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Abstract

Supervised estimation methods are widely seen
as being superior to semi and fully unsuper-
vised methods. However, supervised methods
crucially rely upon training sets that need to
be manually annotated. This can be very ex-
pensive, especially when skilled annotators are
required. Active learning (AL) promises to
help reduce this annotation cost. Within the
complex domain of HPSG parse selection, we
show that ideas from ensemble learning can
help further reduce the cost of annotation. Our
main results show that at times, an ensemble
model trained with randomly sampled exam-
ples can outperform a single model trained us-
ing AL. However, converting the single-model
AL method into an ensemble-based AL method
shows that even this much stronger baseline
model can be improved upon. Our best results
show a 73% reduction in annotation cost com-
pared with single-model random sampling.

1 Introduction

Active learning (AL) methods, such as uncertainty sam-
pling (Cohn et al., 1995) or query by committee (Seung
et al., 1992), can dramatically reduce the cost of creat-
ing an annotated dataset. In particular, they enable rapid
creation of labeled datasets which can then be used for
trainable speech and language technologies. Progress in
AL will therefore translate into even greater savings in
annotation costs and hence faster creation of speech and
language systems.
In this paper, we:

e Present a novel way of improving uncertainty sam-
pling by generalizing it from using a single model to
using an ensemble model. This generalization easily
outperforms single-model uncertainty sampling.

e Introduce a new, extremely simple AL method
(called lowest best probability selection) which is
competitive with uncertainty sampling and can also
be improved using ensemble techniques.

e Show that an ensemble of models trained using ran-
domly sampled examples can outperform a single
model trained using (single model) AL methods.

e Demonstrate further reductions in annotation cost
when we train the ensemble parse selection model
using examples selected by an ensemble-based ac-
tive learner. This result shows that ensemble learn-
ing can improve both the underlying model and also
the way we select examples for it.

Our domain is parse selection for Head-Driven Phrase
Structure Grammar (HPSG). Although annotated corpora
exist for HPSG, such corpora do not exist in significant
volumes and are limited to a few small domains (Oepen
et al., 2002). Even if it were possible to bootstrap from
the Penn Treebank, it is still unlikely that there would be
sufficient quantities of high quality material necessary to
improve parse selection for detailed linguistic formalisms
such as HPSG. There is thus a pressing need to efficiently
create significant volumes of annotated material.

AL applied to parse selection is much more challeng-
ing than applying it to simpler tasks such as text classifi-
cation or part-of-speech tagging. Our labels are complex
objects rather than discrete values drawn from a small,
fixed set. Furthermore, the fact that sentences are of vari-
able length and have variable numbers of parses poten-
tially adds to the complexity of the task.

Our results specific to parse selection show that:

o An ensemble of three parse selection models is able
to achieve a 10.8% reduction in error rate over the
best single model.

e Annotation cost should not assume a unit expendi-
ture per example. Using a more refined cost met-



ric based upon efficiently selecting the correct parse
from a set of possible parses, we are able to show
that some AL methods are more effective than oth-
ers, even though they perform similarly when mak-
ing the unit cost per example assumption.

e Ad-hoc selection methods based upon superficial
characteristics of the data, such as sentence length
or ambiguity rate, are typically worse than random
sampling. This motivates using AL methods.

o Labeling sentences in the order they appear in the
corpus — as is typically done in annotation — per-
forms much worse than using random selection.

Throughout this paper, we shall treat the terms sen-
tences and examples as interchangeable; we shall also
consider parses and labels as equivalent. Also, we shall
use the term method whenever we are talking about AL,
and model whenever we are talking about parse selection.

2 Parsesdection

2.1 The Redwoods treebank

Many broad coverage grammars providing detailed syn-
tactic and semantic analyses of sentences exist for a va-
riety of computational grammar frameworks, but their
purely symbolic nature means that when ordering li-
censed analyses, parse selection models are necessary. To
overcome this limitation for the HPSG English Resource
Grammar (ERG, Flickinger (2000)), the Redwoods tree-
bank has been created to provide annotated training ma-
terial (Oepen et al., 2002).

For each utterance in Redwoods, analyses licensed by
the ERG are enumerated and the correct one, if present,
is indicated. Each analysis is represented as a tree that
records the grammar rules which were used to derive it.
For example, Figure 1a shows the preferred derivation
tree, out of three analyses, for what can I do for you?.

