
Detecting Structural Metadata with Decision Trees and
Transformation-Based Learning

Joungbum Kim† and Sarah E. Schwarm‡ and Mari Ostendorf†
†Dept. of Electrical Engineering ‡Dept. of Computer Science

University of Washington
Seattle, WA 98195. USA

{bummie,sarahs,mo}@ssli.ee.washington.edu

Abstract

The regular occurrence of disfluencies is a
distinguishing characteristic of spontaneous
speech. Detecting and removing such disflu-
encies can substantially improve the usefulness
of spontaneous speech transcripts. This pa-
per presents a system that detects various types
of disfluencies and other structural information
with cues obtained from lexical and prosodic
information sources. Specifically, combina-
tions of decision trees and language models are
used to predict sentence ends and interruption
points and, given these events, transformation-
based learning is used to detect edit disfluen-
cies and conversational fillers. Results are re-
ported on human and automatic transcripts of
conversational telephone speech.

1 Introduction
Automatic speech-to-text (STT) transcripts of sponta-
neous speech are often difficult to comprehend even with-
out the challenges arising from word recognition errors
introduced by imperfect STT systems (Jones et al., 2003).
Such transcripts lack punctuation that indicates clausal or
sentential boundaries, and they contain a number of dis-
fluencies that would not normally occur in written lan-
guage. Repeated words, hesitations such as “um” and
“uh”, and corrections to a sentence in mid-stream are
a normal part of conversational speech. These disflu-
encies are handled easily by human listeners (Shriberg,
1994), but their existence makes transcripts of sponta-
neous speech ill-suited for most natural language pro-
cessing (NLP) systems developed for text, such as parsers
or information extraction systems. Similarly, the lack
of meaningful segmentation in automatically generated
speech transcripts makes them problematic to use in NLP
systems, most of which are designed to work at the sen-
tence level. Detecting and removing disfluencies and lo-
cating sentential unit boundaries in spontaneous speech

transcripts can improve their readability and make them
more suitable for NLP. Automatically annotating dis-
course markers and other conversational fillers is also
likely to be useful, since proper handling is needed to fol-
low the flow of conversation. Hence, the overall goal of
our work is to detect such structural information in con-
versational speech using features generated by currently
available speech processing systems and statistical ma-
chine learning tools.

This paper is organized as follows. In Section 2, we
describe the types of metadata that this work addresses,
followed by a discussion of related prior work in Sec-
tion 3. Section 4 describes the system architecture and
details the algorithms and features used by our system.
Section 5 discusses the experimental paradigm and re-
sults. Finally we provide a summary and directions for
future work in Section 6.

2 Structural Metadata

We consider three main types of structural metadata:
sentence-like units, conversational fillers and edit disflu-
encies. These structures were chosen primarily because
of the availability of annotated conversational speech data
from the Linguistic Data Consortium (Strassel, 2003) and
standard scoring tools (NIST, 2003).

2.1 Sentence Units

Conversational speech lacks the clear sentence bound-
aries of written text. Instead, we detect SUs (variously
referred to as sentence, semantic, and slash units), which
are linguistic units maximally equivalent to sentences
that are used to mark segmentation boundaries in con-
versational speech where utterances often end without
forming “grammatical” sentences in the sense expected
in written text. SUs can be sub-categorized according
to their discourse role. In our data, annotations distin-
guish statement, question, backchannel, incomplete SU
and SU-internal clause boundaries. Here, we ignore the
SU-internal boundaries, and merge all but the incomplete
SU categories in characterizing SU events.

Table 1: Filled pauses and discourse markers to be de-
tected by our system.

Filled Pauses ah, eh, er, uh, um
Discourse Markers actually, anyway, basically, I

mean, let’s see, like, now, see,
so, well, you know, you see

Table 2: Examples of edit disfluencies.

Disfluency Example
Repetition (I was) + I was very interested...

(I was) + { uh} I was very interested...
Repair (I was) + she was very interested...

(I was) + { I mean } she was very...
Restart (I was very) + Did you hear the news?

