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Abstract

Many probabilistic models for natural language
are now written in terms of hierarchical tree
structure. Tree-based modeling still lacks many
of the standard tools taken for granted in (finite-
state) string-based modeling. The theory of tree
transducer automata provides a possible frame-
work to draw on, as it has been worked outin an
extensive literature. We motivate the use of tree
transducers for natural language and address
the training problem for probabilistic tree-to-
tree and tree-to-string transducers.
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summarization (Knight and Marcu, 2002), paraphras-
ing (Pang, Knight, and Marcu, 2003), natural language
generation (Langkilde and Knight, 1998; Bangalore and
Rambow, 2000; Corston-Oliver et al., 2002), and lan-

guage modeling (Baker, 1979; Lari and Young, 1990;

Collins, 1997; Chelba and Jelinek, 2000; Charniak, 2001;
Klein and Manning, 2003). It is useful to understand

generic algorithms that may support all these tasks and
more.

(Rounds, 1970) and (Thatcher, 1970) independently
introduced tree transducers as a generalizatidrSTfs.
Rounds was motivated by natural language. The Rounds
tree transducer is very similar to a left-to-righ®T, ex-
cept that it works top-down, pursuing subtrees in paral-
lel, with each subtree transformed depending only on its
own passed-down state. This class of transducer is often

Much of natural language work over the past decade h&9wadays calle®, for “Root-to-frontier” (Gécseg and

employed probabilistic finite-state transduceFsSTs)
operating on strings. This has occurred somewhat underRounds uses a mathematics-oriented example & an

Steinby, 1984).

the influence of speech recognition, where transducirtgansducer, which we summarize in Figure 1. At each
acoustic sequences to word sequences is neatly captupgdnt in the top-down traversal, the transducer chooses
by left-to-right stateful substitution. Many conceptuala production to apply, baseshly on the current state
tools exist, such as Viterbi decoding (Viterbi, 1967) anand the current root symbol. The traversal continues
forward-backward training (Baum and Eagon, 1967), asntil there are no more state-annotated nodes. Non-
well as generic software toolkits. Moreover, a surprisingleterministic transducers may have several productions
variety of problems are attackable wilSTs, from part- with the same left-hand side, and therefore some free
of-speech tagging to letter-to-sound conversion to nan@hoices to make during transduction.

transliteration. An R transducer compactly represents a potentially-

However, language problems like machine translanfinite set of input/output tree pairs: exactly those pairs
tion break this mold, because they involve massive rqT1, T2) for which some sequence of productions applied
ordering of symbols, and because the transformation prg; T1 (starting in the initial state) results in T2. This is
cesses seem sensitive to hierarchical tree structure. R@milar to anFST, which compactly represents a set of
cently, specific probabilistic tree-based models have begfput/output string pairs, and in fadk,is a generalization
proposed not only for machine translation (Wu, 19974f FST. If we think of strings written down vertically, as
Alshawi, Bangalore, and Douglas, 2000; Yamada angegenerate trees, we can convertB8y into anR trans-
Knight, 2001; Gildea, 2003; Eisner, 2003), but also fogucer by automatically replacirféST transitions withR
productions.

This work was supported by DARPA contract F49620-00
R does have some extra power beyond path following

1-0337 and ARDA contract MDA904-02-C-0450.



Transducer alphabet: {0, 1, a, y, sin, cos, plus, mult}

Transducer states: {d for “derive”, i for “identity”}

Transducer rules:

1. d plus(x0, x1) — plus(d x0, d x1)

2. d mult(x0, x1) — plus(mult(d x0, i x1), mult(d x1, i x0))

d plus - plus
S S
x0 x1 d x0 dx1

d mult - plus
P —T
x0 x1 mult mult
S P
dx0 ix1 dx1 ix0
3. d sin(x0) — mult(cos(i x0), d x0)
d sin - mult
| /\
x0 cos d x0
|
i x0
4. ia—a
ia—a
5. isin(x0) — sin(i x0)
1 sin — sin
x0 1 x0
Transducer in action:
START
d plus plus plus
P Rule Pas Ruls N
sin  mult dsin dmult |3 mult
a cos a a cos a cos d a
y y ia

Figure 1. A sampleR tree transducer that takes the

derivative of its input.

and state-based record keeping. It can copy whole sub-
trees, and transform those subtrees differently. It can als
delete subtrees without inspecting them (imagine by anal-
ogy anFST that quits and accepts right in the middle of
an input string). Variants dR that disallow copying and
deleting are calle®RL (for linear) andRN (for nondelet-
ing), respectively.

