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Abstract

Many probabilistic models for natural language
are now written in terms of hierarchical tree
structure. Tree-based modeling still lacks many
of the standard tools taken for granted in (finite-
state) string-based modeling. The theory of tree
transducer automata provides a possible frame-
work to draw on, as it has been worked out in an
extensive literature. We motivate the use of tree
transducers for natural language and address
the training problem for probabilistic tree-to-
tree and tree-to-string transducers.

1 Introduction

Much of natural language work over the past decade has
employed probabilistic finite-state transducers (FSTs)
operating on strings. This has occurred somewhat under
the influence of speech recognition, where transducing
acoustic sequences to word sequences is neatly captured
by left-to-right stateful substitution. Many conceptual
tools exist, such as Viterbi decoding (Viterbi, 1967) and
forward-backward training (Baum and Eagon, 1967), as
well as generic software toolkits. Moreover, a surprising
variety of problems are attackable withFSTs, from part-
of-speech tagging to letter-to-sound conversion to name
transliteration.

However, language problems like machine transla-
tion break this mold, because they involve massive re-
ordering of symbols, and because the transformation pro-
cesses seem sensitive to hierarchical tree structure. Re-
cently, specific probabilistic tree-based models have been
proposed not only for machine translation (Wu, 1997;
Alshawi, Bangalore, and Douglas, 2000; Yamada and
Knight, 2001; Gildea, 2003; Eisner, 2003), but also for
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summarization (Knight and Marcu, 2002), paraphras-
ing (Pang, Knight, and Marcu, 2003), natural language
generation (Langkilde and Knight, 1998; Bangalore and
Rambow, 2000; Corston-Oliver et al., 2002), and lan-
guage modeling (Baker, 1979; Lari and Young, 1990;
Collins, 1997; Chelba and Jelinek, 2000; Charniak, 2001;
Klein and Manning, 2003). It is useful to understand
generic algorithms that may support all these tasks and
more.

(Rounds, 1970) and (Thatcher, 1970) independently
introduced tree transducers as a generalization ofFSTs.
Rounds was motivated by natural language. The Rounds
tree transducer is very similar to a left-to-rightFST, ex-
cept that it works top-down, pursuing subtrees in paral-
lel, with each subtree transformed depending only on its
own passed-down state. This class of transducer is often
nowadays calledR, for “Root-to-frontier” (Gécseg and
Steinby, 1984).

Rounds uses a mathematics-oriented example of anR
transducer, which we summarize in Figure 1. At each
point in the top-down traversal, the transducer chooses
a production to apply, basedonly on the current state
and the current root symbol. The traversal continues
until there are no more state-annotated nodes. Non-
deterministic transducers may have several productions
with the same left-hand side, and therefore some free
choices to make during transduction.

An R transducer compactly represents a potentially-
infinite set of input/output tree pairs: exactly those pairs
(T1, T2) for which some sequence of productions applied
to T1 (starting in the initial state) results in T2. This is
similar to anFST, which compactly represents a set of
input/output string pairs, and in fact,R is a generalization
of FST. If we think of strings written down vertically, as
degenerate trees, we can convert anyFST into anR trans-
ducer by automatically replacingFST transitions withR
productions.

R does have some extra power beyond path following



Figure 1: A sampleR tree transducer that takes the
derivative of its input.

and state-based record keeping. It can copy whole sub-
trees, and transform those subtrees differently. It can also
delete subtrees without inspecting them (imagine by anal-
ogy anFST that quits and accepts right in the middle of
an input string). Variants ofR that disallow copying and
deleting are calledRL (for linear) andRN (for nondelet-
ing), respectively.

One advantage of working with tree transducers is the
large and useful body of literature about these automata;
two excellent surveys are (Gécseg and Steinby, 1984) and
(Comon et al., 1997). For example,R is not closed under
composition (Rounds, 1970), and neither areRL orF (the
“frontier-to-root” cousin ofR), but the non-copyingFL
is closed under composition. Many of these composition
results are first found in (Engelfriet, 1975).