2.2 Conversational Fillers

Conversational fillers include filled pauses (hesitation
sounds such as “uh”, “um” and “er”), discourse mark-
ers (e.g. “well”, “you know”), and explicit editing terms.
Defining an all-inclusive set of English filled pauses and
discourse markers is a problematic task. Our system de-
tects only a limited set of filled pauses and discourse
markers, listed in Table 1, which cover a large majority of
cases (Strassel, 2003). An explicit editing term is a filler
occurring within an edit disfluency, described further be-
low. For example, the discourse marker I mean serves as
an explicit editing term in the following edit disfluency:
“I didn’t tell her that, I mean, I couldn’t tell her that he
was already gone.”

2.3 Edit Disfluencies

Edit disfluencies largely encompass three separate phe-
nomena: repetition, repair and restart (Shriberg, 1994).
A repetition occurs when a speaker repeats the most re-
cently spoken portion of an utterance to hold off the flow
of speech. A repair happens when the speaker attempts
to correct a mistake that he or she just made. Finally, in
a restart, the speaker abandons a current utterance com-
pletely and starts a new one.

Previous studies characterize edit disfluencies using
a structure with different segments (Shriberg, 1994;
Nakatani and Hirschberg, 1994). The first part of this
structure is called the reparandum, a string of words that
gets repeated or corrected. The reparandum is immedi-
ately followed by a non-lexical boundary event termed
the interruption point (IP). The IP marks the point where
the speaker interrupts a fluent utterance. Optionally, there
may be a filled pause or explicit editing term. The final

part of the edit disfluency structure is called the alter-
ation, which is a repetition or revised copy of the reparan-
dum. In the case of a restart, the alteration is empty. In
Table 2, reparanda are enclosed in parentheses, IPs are
represented by “+”, optional fillers are in braces, and al-
terations are in boldface.

Annotation of complex edit disfluencies, where a dis-
fluency occurs within an alteration, can be difficult. The
data used here is annotated with a flattened structure
that treats these cases as simple disfluencies with mul-
tiple IPs (Strassel, 2003). IPs within a complex disflu-
ency are detected separately, and contiguous sequences
of edit words associated with these IPs are referred to as
a deletable region.

3 Previous Work
In an early study on automatic disfluency detection a
deterministic parser and correction rules were used to
clean up edit disfluencies (Hindle, 1983). However theirs
was not a truly automatic system as it relied on hand-
annotated “edit signals” to locate IPs. Bear et al. (1992)
explored pattern matching, parsing and acoustic cues and
concluded that multiple sources of information would be
needed to detect edit disfluencies. A decision-tree-based
system that took advantage of various acoustic and lexi-
cal features to detect IPs was developed in (Nakatani and
Hirschberg, 1994).

Shriberg et al. (1997) applied machine prediction of
IPs with decision trees to the broader Switchboard corpus
by generating decision trees with a variety of prosodic
features. Stolcke et al. (1998) then expanded the prosodic
tree model with a hidden event language model (LM)
to identify sentence boundaries, filled pauses and IPs in
different types of edit disfluencies. The hidden event
LM used in their work adapted Hidden Markov Model
(HMM) algorithms to an n-gram LM paradigm to repre-
sent non-lexical events such as IPs and sentence bound-
aries as hidden states. Liu et al. (2003) built on this
framework and extended prosodic features and the hidden
event LM to predict edit IPs on both human transcripts
and STT system output. Their system also detected the
onset of the reparandum by employing rule-based pattern
matching once edit IPs have been detected.

Edit disfluency detection systems that rely exclusively
on word-based information have been presented by Hee-
man et al. (Heeman et al., 1996) and Charniak and John-
son (Charniak and Johnson, 2001). Common to both of
these approaches is a focus on repeated or similar se-
quences of words and information about the words them-
selves and the length and similarity of the sequences.

Our approach is most similar to (Liu et al., 2003), since
we also detect boundary events such as IPs first and use
them as “signals” when identifying the reparandum in
a later stage. The motivation to detect IPs first is that

Speech IP/SU
PredictionProsodic and Lexical

Feature Extraction

Word Boundary
Event Prediction

(DT/HE-LM)

Filler/Edit
Word Detection

(TBL)

Output

Figure 1: System Diagram

speech before an IP is fluent and is likely to be free of
any prosodic or lexical irregularities that can indicate the
occurrence of an edit disfluency. Like Liu et al., we use a
decision tree trained with prosodic features and a hidden
event language model for the IP detection task. However,
we incorporate SU detection in those models as well. We
use part-of-speech (POS) tags and pattern match features
in decision tree training whereas Liu et al. (2003) devel-
oped language models for them. We explore three dif-
ferent methods of combining the hidden event language
model and the decision tree model, namely linear inter-
polation, joint tree-based modeling and an HMM-based
approach. Moreover, our system uses the transformation-
based learning algorithm rather than hand-crafted rules
for the second stage of edit region detection.