One advantage of working with tree transducers is the
large and useful body of literature about these automata;
two excellent surveys are (Gécseg and Steinby, 1984) and
(Comon et al., 1997). For exampkR,is not closed under
composition (Rounds, 1970), and neitherRteor F (the
“frontier-to-root” cousin ofR), but the non-copyingrL
is closed under composition. Many of these composition
results are first found in (Engelfriet, 1975).

R has surprising ability to change the structure of an
input tree. For example, it may not be initially obvious
how anR transducer can transform the English structure
S(PRO, VP(V, NP)) into the Arabic equivalent S(V, PRO,
NP), as it is difficult to move the subject PRO into posi-
tion between the verb V and the direct object NP. Frst,
productions have no lookahead capability—the left-hand-
side of the S production consists only of g S(x0, x1), al-
though we want our English-to-Arabic transformation to
apply only when it faces the entire structure q S(PRO,
VP(V, NP)). However, we can simulate lookahead using
states, as in these productions:

- g S(x0, x1)— S(gpro x0, qvp.v.np x1)

- gpro PRO— PRO

- qvp.v.np VP(x0, x1)}— VP(qv x0, gnp x1)

By omitting rules like gpro NR- ..., we ensure that the
entire production sequence will dead-end unless the first
child of the input tree is in fact PRO. So finite lookahead
is not a problem. The next problem is how to get the PRO
to appear in between the V and NP, as in Arabic. This can
be carried out using copying. We make two copies of the
English VP, and assign them different states:

- g S(x0,x1) — S(gleftvp.v x1, gpro xO,

gright.vp.np x1)

- gpro PRO— PRO

- gleft.vp.v VP(x0, x1)— qv x0

- gright.vp.np VP(x0, X1}~ gnp x1

While general properties dR are understood, there
are many algorithmic questions. In this paper, we take
on the problem otraining probabilisticR transducers.
For many language problems (machine translation, para-
phrasing, text compression, etc.), it is possible to cbllec
training data in the form of tree pairs and to distill lin-
guistic knowledge automatically.

Our problem statement is. Given (1) a particular
transducer with productions P, and (2) a finite training set
of sample input/output tree pairs, we want to produce (3)
a probability estimate for each production in P such that
we maximize the probability of the output trees given the
input trees.



As organized in the rest of this paper, we accomplisf = {S, NP, VP, PP, PREP, DET, N, V, run, the, of, sons,
this by intersecting the given transducer with each indaughter$
put/output pair in turn. Each such intersection produces™ = {anp. app, qdet, gn, gpr¢p
set of weighted derivations that are packed into a regul§r= q
tree grammar (Sections 3-5), which is equivalent to a tré = {d —"° S(anp, VP(V(run))),
substitution grammar. The inside and outside probabili-  anp—"° NP(qdet, gn),
ties of this packed derivation structure are used to com- anp—"* NP(qnp, qpp),
pute expected counts of the productions from the original, app—"° PP(gprep, anp),
given transducer (Sections 6-7). Section 9 gives a sample ~ ddet—"* DET(the),
transducer implementing a published machine translation ~ dprep—"° PREP(of),

model; some readers may wish to skip to this section di-  dn —% N(sons),
rectly. gn —%° N(daughters)

Figure 2: A sample weighted regular tree grammar
(WRTG)

T, is the set ofrooted, ordered, labeled, finite) trees over

alphabet:. An alphabetis just a finite §et. 3 Regular Tree Grammars

Tx(X) are thetrees over alphabet, indexed byX— ) ) .
the subset of%,x where only leaves may be labeled by! this section, we describe thegular tree grammara
X. (Ts(0) = Tx..) Leavesare nodes with no children. ~ €ommon way of compactly representing a potentially in-

Thenodesof a treet are identified one-to-one with its finite set of trees (similar to the role played by the finite-
paths paths, C paths = N* = [J2 N (4° = {()}). state acceptdfSA for strings). We describe the version
The path to the root is the emp'z)? sequerizeand p; (equivalent_toTSG (_Schabes, 1990_)) where the generated
extended bys is p; - p2, Where- is concatenation. trees are given weights, as are strings IWBSA.