R has surprising ability to change the structure of an
input tree. For example, it may not be initially obvious
how anR transducer can transform the English structure
S(PRO, VP(V, NP)) into the Arabic equivalent S(V, PRO,
NP), as it is difficult to move the subject PRO into posi-
tion between the verb V and the direct object NP. First,R
productions have no lookahead capability—the left-hand-
side of the S production consists only of q S(x0, x1), al-
though we want our English-to-Arabic transformation to
apply only when it faces the entire structure q S(PRO,
VP(V, NP)). However, we can simulate lookahead using
states, as in these productions:

- q S(x0, x1)→ S(qpro x0, qvp.v.np x1)
- qpro PRO→ PRO
- qvp.v.np VP(x0, x1)→ VP(qv x0, qnp x1)

By omitting rules like qpro NP→ ..., we ensure that the
entire production sequence will dead-end unless the first
child of the input tree is in fact PRO. So finite lookahead
is not a problem. The next problem is how to get the PRO
to appear in between the V and NP, as in Arabic. This can
be carried out using copying. We make two copies of the
English VP, and assign them different states:

- q S(x0,x1) → S(qleft.vp.v x1, qpro x0,
qright.vp.np x1)

- qpro PRO→ PRO
- qleft.vp.v VP(x0, x1)→ qv x0
- qright.vp.np VP(x0, x1)→ qnp x1

While general properties ofR are understood, there
are many algorithmic questions. In this paper, we take
on the problem oftraining probabilisticR transducers.
For many language problems (machine translation, para-
phrasing, text compression, etc.), it is possible to collect
training data in the form of tree pairs and to distill lin-
guistic knowledge automatically.

Our problem statement is: Given (1) a particular
transducer with productions P, and (2) a finite training set
of sample input/output tree pairs, we want to produce (3)
a probability estimate for each production in P such that
we maximize the probability of the output trees given the
input trees.



As organized in the rest of this paper, we accomplish
this by intersecting the given transducer with each in-
put/output pair in turn. Each such intersection produces a
set of weighted derivations that are packed into a regular
tree grammar (Sections 3-5), which is equivalent to a tree
substitution grammar. The inside and outside probabili-
ties of this packed derivation structure are used to com-
pute expected counts of the productions from the original,
given transducer (Sections 6-7). Section 9 gives a sample
transducer implementing a published machine translation
model; some readers may wish to skip to this section di-
rectly.

2 Trees

TΣ is the set of(rooted, ordered, labeled, finite) trees over
alphabetΣ. An alphabetis just a finite set.

TΣ(X) are thetrees over alphabetΣ, indexed byX—
the subset ofTΣ∪X where only leaves may be labeled by
X . (TΣ(∅) = TΣ.) Leavesare nodes with no children.

Thenodesof a treet are identified one-to-one with its
paths: pathst ⊂ paths ≡ N∗ ≡

⋃∞

i=0 Ni (A0 ≡ {()}).
The path to the root is the empty sequence(), and p1

extended byp2 is p1 · p2, where· is concatenation.
For p ∈ pathst, rankt(p) is the number of chil-

dren, or rank, of the node atp in t, and labelt(p) ∈
Σ ∪ X is its label. The ranked labelof a node is the
pair labelandrankt(p) ≡ (labelt(p), rankt(p)). For
1 ≤ i ≤ rankt(p), the ith child of the node atp is
located atpath p · (i). The subtree at path p of tis
t ↓ p, defined bypathst↓p ≡ {q | p · q ∈ pathst} and
labelandrankt↓p(q) ≡ labelandrankt(p · q).

The paths to X in t are pathst(X) ≡ {p ∈
pathst | labelt(p) ∈ X}. A frontier is a set of paths
f that arepairwise prefix-independent:

∀p1, p2 ∈ f, p ∈ paths : p1 = p2 · p =⇒ p1 = p2

A frontier of t is a frontierf ⊆ pathst.
Fort, s ∈ TΣ(X), p ∈ pathst, t[p← s] is thesubstitu-

tion ofs for p in t, where the subtree at pathp is replaced
by s. For a frontierf of t, the mass substitution ofX
for the frontierf in t is written t[p ← X, ∀p ∈ f ] and
is equivalent to substituting theX(p) for thep serially in
any order.

Trees may be written as strings overΣ ∪ {(, )}
in the usual way. For example, the treet =
S(NP, VP(V, NP)) has labelandrankt((2)) = (VP, 2)
andlabelandrankt((2, 1)) = (V, 0). Fort ∈ TΣ, σ ∈ Σ,
σ(t) is the tree whose root has labelσ and whose single
child is t.

Theyield ofX in t is yieldt(X), the string formed by
reading out the leaves labeled withX in left-to-right or-
der. The usual case (theyield oft) is yieldt ≡ yieldt(Σ).

