the lower

These effects have serious implications for designingft corner of the AT touches the upper right corner of the
syntactic feature functions. Features such “is there a vefrevious AT. Note that the first word in the current AT
phrase” may not do what you expect. One solution wouléhay or may not immediately follow the last word in the
be features that involve the probability of a parse subtrggrevious AT. The total probability is the product over all
or tag sequence, allowing us to ask “how good a vergllignment templates either P(AT; is left-monotongor
phrase is it?” Another solution is more detailed feature$ — p(AT, is left-monotong
examining more of the structure, such as “is there a verb Theright-continuous model computes the total prob-

China 14 open border cities construction

remarLble achievements

phrasewith a vert®” ability of all ATs being right continuous: where the
_ lower left corner of the AT touches the upper right cor-
4 Word-Level Feature Functions ner of the previous ATand the first word in the cur-

rent AT immediately follows the last word in the pre-

These features, directly based on the source and tarqgh, ;s AT, The total probability is the product over all
strings of words, are intended to address such problemsg‘ﬁgnmem templates either P(AT, is right-continuou$
translation choice, missing content words, and incorre¢f,; _ P(AT; is right-continuous.

punctuation. In both models, the probabilite® have been esti-
41 Model 1 Score mated from the full training datdr@in ).

We used IBM Model 1 (Brown et al., 1993) as one of thes  Shallow Syntactic Feature Functions

feature functions. Since Model 1 is a bag-of-word trans-

lation model and it gives the sum of all possible alignmeny Shallow syntax, we mean the output of the part-of-
probabilities, a lexical co-occurrence effectiiggering speech tagger and chunkers. We hope that such features

effect is expected. This captures a sort of topic or semarfan combine the strengths of tag- and chunk-based trans-
tic coherence in translations. lation systems (Schafer and Yarowsky, 2003) with our

As defined by Brown et al. (1993), Model 1 gives aPaseline system.

probability of any given translation pair, which is 5.1 Projected POS Language Model
m 1 This feature uses Chinese POS tag sequences as surro-
€ . .
p(fle;M1) = ——— t(f;]ei). gates for Chinese words to model movement. Chinese
(i+1)m E ; ! words are too sparse to model movement, but an attempt



to model movement using Chinese POS may be mogobability by the word unigram probability and using
successful. We hope that this feature will compensate fdhis 'normalized parser probability’ as a feature function,
a weak model of word movement in the baseline systenhut also this did not yield improvements.

Chinese POS sequences are projected to English us-
ing the word alignment. Relative positions are indicate@.2 Tree-to-String Alignment

for each Chinese tag. The feature function was also tried ) .
without the relative positions: A tree-to-string model is one of several syntax-

CDF0M 1 NN+3 NN-1 NN+ NN I3 based translation models used. ~ The model is a
14 (measure)  open  border cities conditional probability p(f|7T'(e)). Here, we used

- - a model defined by Yamada and Knight (2001) and

The table shows an example tagging of an English hyyamada and Knight (2002).

pothesis showing how it was generated from the'(.:hinese Internally, the model performs three types of opera-
sentence._The feature function is the Iog probability OUtﬁons on each node of a parse tree. Firstedrdersthe
put_by_atrlgram Ianguage model over this sequence. Th&ild nodes, such as changiMP — VB NP PP into
is similar to the HMM Alignment model (Vogel, Ney, and P — NP PP VB. Second, ifnsertsan optional word at

Tillmann, 1996) but in this case movement is calculate ach node. Third, iranslatesthe leaf English words into

on_I:LEe l;aSi.S of %ag%%f ?peech.f : ¢ hChinese words. These operations are stochastic and their
e Projecte . eature unct[on was one ol MNBrobabilities are assumed to depend only on the node, and
strongest performing shallow syntactic feature function re independent of other operations on the node, or other
\k/)wthha /"ﬁLEfU score c(); 31};?5 This featurelfunctlgnbcar\gjgdes' The probability of each operation is automatically
€ thought of as a trade-off between purely word-hasgg,ina g by a training algorithm, using about 780,000 En-

models, and full generative models based upon Shallo&fish parse tree-Chinese sentence pairs. The probability
syntax. of these operationS(efﬁj) is assumed to depend on the

6 Tree-Based Feature Functions edge of the tree being modifiee{f,j, but independent of
everything else, giving the following equation,

Syntax-based MT has shown promise in the
work of, among others, Wu and Wong (1998) and £IT _ 0k ek 4
Alshawi, Bangalore, and Douglas (2000). We hope that p(EIT(e)) Z H p(bleilers) @
adding features based on Treebank-based syntactic

analyses of the source and target sentences will address ] ] )
grammatical errors in the output of the baseline systemhereo varies over the possible alignments between the
f ande and@(eﬁj) is the particular operations (i) for

6.1 Parse Tree Probability the edgegfj_

The most straightforward way to integrate a statistical The model is further extended to incorporate phrasal
parser in the system would be the use of the (log of thdjanslations performed at each node of the input parse
parser probability as a feature function. Unfortunatelyiree (Yamada and Knight, 2002). An English phrase cov-
this feature function did not help to obtain better resultered by a node can be directly translated into a Chinese
(it actually seems to significantly hurt performance).  phrase without regular reorderings, insertions, and leaf-
To analyze the reason for this, we performed an exword translations.

periment to test if the used statistical parser assigns aThe model was trained using about 780,000 English
higher probability to presumably grammatical sentenceparse tree-Chinese sentence pairs. There are about 3 mil-
The following table shows the average log probability astion words on the English side, and they were parsed by
signed by the Collins parser to the 1-best (produced), oCollins’ parser.