For p € paths;, rank,(p) is the number of chil- A weighted regular tree grammaﬁwRTG) G 'S a
dren, orrank, of the node ap in ¢, andlabel;(p) € quaqmple(Z,N, 5, P), _whereE IS t_he aIphabetN_ IS
YU X is its label. The ranked labelof a node is the the finite set ohonterminalsS € N is thestart (or ini-
pair labelandrank,(p) = (labely(p), rank:(p)). For tial) nont_ermlnal andpP cN ><+TE(N) x RT is the finite
1| < i < rank(p), the i child of the node atp is set ofwglghted product!onég ={reR|r>0}).A
located atpath p - (i). The subtree at path p of ts producuor‘(lhs,rhs,w)_ is writtenlhs —>_w rhs. Produc-

t | p, defined bypaths, = {q | p- ¢ € paths,} and tions whoserhs contains no nonterminalsfs € Tx)
labelc’mdrank (q) = laII;el(mdmnk (p-q) are calledterminal productionsand rules of the form

The pathstigX Tn ¢ are pathsi(X) ': p e A =" B, for A,B € N are callede-productions or
paths; | labely(p) € X}. A frontier is a s;t of paths epsilon productionsand can be used in lieu of multiple

) I initial nonterminals.
f that arepairwise prefix-independent Figure 2 shows a sampl@RTG. This grammar ac-

cepts an infinite number of trees. The tree S(NP(DT(the),
N(sons)), VP(V(run))) comes out with probability 0.3.
We define the binary relatios-¢ (single-step derives
in G) onTx(N) x (pathsx P)*, pairs of trees anderiva-
tion histories which are logs of (location, production

2 Trees

Vp1,p2 € f,p € paths :p1 =pa-p = p1 =p2

A frontier of tis a frontierf C paths;.
Fort,s € Tx(X),p € paths,, t[p < s] is thesubstitu-
tion of s for p in ¢, where the subtree at paths replaced

by s. For a frontierf of ¢, the mass substitution ok’ used):

for the_ frontier f in ¢ is vyr|ttent[p — X,Vp € _f] ar_ld o= {((a, hY, (b, h - (p, (I, 7, w))) ’

is equivalent to substituting th& (p) for thep serially in

any order. (l,r,w) € P Ap € paths,({l}) Nb=alp « T]}
Trees may be written as strings ov& U {(,)} )

in the usual way. For example, the trede = where(a, h) = (b, - (p, (I, 7, w))) iff tree b may be

S(NP,VP(V,NP)) haslabelandrank,((2)) = (VP,2) derived from tree: by using the ruld —" r to replace
andlabelandrank,((2,1)) = (V,0). Fort € T, 0 € ¥ the nonterminal leaf at pathp with r. For a derivation

o(t) is the tree whose root has labebnd whose single Nistory 7o = ((p1, (lu, 71, “jll))’ coos (ns (1, w1))),
child is . theweight off is w(h) = [[;__, w;, and callk leftmostif
_ . o 1
Theyield of X in t is yield;(X), the string formed by L(h) =Vl <i<n:pivs Lies pi
reading out the leaves !abeled WIKI in left-to-right or- 1) <iea (@), (1) <iew (a2)iff a1 < a2, (a1) - b1 <iew
der. The usual case (tlyeeld oft) is yield; = yield(X).  (a2) - b2 iff a1 < a2 V (a1 = a2 A b1 <iex b2)