Using these trees and the ERG, several different views
of analyses can be recovered: phrase structures, semantic
interpretations, and elementary dependency graphs. The
phrase structures contain detailed HPSG non-terminals
but are otherwise of the variety familiar from context-free
grammar, as can be seen in Figure 1b.

Unlike most treebanks, Redwoods also provides se-
mantic information for utterances. The semantic interpre-
tations are expressed using Minimal Recursion Seman-
tics (MRS) (Copestake et al., 2001), which provides the
means to represent interpretations with a flat, underspec-
ified semantics using terms of the predicate calculus and
generalized quantifiers. An example MRS structure is
given in Figure 2.

An elementary dependency graph is a simplified ab-
straction on a full MRS structure which uses no under-

specification and retains only the major semantic predi-
cates and their relations to one another.

In this paper, we report results using the third growth
of Redwoods, which contains 5302 sentences for which
there are at least two parses and for which a unique pre-
ferred parse is identified. These sentences have 9.3 words
and 58.0 parses on average. Due to the small size of Red-
woods and the underlying complexity of the system, ex-
ploring the effect of AL techniques for this domain is of
practical, as well as theoretical, interest.

2.2 Modeling parse selection

As is now standard for feature-based grammars, we use
log-linear models for parse selection (Johnson et al.,
1999). Log-linear models are popular for their ability to
incorporate a wide variety of features without making as-
sumptions about their independence.*

For log-linear models, the conditional probability of
an analysis ¢ given a sentence with a set of analyses 7 =
{t...} isgivenas:

exp(37L; fi(t)wy)
Z(s)

where f;(t) returns the number of times feature j occurs
in analysis t, w; is a weight, Z(s) is a normalization fac-
tor for the sentence, and My, is a model. The parse with
the highest probability is taken as the preferred parse for
the model. We use the limited memory variable metric
algorithm (Malouf, 2002) to determine the weights. Note
that because the ERG usually only produces relatively
few parses for in-coverage sentences, we can simply enu-
merate all parses and rank them.

The previous parse selection model (equation 1) uses a
single model. It is possible to improve performance using
an ensemble parse selection model. We create our ensem-
ble model (called a product model) using the product-of-
experts formulation (Hinton, 1999):

— H?:l P(tlsaMi)
Z(s)

Note that each individual model M; is a well-defined dis-
tribution and is usually taken from a fixed set of mod-
els. Z(s) is a normalization factor to ensure the product
distribution sums to one over the set of possible parses.
A product model effectively averages the contributions
made by each of the individual models. Our product
model, although simple, is sufficient to show enhanced
performance when using multiple models. Of course,
other ensemble techniques could be used instead.

P(t|s, M, ... M,) o)

1\We also discussed perceptron models in Baldridge and Os-
borne (2003); here, we keep the model class fixed to compare
different AL methods.
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Figure 1: Example ERG derivation tree (a) and phrase structure tree (b).

{h1, e2, {hs:which_rel(BV:z4,RESTR:hg,SCOPE:hg,DIM:v7), hg:Can_rel(EVENT:e2,ARG:v12,ARG4 :h10,DIM v11),
h1s:def_rel(BV:x14,RESTR:h16,SCOPE:h17,DIM:v1g), hag:def_rel(BV:xa6,RESTR:h29,SCOPE:h3g,DIM:v31),
h1g9:do_rel(EVENT:e20,ARG:v21,ARGL:Z14,ARG3:24,ARG4 :v23,DIM:v22), h1:int_rel(SOA:hs2), hs:thing_rel(INST:z4)
hig:for_rel(EVENT:e25,ARG:e20,ARG3:Z 26,DIM:v24), ha7:pron_rel(INST:z26), his:pron_rel(INST:z14)},

{he=geqh3, h10=geqh19, h16=geq P13, hao=geqh27, hao=geqho})

Figure 2: MRS structure for the sentence what can | do for you? The label of the entire structure is h, and the main
event index is es. These are followed by a list of elementary predications, each of which is preceded by a label that
allows it to be related to other predications. The final list is a set of constraints on how labels may be equated.

2.3 Three feature sets

Utilizing the various structures made available by Red-
woods — derivation trees, phrase structures, MRS struc-
tures, and elementary dependency graphs — we create
three distinct feature sets — configurational, ngram, and
conglomerate. These three feature sets are used to train
log-linear models. They incorporate different aspects of
the parse selection task and so have different properties.
This is crucial for creating diverse models for use in prod-
uct ensembles as well as for the ensemble-based AL al-
gorithms discussed in 4.