S} Q(eﬁj )

acle and the reference translations: Since the model is computationally expensive, we
Hypothesis | 1-best| Oracle | Reference added some limitations on the model operations. As the
log(parseProb) -147.2| -148.5| -154.9 base MT system does not produce a translation with a

We observe that the average parser log-probability dfig word jump, we restrict the model not to reorder child
the 1-best translation is higher than the average par§@des when the node covers more than seven words. For
log probability of the oracle or the reference translations2 node that has more than four children, the reordering
Hence, it turns out that the parser is actually agsignin@fObabi"ty is set to be uniform. We also introduced prun-
higher probabilities to the ungrammatical MT output tharing, which discards partial (subtree-substring) alignments
to the presumably grammatical human translations. Oriethe probability is lower than a threshold.
reason for that is that the MT output uses fewer unseen The model gives a sum of all possible alignment prob-
words and typically more frequent words which lead taabilities for a pair of a Chinese sentence and an English
a higher language model probability. We also performegarse tree. We also calculate the probability of the best
experiments to balance this effect by dividing the parsalignment according to the model. Thus, we have the fol-



lowing two feature functions: factor of no more than five in either the Chinese or En-
glish tree, we achieved results for 480, or 48% of the 993

hreeTostringsuie; f) = 10g(z H p(g(eﬁj”eﬁj)) sentences. Of these 480, the model preferred the pro-
o ok ) _duced over_the oracle 52% of the time, |nd|ca_1t|ng that
’ it does not in fact seem likely to significantly improve
htreeTostingviteri{e, f) = log(max H p(ﬁ(eﬁjﬂeiﬁj)) BLEU scores when used for reranking. Using the prob-
© ok ) ability of the source Chinese dependency parse aligning

with the n-best hypothesis dependency parse as a feature
As the model is computationally expensive, we sorted thinction, making use of the word-level alignments, yields
n-best list by the sentence length, and processed them1.6 %BLEU score — identical to our baseline.
from the shorter ones to the longer ones. We used 10 . .
CPUs for about five days, and 273/997 development sef:# Markov Assumption for Tree Alignments
tences and 237/878 test sentences were processed. The tree-based feature functions described so far have the
The average %BLEU score (average of the best fodpllowing limitations: full parse tree models are expen-
among different 20 search initial points) was 31.7 fosive to compute for long sentences and for trees with flat
both htreeTostringsurNd hTreeTostringviterbi AMong the pro-  constituents and there is limited reordering observed in
cessed development sentences, the model preferred the n-best lists that form the basis of our experiments. In
oracle sentences over the produced sentence in 61%asidition to this, higher levels of parse tree are rarely ob-
the cases. served to be reordered between source and target parse
The biggest problem of this model is that it is compuirees.
tationally very expensive. It processed less than 30% of In this section we attack these problems using a simple
the n-best lists in long CPU hours. In addition, we pro-Markov model for tree-based alignments. It guarantees
cessed short sentences only. For long sentences, it is fi@ctability: compared to a coverage of approximately

practical to use this model as it is. 30% of the n-best list by the unconstrained tree-based
models, using the Markov model approach provides 98%
6.3 Tree-to-Tree Alignment coverage of the n-best list. In addition, this approach is

A tree-to-treetranslation model makes use of syntac-mbust to Inaccurate parse trees. . .

tic tree for both the source and target language. As in _The algorithm works as follows: we _start with word
the tree-to-string model, a set of operations apply, ea&'{lgnmen'gs and two parametersfor maximum n_umber
with some probability, to transform one tree into another words in tree fragment ankl for maximum helght of :
However, when training the model, trees for both théree fragment. We proceed from left to right in the Chi-

Source and targetlanguages are provided, n ou cagSS ErISnce 4G ncremental orow o pay of subiees
from the Chinese and English parsers. gisn,

We beaan with the tree-to-tree alignment model reeach word in the Chinese subtree is aligned to a word in
garl 9 Prehe English subtree. We grow this pair of subtrees un-
sented by Gildea (2003). The model was extended to hap- . . :
il we can no longer grow either subtree without violat-

dle dependency trees, and to make use of the word-level
) . ing the two parameter valugsandk. Note that these
alignments produced by the baseline MT system. Thg

robability assianed by the tree-to-tree alianment mode ligned subtree pairs have properties similar to alignment
piven the>\//vord-?evel al>i/ nment with Whichqthe candidateemplates' They can rearrange in complex ways between
9 . 9 .~ source and target. Figure 2 shows how subtree-pairs for
translation was generated, was used as a feature in qur .
. parameters: = 3 andk = 3 can be drawn for this
rescoring system.