The reflexive, transitive closure ef is written=-, Rules whoserhs are a pureél’a with no states/paths
(derives inG), and the restriction o=}, to leftmost for further expansion are calle@rminal rules Rules
derivation histories iss5* (leftmost derives iit7). of the form(q, pat) —* (q¢’,()) aree-rules or epsilon

The weight of a becomingb in G is wg(a,b) = rules which substitute statg for stateg without produc-
Zh:(a,())éé*(b,h) w(h), the sum of weights of all unique ing output, and stay at the current input subtree. Multiple
(leftmost) derivations transformingto b, and theweight  initial states are not needed: we can use a single start
of t in G is Wg(t) = wa(S,t). Theweighted regu- state@;, and instead of each initial stagewith starting
lar tree language produced b§ is Lg = {(t,w) € Weightw add the rule(Q;, TRUE) —* (q,()) (where
Ty x RY | Wel(t) = w}. TRUE(f) = 1,Vt). _

For every weighted context-free grammar, there is an e define the binary relatios- x for xR tranducerX
equivalenwRTG that produces its weighted derivationON7=uaugx (pathsx R)*, pairs of partially transformed
trees with yields being the string produced, and the yield§vorking) trees and derivation histories:
of regular tree grammars are context free string languages
(Gécseg and Steinby, 1984).

What is sometimes calledfarestin natural language =x= 1 ((a, ), (b,h- (i, (g, pat,m,w)))) |
generation (Langkilde, 2000; Nederhof and Satta, 2002)
is afinite wRTG without loops, i.e.yn € N(n,()) =¢ (¢ pat,r,w) € R \i € pathsa N
(t,h) = paths;({n}) = . Regular tree languages q = labela(i) Apat(a | (i- (1)) =1A

are strictly contained in tree sets of tree adjoining gram- b—als p—dal G (1)),
mars (Joshi and Schabes, 1997). T p s label, (p) = (¢, 1)

4 Extended-LHS Tree Transducers (XR) That is, b is derived froma by application of a rule
(¢,pat) —™ r to an unprocessed input subtree| i

Section 1 informally described the root-to-frontier transwhich is in state, replacing it by output given by, with

ducer clasR. We saw thaR allows, by use of states, ItS honterminals replaced by the instruction to transform

: > ; 7
finite lookahead and arbitrary rearrangement of n0n?‘ﬁzc;%rl\ﬁggé}r;pr%tlesrugtr(eqe? ?}Lgeﬁt"éeRpiﬁg"tﬁteeﬁtﬁgu't_
sibling input subtrees removed by a finite distance. Howsath parts of thei.s nonterminals:

ever, it is often easier to write rules that explicitly repre

sent such lookahead and movement, relieving the burdersources(rhs) = {i' |  3p € paths,us(Q x paths),
on the user to produce the requisite intermediary rules q € Q : labelns(p) = (¢, 1)}
and states. We defindR, a convenience-oriented gener-

alization of weightecR. Because of its good fit to natu- |t the sources of a rule refer to input paths that do not
ral language problemsR is already briefly touched on, eyist in the input, then the rule cannot apply (because
though not defined, in (Rounds, 1970). a | (i- (1)) would not exist). In the traditional state-
A weighted extended-lhs root-to-frontier tree transment ofR, sources(rhs) is always{(1),.. ., (n)}, writ-
ducer X is a quintuple(X, A, Q, Qi, R) whereX is the  ing z; instead of(i), but inxR, we identify mapped input
input alphabet, and\ is the output alphabety is a fi-  sybtrees by arbitrary (finite) paths.
nite set of statesy; € @ is theinitial (or start, or root) An input tree is transformed by starting at the root
state andR C Q x XRPATy x Ta(Q x paths) x R™ iy the initial state, and recursively applying output-
is a finite set ofweighted transformation ruleswritten  generating rules to a frontier of (copies of) input subtrees
(g, pattern) —" rhs, meaning that an input subtree (each marked with their own state), until (incamplete

matchingpattern while in stateq is transformed into gerivation finishing at the leaves with terminal rules) no
rhs, with Q) x paths leaves replaced by their (recursive)states remain.