Another key difference between our system and most
previous work is the prediction target. Our system incor-
porates detecting word boundary events such as SUs and
IPs, locating onsets of edit regions, and identifying filled
pauses, discourse markers and explicit editing terms. We
believe that such a comprehensive detection scheme al-
lows our system to better model dependencies between
these events, which will lead to an improvement in the
overall detection performance.

4 System Description

4.1 Overall Architecture

As shown in Figure 1, our system detects disfluencies
in a two-step process. First, for each word boundary in
the given transcription, a decision tree predicts one of the
four boundary events IP, SU, ISU (incomplete SU), and
the null event. Then in the second stage, rules learned
via the transformation-based learning (TBL) algorithm
are applied to the data containing predicted boundary
events and other lexical information to identify edits and
fillers. Following edit region and filler prediction, the sys-
tem output was post-processed to eliminate edit region
predictions not associated with IP predictions as well as
IP predictions for which no edit region or filler was de-
tected. An analysis of post-processing alternatives con-
firmed that this strategy reduced insertion errors.

4.2 Detecting Boundary Events

In order to detect boundary events, we trained a CART-
style decision tree (Breiman et al., 1984) with various
prosodic and lexical features. Decision trees are well-
suited for this task because they provide a convenient way
to integrate both symbolic and numerical features in pre-
diction. Furthermore, a trained decision tree is highly ex-
plainable by its nature, which allows us to gain additional
insight into the utilities of and the interactions between
multiple information sources.

Prosodic features generated for decision tree training
included the following:

• Word and rhyme1 durations.
• Rhyme duration differences between two neighbor-

ing words.
• F0 statistics (minimum, mean, maximum, slope)

over a word.
• Differences in F0 statistics between two neighboring

words.
• Energy statistics over a word and its rhyme.
• Silence duration following a word.
• A flag indicating start and end of a speaker turn and

speaker overlap.
• Ordinal position of a word in a turn.

Energy and F0 features were generated with the Entropic
System ESPS/Waves package and the F0 stylization tool
developed in (Sönmez et al., 1998). Word and rhyme
duration were normalized by phone duration statistics
(mean and variance) calculated over all available training
data. F0 and energy features were normalized for each
individual speaker’s baseline. A turn boundary was hy-
pothesized for word boundaries with silences longer than
four seconds.

Since inclusion of features that do not contribute to
the classification of data can degrade the performance of
a decision tree, we selected only the prosodic features
whose exclusion from the training process led to a de-
crease in boundary event detection accuracy on the de-
velopment data by utilizing the leave-one-out method.

Lexical features consisted of POS tag groups, word and
POS tag pattern matches, and a flag indicating existence

1In our work, a rhyme was defined to contain the final vowel
of a word and any consonants following the final vowel.

of filler words to the right of the current word bound-
ary. The POS tag features were produced by first predict-
ing the tags with Ratnaparkhi’s Maximum Entropy Tag-
ger (Ratnaparkhi, 1996) and then clustered by hand into
a smaller number of groups based on their syntactic role.
The clustering was performed to speed up decision tree
training as well as to reduce the impact of tagger errors.

Word pattern match features were generated by com-
paring words over the range of up to four words across the
word boundary in consideration. Grouped POS tags were
compared in a similar way, but the range was limited to
at most two tags across the boundary since a wider com-
parison range would have resulted in far more matches
than would be useful due to the low number of available
POS tag groups. When words known to be identified fre-
quently as fillers existed after the boundary, they were
skipped and the range of pattern matching was extended
accordingly.

Another useful cue for boundary event detection is the
existence of word fragments. Since word fragments occur
when the speaker cuts short the word being spoken, they
are highly indicative of IPs. However currently available
STT systems do not recognize word fragments. As our
goal is to build an automatic detection system, our sys-
tem was not designed to use any features related to word
fragments. However, for a control case, we conducted
an experiment with reference transcripts using a single
“frag” word token to show the potential for improved per-
formance of a system capable of recognizing fragments.