The configurational feature set is based on the deriva-
tion tree features described by Toutanova etal. (2003)
and takes into account parent, grandparent, and sibling
relationships among the nodes of the trees (such as that
given in Figure 1(a)). The ngram set, described by
Baldridge and Osborne (2003), also uses derivation trees;
however, it uses a linearized representation of trees to
create ngrams over the tree nodes. This feature creation
strategy encodes many (but not all) of the relationships in
the configurational set, and also captures some additional
long-distance relationships.

The conglomerate feature set uses a mixture of fea-
tures gleaned from phrase structures, MRS structures,
and elementary dependency graphs. Each of these rep-
resentations contains less information than that provided
by derivation trees, but together they provide a different
and comprehensive view on the ERG semantic analyses.
The features contributed by phrase structures are simply

ngrams of the kind described above for derivation trees.
The features drawn from the MRS structures and elemen-
tary dependency graphs capture various dominance and
co-occurrence relationships between nodes in the struc-
tures, as well as some global characteristics such as how
many predications and nodes they contain.

2.4 Parse selection performance

Parse selection accuracy is measured using exact match,
so a model is awarded a point if it picks some parse for
a sentence and that parse is the correct analysis indicated
in Redwoods. To deal with ties, the accuracy is given as
1/m when a model ranks m parses highest and the best
parse is one of them.

Using the configurational, ngram, and conglomerate
feature sets described in section 2.3, we create three log-
linear models, which we will refer to as LL-CONFIG, LL-
NGRAM, and LL-CONGLOM, respectively. We also create
an ensemble model (called LL-PROD) with them using
equation 2. The results for a chance baseline (selecting
a parse at random), each of the three base models, and
LL-PROD are given in Table 1. These are 10-fold cross-
validation results, using all the training data when esti-
mating models and the test split when evaluating them.

Though their overall accuracy is similar, the single
models only agree about 80% of the time and perfor-
mance varies by 3-4% between them on different folds
of the cross-validation. Such variation is crucial for use
in ensembles, and indeed, LL-PROD reduces the error rate



Model | Perf. | Model | Perf.
LL-CONFIG 75.05 | LL-PROD | 77.78
LL-NGRAM 74.01 | Chance 22.70
LL-CONGLOM | 74.85 | — -

Table 1: Parse selection accuracy.

of the best single model by 10.8%.2

Redwoods is different from other treebanks in that the
treebank itself changes as the ERG is improved. LL-
PROD’s accuracy of 77.78% is the highest reported per-
formance on version 3 of Redwoods. Results have also
been presented for versions 1 (Baldridge and Osborne,
2003) and 1.5 (Oepen et al., 2002; Toutanova et al.,
2003), both of which have considerably less ambiguity
than version 3. Accordingly, LL-PROD’s accuracy in-
creases to 84.23% when tested on version 1.5, which has
3834 ambiguous sentences with an average length of 7.98
and average ambiguity of 11.05.

3 Measuring annotation cost

When evaluating AL methods, we compare methods
based on two metrics: the absolute number of sentences
they select (unit cost) and the summed number of deci-
sions needed to select an individual preferred parse from
a set of possible parses (discriminant cost). Unit cost is
commonly used in AL research (Tang et al., 2002), but
discriminant cost is more fine-grained.3

Discriminant cost works as follows. Annotation for
Redwoods does not consist of actually drawing parse
trees, and instead involves picking the correct parse out
those produced by the ERG. To facilitate this task, Red-
woods presents local discriminants which disambiguate
large portions of the parse forest. This means that the
annotator does not need to inspect all parses when spec-
ifying the intended analysis and so possible parses are
narrowed down quickly even for sentences with a large
number of parses. More interestingly, it means that the la-
beling burden is relative to the number of possible parses
rather than the number of constituents in a parse. The dis-
criminant cost of the examples we use averages 3.34 per
sentence and ranges from 1 to 14.

We measure the discriminant cost of annotating a sen-
tence s as the number of discriminants whose values were
set by the human annotators in labeling that sentence in

2The product model is also better than a single model which
uses all of the features of LL-CONFIG, LL-NGRAM, and LL-
CONGLOM. The accuracy of the latter is 76.75%, so we achieve
a 4.3% error reduction over this by using the product model.

3Hwa (2000) measured the number of constituents in a parse
tree as another annotation cost. Our approach measures the cost

of a more efficient labelling strategy than Hwa’s (tree drawing).