transformations. Th€ x paths leaves of ahs are called Let =%, =%*, andwx (a,b) follow from =x ex-

nonterminals (there may also béerminal leaves la- actly as in Section 3. Then theeight of (i,0) in X
beled by the output tree alphal}. is Wx (i,0) = wx(Qi(4),0). Theweighted tree trans-
XRPATy; is the set offinite tree patterns predicate duction given byX is Xy = {(i,0,w) € Tx x Ta X

functionsf : T, — {0,1} that depend only on the la- R+ |Wx (i,0) = w}.

bel and rank of a finite number of fixed paths their in-

put. xR is the set of all such transducer®, the set 5 Parsinga Tree Transduction

of conventional top-down transducers, is a subsethof Derivation treesfor a transduceX — (5, A, Q, Qs, R)

where the rules are restricted to use finite tree patteris, irees labeled by rule®) that dictate the choice of
that depend only on the rod®PAT s, = {p,,(t)} where ryles in a completel-derivation. Figure 3 shows deriva-
Po,r(t) = (labeli(() = o Arank.(()) = ). tion trees for a particular transducer. In order to generate



Input tree: Output tree:
A A
/\ /\
B C R S
A~ P A~ |
D E F G T U X
N
v W
Transducer rules:
rulel qA —Lo A
S S
x0 x1 R S
S
gxl gx0 X
rule2 qB Y
S
x0 x1
rule3  q C e T
P N
x0 x1 qx0 gx1
ruled qC 504 T
P N
x0 x1 qxl gqx0

rules qF =¥V
rule6 qF 501 W
rule7 qG 505V
rule8 qG 5% W

Derivation Trees:

rulel
—T

rule3 rule2
S

ruleS rule8 (total weight = 0.27)

rulel
—

ruled rule2
S

rule6  rule?7 (total weight = 0.02)

Figure 3: Derivation trees for aR tree transducer.

derivation trees foX automatically, we build a modified
transducerX’. This new transducer produces derivation
trees on its output instead of normal output tre&s.is
(Za R7 Qa Qia R/)’ with

R = {(q,pattern,rule(yield,ns(Q x paths)),w) |
rule = (q, pattern,rhs,w) € R}

That is, the original-hs of rules are flattened into a
tree of depth 1, with the root labeled by the original rule,
and all the non-expanding-labeled nodes of thehs re-
moved, so that the remaining children are the nonterminal
yield in left to right order. Derivation trees deterministi
cally produce a single weighted output tree.

The derived transduceX’ nicely produces derivation
trees for a given input, but in explaining an observed
(input/output) pair, we must restrict the possibilities-fu
ther. Because the transformations of an input subtree
depend only on that subtree and its state, we can (Al-
gorithm 1) build a compactvRTG that produces ex-
actly the weighted derivation trees correspondingto
transductiong!, ()) =% (O, h) (with weight equal to

6 Inside-Outsidefor wRTG

Given awRTG G = (3, N, S, P), we can compute
the sums of weights of trees derived using each produc-
tion by adapting the well-known inside-outside algorithm
for weighted context-free (string) grammars (Lari and
Young, 1990).

Theinside weights using @re given bygs : T, —
(R—IRR7), giving the sum of weights of all tree-producing
derivatons from trees with nonterminal leaves:

S w Balr) ifte N
_ (t,r,w)eP
t) =
Jal) H Ba(labeli(p)) otherwise
pEpathsi(N)

By definition, 55 (S) gives the sum of the weights of
all trees generated b§. For thewRTG generated by
DERIV(X,I,0), thisis exactyiVx (I, O).