Σ = {S, NP, VP, PP, PREP, DET, N, V, run, the, of, sons,
daughters}
N = {qnp, qpp, qdet, qn, qprep}
S = q
P ={q→1.0 S(qnp, VP(V(run))),

qnp→0.6 NP(qdet, qn),
qnp→0.4 NP(qnp, qpp),
qpp→1.0 PP(qprep, qnp),
qdet→1.0 DET(the),
qprep→1.0 PREP(of),
qn→0.5 N(sons),
qn→0.5 N(daughters)}

Figure 2: A sample weighted regular tree grammar
(wRTG)

3 Regular Tree Grammars

In this section, we describe theregular tree grammar, a
common way of compactly representing a potentially in-
finite set of trees (similar to the role played by the finite-
state acceptorFSA for strings). We describe the version
(equivalent toTSG (Schabes, 1990)) where the generated
trees are given weights, as are strings in aWFSA.

A weighted regular tree grammar(wRTG) G is a
quadruple(Σ, N, S, P ), whereΣ is the alphabet,N is
the finite set ofnonterminals, S ∈ N is thestart (or ini-
tial) nonterminal, andP ⊆ N×TΣ(N)×R+ is the finite
set ofweighted productions(R+ ≡ {r ∈ R | r > 0}). A
production(lhs, rhs, w) is writtenlhs→w rhs. Produc-
tions whoserhs contains no nonterminals (rhs ∈ TΣ)
are calledterminal productions, and rules of the form
A →w B, for A, B ∈ N are calledǫ-productions, or
epsilon productions, and can be used in lieu of multiple
initial nonterminals.

Figure 2 shows a samplewRTG. This grammar ac-
cepts an infinite number of trees. The tree S(NP(DT(the),
N(sons)), VP(V(run))) comes out with probability 0.3.

We define the binary relation⇒G (single-step derives
in G) onTΣ(N)×(paths×P )∗, pairs of trees andderiva-
tion histories, which are logs of (location, production
used):

⇒G≡
{

((a, h), (b, h · (p, (l, r, w)))
∣

∣

(l, r, w) ∈ P ∧ p ∈ pathsa({l}) ∧ b = a[p← r]
}

where(a, h)⇒G (b, h · (p, (l, r, w))) iff tree b may be
derived from treea by using the rulel →w r to replace
the nonterminal leafl at pathp with r. For a derivation
history h = ((p1, (l1, r1, w1)), . . . , (pn, (l1, r1, w1))),
theweight ofh is w(h) ≡

∏n
i=1 wi, and callh leftmostif

L(h) ≡ ∀1 ≤ i < n : pi+1 ≮lex pi.1

1() <lex (a), (a1) <lex (a2) iff a1 < a2, (a1) · b1 <lex

(a2) · b2 iff a1 < a2 ∨ (a1 = a2 ∧ b1 <lex b2)



The reflexive, transitive closure of⇒G is written⇒∗
G

(derives inG), and the restriction of⇒∗
G to leftmost

derivation histories is⇒L∗
G (leftmost derives inG).

The weight of a becomingb in G is wG(a, b) ≡
∑

h:(a,())⇒L∗

G
(b,h) w(h), the sum of weights of all unique

(leftmost) derivations transforminga to b, and theweight
of t in G is WG(t) = wG(S, t). The weighted regu-
lar tree language produced byG is LG ≡ {(t, w) ∈
TΣ × R+ |WG(t) = w}.

For every weighted context-free grammar, there is an
equivalentwRTG that produces its weighted derivation
trees with yields being the string produced, and the yields
of regular tree grammars are context free string languages
(Gécseg and Steinby, 1984).

What is sometimes called aforest in natural language
generation (Langkilde, 2000; Nederhof and Satta, 2002)
is afinite wRTG without loops, i.e.,∀n ∈ N(n, ()) ⇒∗

G

(t, h) =⇒ pathst({n}) = ∅. Regular tree languages
are strictly contained in tree sets of tree adjoining gram-
mars (Joshi and Schabes, 1997).

4 Extended-LHS Tree Transducers (xR)

Section 1 informally described the root-to-frontier trans-
ducer classR. We saw thatR allows, by use of states,
finite lookahead and arbitrary rearrangement of non-
sibling input subtrees removed by a finite distance. How-
ever, it is often easier to write rules that explicitly repre-
sent such lookahead and movement, relieving the burden
on the user to produce the requisite intermediary rules
and states. We definexR, a convenience-oriented gener-
alization of weightedR. Because of its good fit to natu-
ral language problems,xR is already briefly touched on,
though not defined, in (Rounds, 1970).