Redwoods plus one to reflect the final decision of select-
ing the preferred parse from the reduced parse forest.
Although we have not measured the cognitive burden
on humans, we strongly believe that simply selecting the
best parse is far more efficient than drawing the best parse
for some sentence (as exemplified by Hwa (2000)). How-
ever, an interesting tension here is that we are committed
to the ERG producing the intended parse within the set of
analyses. When drawing a parse tree, by definition, the
best parse is created. This may not be always true when
using a manually written grammar such as the ERG.

4 Activelearning methods

Suppose we have a set of examples and labels D,, =
{{z1,y'), (x?,9?),...} which is to be extended with a
new labeled example {{z?,4%)}. The information gain
for some model is maximized after selecting, labeling,
and adding a new example z* to D,, such that the noise
level of z¢ is low and both the bias and variance of some
model using D,, U {(z¢,y%)} is minimized (Cohn et al.,
1995). If examples are selected for labeling using a strat-
egy of minimizing either variance or bias, then typically,
the error rate of a model decreases much faster than if
examples are simply selected randomly for labeling.

In reality, selecting data points for labeling such that a
model’s variance and/or bias is maximally minimized is
computationally intractable, so approximations are typi-
cally used instead. Ensemble methods can improve the
performance of our active learners. An ensemble active
learner uses more than one component model. For exam-
ple, query-by-committee is an ensemble AL method, as
is our generalization of uncertainty sampling.

In this section, we describe the AL methods that we
tested on Redwoods, which include both single-model
and ensemble-based AL techniques. Our single-method
approaches are not meant to be exhaustive. In princi-
ple, there is no reason why we could not have also tried
(within a kernel-based environment) selecting examples
by their distance to a separating hyperplane (Tong and
Koller, 2000) or else using the computationally demand-
ing approach of Roy and McCallum (2001).

AL for parse selection is potentially problematic as
sentences vary both in length and the number of parses
they have. After experimenting with, and without, a va-
riety of normalization strategies, we found that generally,
there were no major differences overall. All of our meth-
ods therefore do not have any extra normalization.

In all our methods, 7 denotes the set of analyses pro-
duced by the ERG for the sentence and M} is some
model. M is the set of models M ... M,,.

4.1 Uncertainty sampling

Uncertainty sampling (also called tree entropy by Hwa
(2000)), measures the uncertainty of a model over the set



of parses of a given sentence, based on the conditional
distribution it assigns to them. Following Hwa, we use
the following measure to quantify uncertainty:

Fus(s,7, My) = = > P(t]s, My)log P(t]s, Mi)  (3)

ter

Higher values of f,,(s, 7, M}) indicate examples on
which the learner is most uncertain and thus presumably
are more informative. Calculating f, is trivial with the
conditional log-linear models described in section 2.2.

Uncertainty sampling as defined above is a single-
model approach. It can be generalized to an ensemble
by simply replacing the probability of a single log-linear
model with a product probability:

Fus(s,7, M) = =" P(t]s, M) log P(t|s, M)

ter

(4)

4.2 Fixed Query-by-Committee

Another AL method is inspired by the query-by-
committee (QBC) algorithm (Freund et al., 1997;
Argamon-Engelson and Dagan, 1999). According to
QBC, one should select data points when a group of mod-
els cannot agree as to the predicted labeling.

Using a fixed committee consisting of n distinct mod-
els, the examples we select for annotation are those
for which the models most disagree on the preferred
parse. One way of measuring this is with vote entropy
(Argamon-Engelson and Dagan, 1999):4

1 Z V(t,s) |OQV(:; s) 5)

ghe(8,7) = ~log min(n, |7|)

ter

where V (t, s) is the number of committee members that
preferred parse ¢. QBC is inherently an ensemble-based
method. We use a fixed set of models in our committee
and refer to the resulting sample selection method as fixed
QBC. Clearly there are many other possibilities for cre-
ating our ensemble, such as sampling from the set of all
possible models.

4.3 Lowest best probability selection

Uncertainty sampling considers the overall shape of a
distribution to determine how confident a model is for
a given example. A radically simpler way of determin-
ing the potential informativity of an example is simply
to consider the absolute probability of the most highly

“We experimented with Kullback-Leibler divergence to the
mean (Pereira et al., 1993; McCallum and Nigam, 1998), but it
performed no better than the simpler vote entropy metric.

ranked parse. The smaller this probability, the less confi-
dent the model is for that example and the more useful it
will be to know its true label.