In addition to the decision tree model, we also em-
ployed a hidden event language model to predict bound-
ary events. A hidden event LM is the same as a typical
n-gram LM except that it models non-lexical events in
the n-gram context by counting special non-word tokens
representing such events. The hidden event LM estimates
the joint distribution P (W,E) of words W and events E.
Once the model has been trained, a forward-backward al-
gorithm can be used to calculate P (E|W), or the poste-
rior probability of an event given the preceding word se-
quence (Stolcke et al., 1998; Stolcke and Shriberg, 1996).
The SRI Language Modeling Toolkit (SRILM) (Stolcke,
2002) was used to train a trigram open-vocabulary lan-
guage model with Kneser-Ney discounting (Kneser and
Ney, 1995) on data that had boundary events (SU, ISU,
and IP) inserted in the word stream. Posterior probabil-
ities of boundary events for every word boundary were
then estimated with SRILM’s capability for computing
hidden event posteriors.

While the hidden event LM alone can be used to de-
tect boundary events, prior work has shown that it ben-
efits from also using prosodic cues, so we combined the
language model and the decision tree model in three dif-
ferent ways. In the first approach, which we call the joint
tree model, the boundary event posterior probability from

the hidden event LM is jointly modeled with other fea-
tures in the decision tree to make predictions about the
boundary events. In the second approach, referred to as
the linearly interpolated model, a decision is made based
on the combined posterior probability

λPtree(E|A,W) + (1 − λ)PLM (E|W),

where A corresponds to the acoustic-prosodic features
and the weighting factor λ can be chosen empirically to
maximize target performance, i.e. bias the prediction to-
ward the more accurate model. In the third approach,
the decision tree features, words and boundary events
are jointly modeled via an integrated HMM (Shriberg
et al., 2000). This approach augments the hidden event
LM by modeling decision tree features as emissions from
the HMM states represented by the word and boundary
event. Under this framework, the forward-backward al-
gorithm can again be used to determine posterior prob-
abilities of boundary events. Similar to the linearly in-
terpolated model, a weighting factor can be used to intro-
duce the desired bias to the combination model. The joint
tree model has the advantage that the (possibly) complex
interaction between lexical and prosodic cues can be cap-
tured. However, since the tree is trained on reference tran-
scriptions, it favors lexical cues, which are less reliable in
STT output. In the linearly interpolated and joint HMM
approaches, the relative weighting of the two knowledge
sources is estimated on the development test set for STT
output, so it is possible for prosodic cues to be given a
higher weight.

4.3 Edit and Filler Detection
After SUs and IPs have been marked, we use
transformation-based learning (TBL) to learn rules to
detect edit disfluencies and conversational fillers. TBL
is an automatic rule learning technique that has been
successfully applied to a variety of problems in natu-
ral language processing, including part-of-speech tag-
ging (Brill, 1995), spelling correction (Mangu and Brill,
1997), error correction in automatic speech recogni-
tion (Mangu and Padmanabhan, 2001), and named entity
detection (Kim and Woodland, 2000). We selected TBL
for our tagging-like metadata detection task since it has
been used successfully for these other tagging tasks.

TBL is an iterative technique for inducing rules from
training data. A TBL system consists of a baseline pre-
dictor, a set of rule templates, and an objective function
for scoring potential rules. After tagging the training data
using the baseline predictor, the system learns a list of
rules to correct errors in these predictions. At each iter-
ation, the system uses the rule templates to generate all
possible rules that correct at least one error in the training
data and selects the best rule according to the objective
function, commonly token error rate. The best rule is

Table 3: Example word and POS matches for TBL.

Word Match that IP that
POS Match the dog IP the cat

recorded and applied to the training data in preparation
for the next iteration. The standard stopping criterion for
rule learning is to stop when the score of the best rule falls
below a threshold value; statistical significance measures
have also been used (Mangu and Padmanabhan, 2001).
To tag new data, the rules are applied in the order in which
they were learned. This allows rules which are learned
later in the process to fine tune the effects of the earlier
rules. TBL produces concise, comprehensible rules, and
uses the entire corpus to train all of the rules. We used
Florian and Ngai’s Fast TBL system (fnTBL) (Ngai and
Florian, 2001) to train rules using disfluency annotated
conversational speech data.