A weighted extended-lhs root-to-frontier tree trans-
ducerX is a quintuple(Σ, ∆, Q, Qi, R) whereΣ is the
input alphabet, and∆ is the output alphabet,Q is a fi-
nite set of states,Qi ∈ Q is the initial (or start, or root)
state, andR ⊆ Q × XRPATΣ × T∆(Q × paths) × R+

is a finite set ofweighted transformation rules, written
(q, pattern) →w rhs, meaning that an input subtree
matchingpattern while in stateq is transformed into
rhs, with Q× paths leaves replaced by their (recursive)
transformations. TheQ×paths leaves of arhs are called
nonterminals (there may also beterminal leaves la-
beled by the output tree alphabet∆).

XRPATΣ is the set offinite tree patterns: predicate
functionsf : TΣ → {0, 1} that depend only on the la-
bel and rank of a finite number of fixed paths their in-
put. xR is the set of all such transducers.R, the set
of conventional top-down transducers, is a subset ofxR
where the rules are restricted to use finite tree patterns
that depend only on the root:RPATΣ ≡ {pσ,r(t)} where
pσ,r(t) ≡ (labelt(()) = σ ∧ rankt(()) = r).

Rules whoserhs are a pureT∆ with no states/paths
for further expansion are calledterminal rules. Rules
of the form(q, pat) →w (q′, ()) areǫ-rules, or epsilon
rules, which substitute stateq′ for stateq without produc-
ing output, and stay at the current input subtree. Multiple
initial states are not needed: we can use a single start
stateQi, and instead of each initial stateq with starting
weight w add the rule(Qi, TRUE) →w (q, ()) (where
TRUE(t) ≡ 1, ∀t).

We define the binary relation⇒X for xR tranducerX
onTΣ∪∆∪Q×(paths×R)∗, pairs of partially transformed
(working) trees and derivation histories:

⇒X≡

{

((a, h), (b, h · (i, (q, pat, r, w))))
∣

∣

(q, pat, r, w) ∈ R ∧ i ∈ pathsa ∧
q = labela(i) ∧ pat(a ↓ (i · (1))) = 1 ∧

b = a

[

i← r

[

p← q′(a ↓ (i · (1) · i′)),
∀p : labelr(p) = (q′, i′)

]]

}

That is, b is derived froma by application of a rule
(q, pat) →w r to an unprocessed input subtreea ↓ i
which is in stateq, replacing it by output given byr, with
its nonterminals replaced by the instruction to transform
descendant input subtrees at relative pathi′ in stateq′.
Thesourcesof a ruler = (q, l, rhs, w) ∈ R are the input-
path parts of therhs nonterminals:

sources(rhs) ≡
˘
i′

˛
˛ ∃p ∈ pathsrhs(Q × paths),

q′ ∈ Q : labelrhs(p) = (q′, i′)
¯

If the sources of a rule refer to input paths that do not
exist in the input, then the rule cannot apply (because
a ↓ (i · (1) · i′) would not exist). In the traditional state-
ment ofR, sources(rhs) is always{(1), . . . , (n)}, writ-
ing xi instead of(i), but inxR, we identify mapped input
subtrees by arbitrary (finite) paths.

An input tree is transformed by starting at the root
in the initial state, and recursively applying output-
generating rules to a frontier of (copies of) input subtrees
(each marked with their own state), until (in acomplete
derivation, finishing at the leaves with terminal rules) no
states remain.

Let ⇒∗
X , ⇒L∗

X , and wX(a, b) follow from ⇒X ex-
actly as in Section 3. Then theweight of (i, o) in X

is WX(i, o) ≡ wX(Qi(i), o). The weighted tree trans-
duction given byX is XX ≡ {(i, o, w) ∈ TΣ × T∆ ×
R+|WX(i, o) = w}.