We call this new method lowest best probability (LBP)
selection, and calculate it as follows:

flbp(87T7 Mk) = maXtETP(t | $7Mk) (6)

LBP can be extended for use with an ensemble model
in the same manner as uncertainty sampling (that is, re-
place the single model probability with a product).

5 Experiments

To test the effectiveness of the various AL strategies dis-
cussed in the previous section, we perform simulation
studies of annotating version 3 of Redwoods.

For all experiments, we used a tenfold cross-validation
strategy by randomly selecting 10% (roughly 500 sen-
tences) from Redwoods for the test set and selecting sam-
ples from the remaining 90% of the corpus (roughly 4500
sentences) as training material. Each run of AL begins
with a single randomly chosen annotated seed sentence.
At each round, new examples are selected for annotation
from a randomly chosen, fixed sized 500 sentence subset
according to the method until the annotated training ma-
terial made available to the learners contains at least 2000
examples and 8000 discriminants.> We select 20 exam-
ples for manual annotation at each round, and exclude all
examples that have more than 500 parses. Other parame-
ter settings did not produce substantially different results
to those reported here.

AL results are usually presented in terms of the amount
of labeling necessary to achieve given performance lev-
els. We say that one method is better than another method
if, for a given performance level, less annotation is re-
quired. The performance metric used here is parse selec-
tion accuracy as described in section 2.4.

5.1 Baseline results

Frequently, baseline results are those produced by ran-
dom sampling for a single model. Figure 3a shows a set
of baseline results: LL-CONFIG (the best single model)
using random sampling and the stronger baseline result
of LL-PROD, also using random sampling. Quite clearly,
we see that LL-PROD (which uses all three feature sets)
outperforms LL-CONFIG. Although not shown, LL-PROD
also outperforms LL-NGRAM and LL-CONGLOM trained
using random sampling. These results show that the com-
mon practice in AL of only reporting the convergence re-
sults of a single model, trained using random sampling,
can be misleading: we can improve upon the performance

SAll of our AL methods reach full accuracy with this amount
of material.
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Figure 3: Accuracy as more annotation decisions are requested according to (a) random sampling with LL-CONFIG
and LL-PROD, and (b) uncertainty sampling with LL-CONFIG and LL-PROD and random sampling with LL-PROD.

of a single model without using AL by using an ensemble
model. Our main baseline system is therefore LL-PROD,
trained progressively with randomly sampled examples.

5.2 Ensemble active learning results

Figure 3b compares uncertainty sampling using LL-
CONFIG (the lower curve), random sampling using LL-
PROD, and uncertainty sampling using LL-PROD.

The first thing to note is that random sampling for the
ensemble outperforms uncertainty sampling for the sin-
gle model. This shows that single model AL results can
themselves be beaten by a model that does not use AL.
Nonetheless, the graph also shows that an ensemble parse
selection model using an ensemble AL method outper-
forms an ensemble parse selection model not using AL.

Table 2 shows the amount of labeling (as measured us-
ing our discriminant cost function) selected by some AL
method necessary to achieve a given performance level.
The top two methods are random baselines; the third
method is uncertainty sampling using a single model,
while the remaining three other methods are all ensemble
active learners. There, and in the following text, labels
of the form rand-config mean (in this case) using ran-
dom sampling for LL-CONFIG; labels of the form rand-II
mean (again in this case) random sampling for LL-PROD;
the legend QBC means using query-by-committee, with
all three base models, when selecting examples for LL-
PROD.

All three ensemble AL methods — product uncertainty
sampling, QBC, and product LBP — provide large gains
over random sampling (of all kinds). There is very little
to distinguish the three methods, though product uncer-
tainty sampling proves the strongest overall, providing a
53.6% reduction over rand-II to achieve 77% accuracy
and a 73.5% reduction over rand-config to reach 75% ac-

curacy.

To understand whether product uncertainty is indeed
choosing more wisely, it is important to consider the per-
formance of an ensemble parse selection model when ex-
amples are chosen by a single-model AL method. That
is, using a single-model AL method, but labeling ex-
amples using an ensemble model. If the ensemble AL
method using the ensemble parse selection model per-
forms equally to a single-model AL method also using an
ensemble parse selection model, then the ensemble parse
selection model would be responsible for improved per-
formance. This contrasts with our ensemble AL method
instead selecting more informative examples. We find
that, as expected, selecting examples using LL-CONFIG
for LL-PROD is worse than LL-PROD selecting for itself.