The input to our TBL system consists of text divided
into utterances, with IPs and SUs inserted as if they were
extra words. (For simplicity, these special words are also
assigned “IP” and “SU” as part of speech tags.)

Our TBL system used the following types of features:

• Identity of the word.

• Part of speech (POS) and grouped part of speech
(GPOS) of the word (same as the decision tree).

• Is the word commonly used as: filled pause (FP),
backchannel (BC), explicit editing term (EET), dis-
course marker (DM)?

• Does this word/ POS/ GPOS match the word/ POS/
GPOS that is 1/2/3 positions to its right?

• Is this word at the beginning of a turn or utterance?

• Tag to be learned.

The “tag” feature is the one we want the system to
learn. It is also used in templates that consider features
of neighboring words. The baseline predictor sets the tag
to its most common value, “no disfluency,” for all words.
Other values of the tag are the three types of fillers (FP,
EET, DM) and edit. The objective function for our learner
is token error rate, and rule learning is stopped at a thresh-
old score of 5.

We generated a set of rule templates using these fea-
tures. The rule templates account for individual features
of the current word and/or its neighbors, the proximity
of potential FP/EET/DM terms, and matches between the
current word and nearby words, especially when in close
proximity to a boundary event or potential filler. Example
word and POS matches are shown in Table 3.

5 Experiments

5.1 Experimental Setup

For training our system and its components, we used two
different subsets of Switchboard, a corpus of conversa-
tional telephone speech (CTS) (Godfrey et al., 1992).
One of the data sets included 417 conversations (LDC1.3)
that were hand-annotated by the Linguistic Data Consor-
tium for disfluencies and SUs according to the V5 guide-
lines detailed in (Strassel, 2003). Another set of 1086
conversations from the Switchboard corpus was anno-
tated according to (Meteer et al., 1995) and is available as
part of the Treebank3 corpus (TB3). We used a version
of this set that contained annotations machine-mapped to
approximate the V5 annotation specification.

For development and testing of our system, we used
hand transcripts and STT system output for 72 conversa-
tions from Switchboard and the Fisher corpus, a recent
CTS data collection. Half of these conversations were
held out and used as development data (dev set), and the
other 36 conversations were used as test data (eval set).
The STT output, used only in testing, was from a state-of-
the-art large vocabulary conversational speech recognizer
developed by BBN. The word error rates for the STT out-
put were 27% on the dev set and 25% on the eval set.

To assess the performance of our overall system, dis-
fluencies and boundary events were predicted and then
evaluated by the scoring tools developed for the NIST
Rich Transcript evaluation task.

5.2 Boundary Event Prediction

Decision trees to predict boundary events were trained
and tested using the IND system developed by
NASA (Buntine and Caruan, 1991). All decision trees
were pruned by ten-fold cross validation. The LDC1.3
set2 with reference transcriptions was used to train the
trees3 and the dev set was used to evaluate their perfor-
mances.

Several decision trees with different combinations of
feature groups were trained to assess the usefulness of
different knowledge sources for boundary event detec-
tion. The tree was then used to predict the boundary
events on the reference transcription of the dev set. The
results are presented in Table 4. The inclusion of a spe-
cial token for fragments resulted in improved precision
and recall for SUs and IPs but, surprisingly, degraded per-
formance for ISUs. These results show that prosodic fea-
tures by themselves failed to detect ISUs and IPs, though

2Experiments combining the LDC1.3 set with the mapped
TB3 set were not as successful as LDC1.3 set alone for decision
tree training.

3While it might be better to train from automatic transcripts,
it is difficult to define target class labels in cases where there are
insertion errors or a sequence of several word errors.

Table 4: Impact of different features on boundary event prediction using the joint tree model on reference transcripts.