5 Parsing a Tree Transduction
Derivation treesfor a transducerX = (Σ, ∆, Q, Qi, R)
are trees labeled by rules (R) that dictate the choice of
rules in a completeX-derivation. Figure 3 shows deriva-
tion trees for a particular transducer. In order to generate



Figure 3: Derivation trees for anR tree transducer.

derivation trees forX automatically, we build a modified
transducerX ′. This new transducer produces derivation
trees on its output instead of normal output trees.X ′ is
(Σ, R, Q, Qi, R

′), with

R′ ≡ {(q, pattern, rule(yieldrhs(Q × paths)), w) |
rule = (q, pattern, rhs, w) ∈ R}

That is, the originalrhs of rules are flattened into a
tree of depth 1, with the root labeled by the original rule,
and all the non-expanding∆-labeled nodes of therhs re-
moved, so that the remaining children are the nonterminal
yield in left to right order. Derivation trees deterministi-
cally produce a single weighted output tree.

The derived transducerX ′ nicely produces derivation
trees for a given input, but in explaining an observed
(input/output) pair, we must restrict the possibilities fur-
ther. Because the transformations of an input subtree
depend only on that subtree and its state, we can (Al-
gorithm 1) build a compactwRTG that produces ex-
actly the weighted derivation trees corresponding toX-
transductions(I, ()) ⇒∗

X (O, h) (with weight equal to
wX(h)).

6 Inside-Outside for wRTG

Given a wRTG G = (Σ, N, S, P ), we can compute
the sums of weights of trees derived using each produc-
tion by adapting the well-known inside-outside algorithm
for weighted context-free (string) grammars (Lari and
Young, 1990).

The inside weights using Gare given byβG : TΣ →
(R−R−), giving the sum of weights of all tree-producing
derivatons from trees with nonterminal leaves:

βG(t) ≡















∑

(t,r,w)∈P

w · βG(r) if t ∈ N

∏

p∈pathst(N)

βG(labelt(p)) otherwise

By definition,βG(S) gives the sum of the weights of
all trees generated byG. For thewRTG generated by
DERIV(X, I, O), this is exactlyWX(I, O).

Outside weightsαG for a nonterminal are the sums of
weights of trees generated by thewRTG that have deriva-
tions containing it, but excluding its inside weights (that
is, the weights summed do not include the weights of
rules used to expand an instance of it).

αG(n ∈ N) ≡ 1 if n = S, else:

uses of n in productions
z }| {

X

p,(n′,r,w)∈P :labelr(p)=n

w · αG(n′) ·
Y

p′∈pathsr(N)−{p}

βG(labelr(p
′))

| {z }

sibling nonterminals



Algorithm 1: DERIV

Input: xR transducerX = (Σ, ∆, Q, Qi, R) and ob-
served tree pairI ∈ TΣ, O ∈ T∆.

Output: derivationwRTG G = (R, N ⊆ Q× pathsI ×
pathsO, S, P ) generating all weighted deriva-
tion trees forX that produceO from I. Returns
false instead if there are no such trees.

begin
S ← (Qi, (), ()), N ← ∅, P ← ∅
if PRODUCEI,O(S) then

return (R, N, S, P )

else
return false

end

memoized PRODUCEI,O(q, i, o) returns boolean≡
begin

anyrule?← false

for r = (q, pattern, rhs, w) ∈ R : pattern(I ↓ i) =
1 ∧MATCHO,∆(rhs, o) do

(o1, . . . , on)← pathsrhs(Q× paths) sorted by
o1 <lex . . . <lex on

//n = 0 if there are none
labelandrankderivrhs(())← (r, n)
for j ← 1 to n do

(q′, i′)← labelrhs(oj)
c← (q′, i · i′, o · oi)
if ¬PRODUCEI,O(c) then next r

labelandrankderivrhs((j))← (c, 0)

anyrule?← true

P ← P ∪ {((q, i, o), derivrhs, w)}

if anyrule? then N ← N ∪ {(q, i, o)}
return anyrule?

end

MATCHt,Σ(t′, p) ≡ ∀p′ ∈ path(t′) : label(t′, p′) ∈
Σ =⇒ labelandrankt′(p

′) = labelandrankt(p · p′)

The possible derivations for a given
PRODUCEI,O(q, i, o) are constant and need not be
computed more than once, so the function is memoized.
We have in the worst case to visit all|Q| · |I| · |O|
(q, i, o) pairs and have all|R| transducer rules match at
each of them. If enumerating rules matching transducer
input-patterns and output-subtrees has costL (constant
given a transducer), thenDERIV has time complexity
O(L · |Q| · |I| · |O| · |R|).