sentence pair. In our experiments, we use substantially

We trained the parameters of the tree transformati .
. . . r tree fragments with parameter t n
operations on 42,000 sentence pairs of parallel Chlnecs)kgﬁ-%ge ee fragments parameters sette- § and

E_ngllsh data from the Foreign I_3roadcast In_formatlon Sgr- Once these subtree-pairs have been obtained, we can
vice (FBIS) corpus. The lexical translation probabili-

. ) . . easily assert a Markov assumption for the tree-to-tree and
lt!es B W;:e t.ra.uned using “_?_'r\:l Modeldl on tthe 30 mil- tree-to-string translation models that exploits these pair-
lon word fraining corpus. - 1his was done to ov_e_r_come;ngs_ Let consider a sentence pair in which we have dis-
the sparseness of the lexical translation probabilities e

Soveredn subtree-pairs which we can cdftagp, ...
timated while training the tree-to-tree model, which wa ® P 9o, -

‘?—ragn. We can then compute a feature function for the

not able to make use of as much tra!n|ng dgta_. . sentence pair using the tree-to-string translation model as
As a test of the tree-to-tree model’s discrimination, W??IIOWS'

performed an oracle experiment, comparing the mode
scores on the first sentence in thest list with candi-  hyarkovTreeTostring=

date giving highest BLEU score. On the 1000-best list for 109 Pyee-t0-string Fragy) + - - . + 100 Pree-to-string Frag,,)
the 993-sentence development set, restricting ourselves "
to sentences with no more than 60 words and a branchitdging this Markov assumption on tree alignments with



h

MarkovTreeToString ~ log(P_TreeToString(Frag0)) + log(P_TreeToString(Fragl)) + ...

Figure 2: Markov assumption on tree alignments.
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China 's 14 open border cities marked economic achievements
| [ | \ | \
NNP POS CD ] NN NNS VBD ] NNS

NPB

Figure 3: Word alignments with TAG elementary trees.

nese and for English. The unigram model gets a %BLEU
score of 31.7 and the conditional model gets a %BLEU

the Tree to String model described in Section 6.2 we otgcore of 31.9.

tain a coverage improvement to 98% coverage from the

original 30%. The accuracy of the tree to string model i %BLEU
also improved with a %BLEU score of 32.0 which is the | Baseline 31.6
best performing single syntactic feature. IBM Model 1 p(fle) 32.5
Tree-to-String Markov fragments 32.0
6.5 Using TAG elementary trees for scoring word Right-continuous alignment template 32.0
alignments TAG conditional bigrams 31.9
In this section, we consider another method for carving | L€ft-monotone alignment template | 31.9
up the full parse tree. However, in this method, instead of Projected F.)OS LM 31.8
subtree-pairs we consider a decomposition of parse treeg Tree-to-String 31.7
that provides each word with a fragment of the original TAG unigram 31.7
parse tree as shown in Figure 3. The formalism of Tree- Tree-'Fo-Tree 31.6
Adjoining Grammar (TAG) provides the definition what L combination 32.9

each tree fragment should be and in addition how to der—
compose the original parse trees to provide the fragmen{s.
Each fragment is a TAG elementary tree and the comp
sition of these TAG elementary trees in a TAG deriva-
tion tree provides the decomposition of the parse trees.
The decomposition into TAG elementary trees is done by

Conclusions

augmenting the parse tree for source and target sentence
with head-word and argument (or complement) informaThe use of discriminative reranking of anbest list pro-

tion using heuristics that are common to most contempatuced with a state-of-the-art statistical MT system al-
rary statistical parsers and easily available for both Erfewed us to rapidly evaluate the benefits of off-the-shelf
glish and Chinese. Note that we do not use the worgarsers, chunkers, and POS taggers for improving syntac-
alignment information for the decomposition into TAGtic well-formedness of the MT output. Results are sum-

elementary trees.

able 2: Results for the baseline features, each new fea-
ure added to the baseline features on its own, and a com-
ination of new features.

marized in Table 2; the best single new feature improved

Once we have a TAG elementary tree per wordihe %BLEU score from 31.6 to 32.5. The 95% confi-
we can create several models that score word aligmlence intervals computed with the bootstrap resampling
ments by exploiting the alignments between TAG elemethod are about 0.8%. In addition to experiments with

mentary trees between source and target. tetand

single features we also integrated multiple features using

t., be the TAG elementary trees associated with the greedy approach where we integrated at each step the
aligned wordsf; ande; respectively. We experimented feature that most improves the BLEU score. This feature
with two models over alignments: unigram model oveintegration produced a statistically significant improve-
alignments:[, P(fi,t,,ei,te,) and conditional model: ment of absolute 1.3% to 32.9 %BLEU score.
Our single best feature, and in fact the only single fea-
We trained both of these models using the SRI Lanture to produce a truly significant improvement, was the
guage Modeling Toolkit using 60K aligned parse treesBM Model 1 score. We attribute its success that it ad-
We extracted 1300 TAG elementary trees each for Chidresses the weakness of the baseline system to omit con-

Hz‘ P(eiv tei

fi;tfi) X P(fi+17tfi+1 | fi7tfi)
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