Features SU ISU IP
Recall Precision Recall Precision Recall Precision

Prosody Only 46.5 74.6 0 - 8.8 47.2
POS, Pattern, LM 77.3 79.6 30.0 53.3 64.4 77.4
Prosody, POS, Pattern, LM 81.5 80.4 36.5 69.7 66.1 78.7
All Above + Fragments 81.1 81.6 20.1 60.7 80.7 80.4

they lead to performance gains when combined with lex-
ical cues. Examination of the decision tree trained with
only the prosodic features revealed that pause duration
and turn information features were placed near the top of
the tree.

Use of lexical features brought substantial perfor-
mance improvement in all aspects, and classification ac-
curacy increased when features extracted from different
knowledge sources were combined. However, we ob-
served that a smaller number of prosodic features ended
up being used in the tree and they were placed at or near
leaf nodes as more lexical features were made available
for training. The importance of prosodic features is likely
to be much more apparent for STT data. The word errors
prevalent in the STT transcriptions will affect lexical fea-
tures far more severely than prosodic features, and there-
fore the prosodic features contribute to the robustness of
the overall system when lexical features become less re-
liable.

5.3 Edit and Filler Detection

After the prediction of boundary events, the rules learned
by the TBL system described in section 4.3 were applied
to detect fillers and edit regions. As with the decision
trees, we trained rules using the LDC1.3 data alone, and
combined with the mapped TB3 data, finding that the
combined dataset gave better results for TBL training.
Again we used only reference word transcripts but dis-
covered that training with SUs and IPs predicted by the
first stage of our system was more effective than using
reference boundary events.

It is difficult to formally assess the effectiveness of the
TBL module independently, and results for the entire sys-
tem are discussed in detail in the next section. Informal
inspection of the rules learned by the TBL system indi-
cates that, not surprisingly, word match features and the
presence of IPs are very important for the detection of
edit regions. The most commonly used features for iden-
tifying discourse markers are the identity or POS of the
current and/or neighboring words and the tag already as-
signed to neighboring words.

Table 5: Detection of boundary events and disfluencies
on STT output as scored by rt-eval.

Task % Corr % Del % Ins % SER
Filler 63.9 36.1 14.0 50.1
Edit 25.5 74.5 13.7 88.2
IP 49.6 50.5 16.3 66.8
SU 73.1 26.9 19.7 46.6

5.4 Overall System Results
The performance of our system was evaluated on the fall
2003 NIST Rich Transcription Evaluation test set (RT-
03F) using the rt-eval scoring tool (NIST, 2003), which
combines ISUs and SUs in a single category, and reports
results for detection of SUs, IPs, fillers, and edits with-
out differentiating subcategories of fillers and edits. This
tool produces a collection of results, including percentage
correct, deletions, insertions, and Slot Error Rate (SER),
similar to the word error rate measure used in speech
recognition. SER is defined as the number of insertions
and deletions divided by the number of reference items.
Note that scores are somewhat different from those in
Table 4, because of differences in scoring and metadata
alignment methods.

Figure 2: Detection of boundary events and disfluencies
on reference and STT transcripts (joint tree model).

Results of our system on the RT-03F task are shown in

Table 6: Percentage of missed IPs on the dev set.

Transcription % IPs after
fragments

% Other edit
IPs

Reference 81.7 37.6
STT 74.0 51.2

Table 5 for the joint tree version of the system as applied
to the STT transcription of the test data. SU detection
by our system is relatively good. IP detection is not as
successful, which also impacts edit detection.

Figure 2 contrasts the results of the joint tree model for
STT output with those obtained on reference data with
and without fragments. As expected, all error rates are
higher on STT output; IPs and fillers take the biggest hit.
Filler performance in particular seems to be affected by
recognition errors, which is not surprising, since misrec-
ognized words would likely not be on the target lists of
filled pauses and discourse markers. In particular, nearly
all missed and incorrectly inserted filled pauses are due
to recognition errors. Detection of discourse markers is
more challenging; fewer than half the errors on discourse
markers are due to recognition errors. Most non-STT-
related filler errors involved the words “so” and “like”
used as DMs, which are hard problems since the vast ma-
jority of the occurrences of these two words are not DMs.
It is also not surprising that improved IP detection on ref-
erence data contributes to a lower error rate for edits.