Outside weightss for a nonterminal are the sums of
weights of trees generated by th& T G that have deriva-
tions containing it, but excluding its inside weights (that
is, the weights summed do not include the weights of
rules used to expand an instance of it).

ag(n e N)=1ifn=2_5,else:
uses of n in productions

Z w-ac(n')-

p,(n’,r,w)€P:label,(p)=n

I Bctabel.(p))

p’ €paths,(N)—{p}

sibling nonterminals



Algorithm 1: DERIV

Input: xR transducerX = (%,A,Q,Q;, R) and ob-

served tree paif € Tx;, O € Ta.
Output: derivationwRTG G = (R, N C Q X pathsy X

pathso, S, P) generating all weighted deriva-
tion trees forX that produce) from I. Returns

false instead if there are no such trees.
begin
S —(Qi,(),0)N—0,P<0
if PRODUCE; o(S) then
| return (R, N, S, P)
else
|_return false

end

memoized PRODUCE; o (g, 4, 0) returns boolean =
begin
anyrule? «— false
for r = (q, pattern,rhs,w) € R : pattern(I | i) =
1 AMATCHp a(rhs,0) do
(01,...,0n) < paths,ns(Q X paths) sorted by
01 <lex --- <lex On
Iln=0if there are none
labelandrankgerivrns(()) < (r,n)
for j — 1ton do
(¢',7") « label,ns(05)
c—(q,i-i,0-0)
if - PRODUCE/ o(c) then next r
labelandrankgerivrns((4)) < (¢, 0)

anyrule? «— true
| P — PU{((g,%,0),derivrhs, w)}
if anyrule? then N — N U {(q,,0)}
return anyrule?
end
MATCH, x(t',p) = Vp' € path(t') : label(t',p") €
Y = labelandranky (p') = labelandrank:(p - p')

The possible derivations for a given
PRODUCE; o (g, i, 0) are constant and need not be

Finally, given inside and outside weights, the sum
of weights of trees using a particular production is
va((n,r,w) € P) =ag(n) - w- fa(r).

Computingag and 8¢ for nonrecursivavRTG is a
straightforward translation of the above recursive defi-
nitions (using memoization to compute each result only
once) and i¥)(|G|) in time and space.

7 EM Training

Estimation-Maximization training (Dempster, Laird, and
Rubin, 1977) works on the principle that the corpus like-
lihood can be maximized subject to some normalization
constraint on the parameters by repeatedlyeélimating

the expectation of decisions taken for all possible ways of
generating the training corpus given the current parame-
ters, accumulating parameter counts, andhfaximizing

by assigning the counts to the parameters and renormal-
izing. Each iteration is guaranteed to increase the like-
lihood until a local maximum is reached.

Algorithm 2 implements EMKR training, repeatedly
computing inside-outside weights (using fixed transducer
derivationwRTGs for each input/output tree pair) to ef-
ficiently sum each parameter contribution to likelihood
over all derivations. Each EM iteration takes time linear
in the size of the transducer and linear in the size of the
derivation tree grammars for the training examples. The
size of the derivation trees is at wo3{|Q|-|I|-|O| - | R]).

For a corpus ofK examples with average input/output
size M, an iteration takes (at worst)(|Q| - |R|- K - M?)
time—quadratic, like the forward-backward algorithm.

8 Treeto-String Transducers (XRS)

We now turn to tree-to-string transducerRRS). In the
automata literature, these were first callgeheralized
syntax-directed translationi®ho and Ullman, 1971) and
used to specify compilers. Tree-to-string transducers
have also been applied to machine translation (Yamada
and Knight, 2001; Eisner, 2003).

We give an explicit tree-to-string transducer example
in the next section. Formally, weighted extended-lhs
root-to-frontier tree-to-string transduceX is a quintuple
(3,A,Q,Q;, R) whereX is the input alphabet, and

computed more than once, so the function is memoizedS the output alphabet is a finite set of states);

We have in the worst case to visit &| - || - |O|

Q is theinitial (or start, or root) state andR C Q x

(¢,i,0) pairs and have alIR| transducer rules match at X ZPATs x (AU(Q X paths))* x R* are afinite set of

each of them. If enumerating rules matching transducetveighted transformation rulesvritten (¢, pattern) —

input-patterns and output-subtrees has éo&tonstant
given a transducer), thddERIV has time complexity
O(L-1Q| - 1] -|0[ - [R]).

w

rhs. A rule says that to transform (with weight) an

input subtree matchingattern while in stateg, replace

it by the string ofrhs with its nonterminal Q x paths)

letters replaced by their (recursive) transformation.
XRSis the same agR, except that thehs are strings

containing some nonterminals instead of trees containing

nonterminal leaves (so the intermediate derivation object



Algorithm 2: TRAIN

Input: XR transducetX = (¥, A, Q, Qq4, R), observed
weighted tree pair$ € Tx, x Ta x RT, normal-
ization functionZ ({count, | r € R}, € R),
minimum relative log-likelihood change for con-
vergence € R, maximum number of iterations
maxit € N, and prior counts (for a so-called
Dirichlet prior) {prior, | r € R} for smoothing
each rule.