5.3 Simple selection metrics

Since sentences have variable length and ambiguity, there
are four obvious selection metrics that make no use of AL
methods: select sentences that are longer, shorter, more
ambiguous or less ambiguous. We tested all four with
LL-PROD and found none which improved on random
sampling with the same model. For example, selecting
the least ambiguous sentences performs the worst of all
experiments we ran, with selection by shortest sentences
close behind, respectively requiring 61.9% and 55.4%
increases in discriminant cost over random sampling to
reach 70% accuracy.

Selecting the most ambiguous examples dramatically
demonstrates the difference between unit cost and dis-
criminant cost. While that selection method requires a
17.4% increase in discriminant cost to reach 70%, it pro-
vides a 27.9% reduction in unit cost. Figure 4 compares
(a) unit cost with (b) discriminant cost for ambiguity se-
lection versus random sampling (with LL-PROD).



70% 75% 77%
Reduction Reduction Reduction

Cost | rand-config | rand-II Cost | rand-config | rand-II Cost rand-II
rand-config | 3700 N/A (46.2%) || 13000 N/A (36.2%) N/A N/A
rand-II 1990 46.2% N/A 8300 36.2% N/A 13800 N/A
us-config 2600 29.7% (25.2%) || 7700 40.8% 7.2% N/A N/A
gbc 1300 64.9% 34.7% 3820 70.6% 54.0% 6780 50.9%
Ibp-I1 1280 65.4% 35.7% || 3660 71.9% 55.9% 7320 47.0%
us-I1 1300 64.9% 34.7% 3450 73.5% 58.4% 6410 53.6%

Table 2: Discriminant costs required for selection methods to reach 70%, 75%, and 77% accuracy. The reduction
columns give the percentage reduction in cost compared to LL-CONFIG and LL-PROD using random sampling.
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It is also important to consider sequential selection,
a default strategy typically adopted by annotators. This
was the worst of all AL methods, requiring an increase of
45.5% in discriminant cost over random sampling. This
is most likely because the four sections of Redwoods
come from two slightly different domains: appointment
scheduling and travel planning dialogs. Because of this,
sequential selection does not choose examples from the
latter domain until all those from the former have been
selected, and it thus lacks examples that are similar to
those in the test set from the latter domain.

6 Redated work

There is a large body of AL work in the machine learn-
ing literature, but less so within natural language pro-
cessing. There is even less work on ensemble-based AL.
Baram et al. (2003) consider selection of individual AL
methods at run-time. However, their AL methods are
only ever based on single model approaches.

Turning to parsing, most work has utilized uncertainty
sampling (Thompson et al., 1999; Hwa, 2000; Tang et al.,
2002). In all cases, relatively simple parsers were boot-

strapped, and also, comparison was with a single model,
trained using random sampling. As we pointed out ear-
lier, our product model, not using AL, can outperform
single-model active learning.

Baldridge and Osborne (2003) also applied AL to Red-
woods. They only used two feature sets, did not consider
product models, nor our simple LBP method. Addition-
ally, they used the unit cost assumption.

Hwa et al. (2003) showed that for parsers, AL outper-
forms the closely related co-training, and that some of the
labeling could be automated. However, their approach re-
quires strict independence assumptions.

7 Discussion

We have shown that simple ensemble models can help
both the underlying model and the AL method. Using
a state-of-the-art parse selection model, we are able to
achieve a 73% decrease in annotation costs compared
against the highest performing single model trained using
random sampling. This is one of the most substantial de-
creases in annotation cost reported in the literature. Our
ensemble methods are very simple, and we expect that



greater savings might follow when using more complex
mode combination techniques such as boosting.

We expect our parse selection-specific results to im-
prove if we present only the top n most highly ranked
parses to the annotator, rather than the full set of parses.
Provided the true best parse is within the top n with suf-
ficient regularity, this would reduce the number of dis-
criminants which the human annotator needs to consider
when compared to unaided uncertainty sampling.

Another issue we will explore in future work is that for
a scenario in which we label a data set from scratch, it is
quite possible that we will not know how best to model
the task we are labeling that data for. Thus, it is likely
in such situations that we will be able to develop better
evolved models only after the data is annotated and more
has been learned about the task. It is then necessary to
see whether improved models benefit from the examples
selected using AL techniques with an earlier model more
than they would have if random sampling had been used.
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