As expected, the inclusion of fragments improves per-
formance on IP and edit detection, where fragments fre-
quently occur. In LDC1.3, 17.2% of edit IPs have word
fragments occurring before them; 9.9% of edits consist
of just a single fragment. In the dev set, 35.5% of edit
IPs are associated with fragments. However, fragments
are rarely output by the STT system, so for most of our
work we chose to use the identical system for processing
reference and STT transcripts and did not include frag-
ments. IP detection performance was significantly worse
for those IPs associated with fragments, as shown in Ta-
ble 6. However, since fragments are often deleted or rec-
ognized as a full word, STT output actually “helps” with
detection of IPs after fragments, apparently because the
POS tagger and hidden event LM tend to give unreliable
results on the reference transcripts near fragments.

Figure 3 compares the eval test set performances of the
different alternatives for incorporating the hidden event
LM posterior, i.e. inclusion in the decision tree, linear
interpolation and the joint HMM. For this experiment,
the interpolation weighting factor was selected empiri-
cally to maximize boundary event prediction accuracy on
the STT transcription of the dev set. The results of this
comparison are mixed: SU detection is better with the
joint tree model, but IP detection and consequently edit

Figure 3: Results for joint tree (JTM), linearly interpo-
lated (LIM) and joint HMM models on STT transcripts.

detection are better with the interpolation and HMM ap-
proaches. The degradation of SU detection performance
with the HMM is counter to findings in previous work
(Stolcke et al., 1998; Shriberg et al., 2000). This may
be due to differences in evaluation criteria, given that
the HMM approach typically had higher precision which
might benefit earlier word-based measures more. In addi-
tion, the difference in conclusions may be due to the fact
that the decision trees used here include lexical pattern
match features in addition to hidden event posteriors.

A problem in our system is the inability to predict more
than one label for a given word or boundary. Words la-
beled as both filler and edit account for only 0.5% of all
fillers and edits in the LDC1.3 training data, so it is prob-
ably not a significant problem. We also do not predict
boundaries as both SU and IP. In LDC1.3, these account
for 12.8% of SU boundaries, and are treated as simply SU
in training. This does not affect IPs for edits, but impacts
38.6% of IPs before fillers. By predicting a combined
SU-IP boundary in addition to isolated SUs and IPs, we
obtain a small reduction in SER for IPs but at the expense
of an increase in SU SER. However, separating prediction
of IPs after edit regions vs. before fillers also yields small
improvements in edit region precision and filler recall, re-
sulting in 3.3% and 0.8% relative reduction in filler and
edit SERs respectively for the joint HMM.

6 Conclusions

We have demonstrated a two-tiered system that detects
various types of disfluencies in spontaneous speech. In
the first tier, a decision tree model utilizes multiple
knowledge sources to predict interword boundary events.
Then the system employs a transformation-based learn-
ing algorithm to identify the extent and type of disflu-
encies. Experimental results show that the large vari-
ance and noise inherent in prosodic features makes them

much less effective than lexical features for reference
data; however, in the presence of word recognition errors
prevalent in automatic transcripts of spontaneous speech,
prosodic features have more value. Performance differ-
ences for the various score combination methods were
small, but combining decision tree and HE-LM scores
with a weight optimized on dev data is slightly better for
edit disfluencies. Transformation-based learning is an ef-
fective way to tag fillers and edit regions after boundary
events are tagged, but the best performance is obtained
when training with automatically predicted SU and IP
boundary events.

As this is a new task, error rates are relatively high
(though significantly better than chance), but this ap-
proach achieved competitive results on the Fall 2003
NIST Rich Transcription Evaluation, and there are many
directions for future improvements.

Acknowledgments
This work was supported by DARPA, no. MDA904-02-C-0437,
in a project led by BBN. The authors thank their colleagues at
BBN for providing recognizer output for the training and test
data, and colleagues at SRI for providing F0 conditioning tools
and mapped TB3 data. Any opinions, conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsor or our
collaborators.

References
J. Bear et al., ”Integrating multiple knowledge sources for de-

tection and correction of repairs in human-computer dialog”,
Meeting of the ACL, pp. 56–63, 1992.

L. Breiman et al., Classification and Regression Trees Chap-
man and Hall, 1984.

E. Brill, ”Transformation-based error-driven learning and natu-
ral language: a case study in part of speech tagging”, Com-
putational Linguistics, 21(4), pp. 543–565, 1995.