Finally, given inside and outside weights, the sum
of weights of trees using a particular production is
γG((n, r, w) ∈ P ) ≡ αG(n) · w · βG(r).

ComputingαG and βG for nonrecursivewRTG is a
straightforward translation of the above recursive defi-
nitions (using memoization to compute each result only
once) and isO(|G|) in time and space.

7 EM Training

Estimation-Maximization training (Dempster, Laird, and
Rubin, 1977) works on the principle that the corpus like-
lihood can be maximized subject to some normalization
constraint on the parameters by repeatedly (1)estimating
the expectation of decisions taken for all possible ways of
generating the training corpus given the current parame-
ters, accumulating parameter counts, and (2)maximizing
by assigning the counts to the parameters and renormal-
izing. Each iteration is guaranteed to increase the like-
lihood until a local maximum is reached.

Algorithm 2 implements EMxR training, repeatedly
computing inside-outside weights (using fixed transducer
derivationwRTGs for each input/output tree pair) to ef-
ficiently sum each parameter contribution to likelihood
over all derivations. Each EM iteration takes time linear
in the size of the transducer and linear in the size of the
derivation tree grammars for the training examples. The
size of the derivation trees is at worstO(|Q|·|I|·|O|·|R|).
For a corpus ofK examples with average input/output
sizeM , an iteration takes (at worst)O(|Q| · |R| ·K ·M2)
time—quadratic, like the forward-backward algorithm.

8 Tree-to-String Transducers (xRS)

We now turn to tree-to-string transducers (xRS). In the
automata literature, these were first calledgeneralized
syntax-directed translations(Aho and Ullman, 1971) and
used to specify compilers. Tree-to-string transducers
have also been applied to machine translation (Yamada
and Knight, 2001; Eisner, 2003).

We give an explicit tree-to-string transducer example
in the next section. Formally, aweighted extended-lhs
root-to-frontier tree-to-string transducerX is a quintuple
(Σ, ∆, Q, Qi, R) whereΣ is the input alphabet, and∆
is the output alphabet,Q is a finite set of states,Qi ∈
Q is the initial (or start, or root) state, andR ⊆ Q ×
XRPATΣ× (∆∪ (Q×paths))⋆×R+ are a finite set of
weighted transformation rules, written (q, pattern) →w

rhs. A rule says that to transform (with weightw) an
input subtree matchingpattern while in stateq, replace
it by the string ofrhs with its nonterminal (Q × paths)
letters replaced by their (recursive) transformation.

xRS is the same asxR, except that therhs are strings
containing some nonterminals instead of trees containing
nonterminal leaves (so the intermediate derivation objects



Algorithm 2: TRAIN

Input: xR transducerX = (Σ, ∆, Q, Qd, R), observed
weighted tree pairsT ∈ TΣ × T∆ × R+, normal-
ization functionZ({countr | r ∈ R}, r′ ∈ R),
minimum relative log-likelihood change for con-
vergenceǫ ∈ R+, maximum number of iterations
maxit ∈ N, and prior counts (for a so-called
Dirichlet prior) {priorr | r ∈ R} for smoothing
each rule.

Output: New rule weightsW ≡ {wr | r ∈ R}.

begin
for (i, o, w) ∈ T do

di,o ←
DERIV(X, i, o)//Alg. 1

if di,o = false then
T ← T − {(i, o, w)}
warn(more rules are needed to explain (i,o))

compute inside/outside weights fordi,o and
remove all useless nonterminalsn whose
βdi,o

(n) = 0 or αdi,o
(n) = 0

itno← 0, lastL← −∞, δ ← ǫ

for r = (q, pat, rhs, w) ∈ R do wr ← w

while δ ≥ ǫ ∧ itno < maxit do
for r ∈ R do countr ← priorr

L← 0
for (i, o, wexample) ∈ T

//Estimate
do

let D ≡ di,o ≡ (R, N, S, P )
computeαD, βD using latest
W ≡ {wr | r ∈ R}
//see Section 6
for prod = (n, rhs, w) ∈ P do

γD(prod)← αD(n) · w · βD(rhs)
let rule ≡ labelrhs(())

countrule ← countrule+wexample ·
γD(prod)

βD(S)

L← L + log βD(S) · wexample

for r = (q, pattern, rhs, w) ∈ R

//Maximize
do

wr ←
countr

Z({countr|r ∈ R}, r)

//e.g.Z((q, a, b, c)) ≡
∑

r=(q,d,e,f)∈R

countr

δ ←
L− lastL

|L|
lastL← L, itno← itno + 1

end

are strings containing state-marked input subtrees). We
have developed anxRS training procedure similar to the
xR procedure, with extra computational expense to con-
sider how different productions might map to different
spans of the output string. Space limitations prohibit a
detailed description; we refer the reader to a longer ver-
sion of this paper (submitted). We note that this algo-
rithm subsumes normal inside-outside training of PCFG
on strings (Lari and Young, 1990), since we can always
fix the input tree to some constant for all training exam-
ples.