Output: New rule weightdV = {w, | r € R}.

begin

for (i,0,w) € T' do

di,o —
DERIV(X,i,0)//Al g. 1
if d;,o = falsethen
T —T—{(i,o,w)}
Lwarn(more rules are needed to explain (i,0))
compute inside/outside weights féf, and
remove all useless nonterminalsvhose
/Bdi,o (n) =0or adi,o(n) =0

itno < 0, lastL <+ —00,d «— ¢

for r = (q,pat,rhs,w) € Rdow, «— w

while § > e A itno < maxit do

for r € R do count, < prior,

L—0

for (i, 0, Wegampte) € T

//[Esti mat e

do

let D=d;, = (R,N,S,P)
computenp, Ap using latest
W= {wr | re R}
/lsee Section 6
for prod = (n,rhs,w) € P do
vp(prod) « ap(n) -w - Bp(rhs)
let rule = label,ns(())
countyyle < CoUNtryle +Wegample * 'YJE I()p(rg)d)

| L — L+10g8p(S) - Wezample

for r = (q, pattern,rhs,w) € R
/IMaxi m ze
do

Wy

count,
Z({count,|r € R},r)

lle. 9. Z((q,a,b,c)) = Z count,
r=(q,d,e,f)ER

L — lastL
6 +— ———
|L|

| lastL «— L,itno «— itno + 1

end

are strings containing state-marked input subtrees). We
have developed axRS training procedure similar to the
XR procedure, with extra computational expense to con-
sider how different productions might map to different
spans of the output string. Space limitations prohibit a
detailed description; we refer the reader to a longer ver-
sion of this paper (submitted). We note that this algo-
rithm subsumes normal inside-outside training of PCFG
on strings (Lari and Young, 1990), since we can always
fix the input tree to some constant for all training exam-
ples.

9 Example

It is possible to cast many current probabilistic natural
language models d@-type tree transducers. In this sec-
tion, we implement the translation model of (Yamada
and Knight, 2001). Their generative model provides
a formula for P(Japanese strihgnglish tree), in terms

of individual parameters, and their appendix gives spe-
cial EM re-estimation formulae for maximizing the prod-
uct of these conditional probabilities across the whole
tree/string corpus.

We now build a trainablgRS tree-to-string transducer
that embodies the same P(Japanese stiinglish tree).
First, we need start productions like these, where q is the
start state:

- qx:S— g.TOP.Sx

- g x:\VP — ¢.TOP.VP x
These set up states like . TOP.S, which means “translate
this tree, whose root is S.” Then every g.parent.child pair
gets its own set of three insert-function-word productjons
e.g.:

- 0.TOP.Sx—iXx, rx

- 4.TOP.Sx—rx,ix

- . TOP.S x—rXx

- d-NP.NN x—iXx, rx

- g.NP.NN x—rx, ix

- q.NP.NN x—rx
State i means “produce a Japanese function word out of
thin air.” We include an i production for every Japanese
word in the vocabulary, e.g.:

- ix—de

- ix — kuruma

- I X —=wa
State r means “re-order my children and then recurse.”
For internal nodes, we include a production for ev-
ery parent/child-sequence and every permutation thereof,
e.g.:

- rNP(x0:CD, x1:NN)— g.NP.CD x0, q.NP.NN x1

- rNP(x0:CD, x1:NN)— g.NP.NN x1, g.NP.CD x0
The rhs sends the child subtrees back to state q for re-
cursive processing. However, for English leaf nodes, we
instead transition to a different state t, so as to prohibit
any subsequent Japanese function word insertion:

- r NN(x0:car)— t x0
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