W. Buntine and R. Caruan ”Introduction to IND and recursive
partitioning”, NASA Ames Research Center, TR. FIA-91-
28, 1991.

E. Charniak and M. Johnson, ”Edit detection and parsing for
transcribed speech”, Proc. NAACL, pp. 118–126, 2001.

J. J. Godfrey et al., ”SWITCHBOARD: Telephone speech cor-
pus for research and development”, Proc. ICASSP, v. I, pp.
517–520, 1992.

P. A. Heeman et al., ”Combining the detection and correction
of speech repairs”, Proc. ICSLP, v. 1, pp. 362–365, 1996.

C. Hemphill et al., “The ATIS spoken language systems pi-
lot corpus”, Proc. of DARPA Speech and Natural Language
Workshop, pp. 96–101, 1990.

D. Hindle ”Deterministic parsing of syntactic nonfluencies”,
Meeting of the ACL, pp. 123–128, 1983.

D. Jones et al., ”Measuring the readability of automatic speech-
to-text transcripts”, Proc. Eurospeech, pp. 1585–1588, 2003.

J.-H. Kim and P. Woodland ”A rule-based named entity recog-
nition system for speech input”, Proc. ICSLP, pp.2757–
2760, 2001.

R. Kneser and H. Ney ”Improved backing-off for mgram lan-
guage modeling”, Proc. ICASSP, pp. 181–184, 1995.

Y. Liu, ”Automatic disfluency identification in conversa-
tional speech using multiple knowledge sources”, Proc. Eu-
rospeech, pp. 957–960, 2003.

L. Mangu and E. Brill, ”Automatic rule acquisition for spelling
correction”, Proc. Intl. Conf on Machine Learning, pp. 187–
194, 1997.

L. Mangu and M. Padmanabhan, ”Error corrective mechanisms
for speech recognition”, Proc. ICASSP, pp. 29–32, 2001.

M. Meteer et al., ”Dysfluency annotation stylebook for the
Switchboard corpus”, Distributed by the LDC, 1995.

C. Nakatani and J. Hirschberg ”A corpus-based study of re-
pair cues in spontaneous speech”, Journal of the Acoustical
Society of America, pp. 1603–1616, 1994.

G. Ngai and R. Florian ”Transformation-based learning in the
fast lane”, Proc. NAACL, pp. 40–47, 2001.

NIST, “The Rich Transcription Fall 2003 (RT-
03F) evaluation plan,” http://www.nist.gov/
speech/tests/rt/rt2003/fall/docs/
rt03-fall-eval-plan-v9.pdf, 2003.

A. Ratnaparkhi, “A maximum entropy part-of-speech tagger”,
Proc. Empirical Methods in Natural Language Processing
Conf., pp. 133–141, 1996.

E. Shriberg, Preliminaries to a theory of speech disfluencies,
PhD thesis, Department of Psychology, University of Cali-
fornia, Berkeley, 1994.

E. Shriberg et al., “A prosody-only decision-tree model for dis-
fluency detection”, Proc. Eurospeech, pp. 2383–2386, 1997.

E. Shriberg et al., ”Prosody-based automatic segmentation of
speech into sentences and topics” Speech Communication,
32(1-2), pp. 127–154, 2000.

K. Sönmez et al., “Modeling dynamic prosodic variation for
speaker verification,” Proc. Intl. Conf. on Spoken Language
Processing, v. 7, pp. 3189–3192, 1998.

A. Srivastava and F. Kubala ”Sentence boundary detection in
Arabic speech”, Proc. Eurospeech, pp. 949–952, 2003.

A. Stolcke and E. Shriberg ”Automatic linguistic segmenta-
tion of conversational speech”, Proc. ICSLP, v. 2, pp. 1005–
1008, 1996.

A. Stolcke et al., “Automatic detection of sentence boundaries
and disfluencies based on recognized words,” Proc. ICSLP,
1998, v. 5, pp. 2247–2250.

A. Stolcke, ”SRILM - an extensible language modeling
toolkit”, Proc. ICSLP, v. 2, pp. 901-904, 2002.

S. Strassel, “Simple metadata annotation specification version
5.0”, http://www.ldc.upenn.edu/Projects/
MDE/Guidelines/SimpleMDE_V5.0.pdf, 2003.