9 Example

It is possible to cast many current probabilistic natural
language models asR-type tree transducers. In this sec-
tion, we implement the translation model of (Yamada
and Knight, 2001). Their generative model provides
a formula for P(Japanese string| English tree), in terms
of individual parameters, and their appendix gives spe-
cial EM re-estimation formulae for maximizing the prod-
uct of these conditional probabilities across the whole
tree/string corpus.

We now build a trainablexRS tree-to-string transducer
that embodies the same P(Japanese string| English tree).
First, we need start productions like these, where q is the
start state:

- q x:S→ q.TOP.S x
- q x:VP→ q.TOP.VP x

These set up states like q.TOP.S, which means “translate
this tree, whose root is S.” Then every q.parent.child pair
gets its own set of three insert-function-wordproductions,
e.g.:

- q.TOP.S x→ i x, r x
- q.TOP.S x→ r x, i x
- q.TOP.S x→ r x

- q.NP.NN x→ i x, r x
- q.NP.NN x→ r x, i x
- q.NP.NN x→ r x

State i means “produce a Japanese function word out of
thin air.” We include an i production for every Japanese
word in the vocabulary, e.g.:

- i x → de
- i x → kuruma
- i x → wa

State r means “re-order my children and then recurse.”
For internal nodes, we include a production for ev-
ery parent/child-sequence and every permutation thereof,
e.g.:

- r NP(x0:CD, x1:NN)→ q.NP.CD x0, q.NP.NN x1
- r NP(x0:CD, x1:NN)→ q.NP.NN x1, q.NP.CD x0

The rhs sends the child subtrees back to state q for re-
cursive processing. However, for English leaf nodes, we
instead transition to a different state t, so as to prohibit
any subsequent Japanese function word insertion:

- r NN(x0:car)→ t x0



- r CC(x0:and)→ t x0

State t means “translate this word,” and we have a produc-
tion for every pair of co-occurring English and Japanese
words:

- t car→ kuruma
- t car→ wa
- t car→ *e*

This follows (Yamada and Knight, 2001) in also allowing
English words to disappear, or translate to epsilon.

Every production in thexRS transducer has an associ-
ated weight and corresponds to exactly one of the model
parameters.

There are several benefits to thisxRS formulation.
First, it clarifies the model, in the same way that (Knight
and Al-Onaizan, 1998; Kumar and Byrne, 2003) eluci-
date other machine translation models in easily-grasped
FST terms. Second, the model can be trained with
generic, off-the-shelf tools—versus the alternative of
working out model-specific re-estimation formulae and
implementing custom training software. Third, we can
easily extend the model in interesting ways. For exam-
ple, we can add productions for multi-level and lexical
re-ordering:

- r NP(x0:NP, PP(IN(of), x1:NP))→ q x1, no, q x0

We can add productions for phrasal translations:
- r NP(JJ(big), NN(cars))→ ooki, kuruma

This can now include crucial non-constituent phrasal
translations:

- r S(NP(PRO(there),VP(VB(are), x0:NP)→ q x0, ga,
arimasu

We can also eliminate many epsilon word-translation
rules in favor of more syntactically-controlled ones, e.g.:

- r NP(DT(the),x0:NN)→ q x0

We can make many such changes without modifying the
training procedure, as long as we stick to tree automata.

10 Related Work

Tree substitution grammars orTSG (Schabes, 1990)
are equivalent to regular tree grammars.xR transduc-
ers are similar to (weighted) SynchronousTSG, except
that xR can copy input trees (and transform the copies
differently), but does not model deleted input subtrees.
(Eisner, 2003) discusses training for Synchronous TSG.
Our training algorithm is a generalization of forward-
backward EM training for finite-state (string) transducers,
which is in turn a generalization of the original forward-
backward algorithm for Hidden Markov Models.
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