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Abstract 

In this paper we describe and evaluate a Ques-
tion Answering system that goes beyond an-
swering factoid questions. We focus on FAQ-
like questions and answers, and build our sys-
tem around a noisy-channel architecture which 
exploits both a language model for answers 
and a transformation model for an-
swer/question terms, trained on a corpus of 1 
million question/answer pairs collected from 
the Web. 

1 Introduction 

The Question Answering (QA) task has received a great 
deal of attention from the Computational Linguistics 
research community in the last few years (e.g., Text RE-
trieval Conference TREC 2001-2003). The definition of 
the task, however, is generally restricted to answering 
factoid questions: questions for which a complete answer 
can be given in 50 bytes or less, which is roughly a few 
words. Even with this limitation in place, factoid ques-
tion answering is by no means an easy task. The chal-
lenges posed by answering factoid question have been 
addressed using a large variety of techniques, such as 
question parsing (Hovy et al., 2001; Moldovan et al., 
2002), question-type determination (Brill et al., 2001; 
Ittycheraih and Roukos, 2002;   Hovy et al., 2001; 
Moldovan et al., 2002), WordNet exploitation (Hovy et 
al., 2001; Pasca and Harabagiu, 2001; Prager et al., 
2001), Web exploitation (Brill et al., 2001; Kwok et al., 
2001), noisy-channel transformations (Echihabi and 
Marcu, 2003), semantic analysis (Xu et al., 2002; Hovy 
et al., 2001; Moldovan et al., 2002), and inferencing 
(Moldovan et al., 2002). 
 The obvious limitation of any factoid QA system is 
that many questions that people want answers for are not 
factoid questions. It is also frequently the case that non-
factoid questions are the ones for which answers cannot 

as readily be found by simply using a good search en-
gine. It follows that there is a good economic incentive 
in moving the QA task to a more general level: it is 
likely that a system able to answer complex questions of 
the type people generally and/or frequently ask has 
greater potential impact than one restricted to answering 
only factoid questions. A natural move is to recast the 
question answering task to handling questions people 
frequently ask or want answers for, as seen in Frequently 
Asked Questions (FAQ) lists. These questions are some-
times factoid questions (such as, “What is Scotland's 
national costume?”), but in general are more complex 
questions (such as, “How does a film qualify for an 
Academy Award?”, which requires an answer along the 
following lines: “A feature film must screen in a Los 
Angeles County theater in 35 or 70mm or in a 24-frame 
progressive scan digital format suitable for exhibiting in 
existing commercial digital cinema sites for paid admis-
sion for seven consecutive days. The seven day run must 
begin before midnight, December 31, of the qualifying 
year.  […]”). 
 In this paper, we make a first attempt towards solv-
ing a QA problem more generic than factoid QA, for 
which there are no restrictions on the type of questions 
that are handled, and there is no assumption that the an-
swers to be provided are factoids. In our solution to this 
problem we employ learning mechanisms for question-
answer transformations (Agichtein et al., 2001; Radev et 
al., 2001), and also exploit large document collections 
such as the Web for finding answers (Brill et al., 2001; 
Kwok et al., 2001). We build our QA system around a 
noisy-channel architecture which exploits both a lan-
guage model for answers and a transformation model for 
answer/question terms, trained on a corpus of 1 million 
question/answer pairs collected from the Web. Our 
evaluations show that our system achieves reasonable 
performance in terms of answer accuracy for a large va-
riety of complex, non-factoid questions.   



2 Beyond Factoid Question Answering 

One of the first challenges to be faced in automatic ques-
tion answering is the lexical and stylistic gap between 
the question string and the answer string. For factoid 
questions, these gaps are usually bridged by question 
reformulations, from simple rewrites (Brill et al., 2001), 
to more sophisticated paraphrases (Hermjakob et al., 
2001), to question-to-answer translations (Radev et al., 
2001). We ran several preliminary trials using various 
question reformulation techniques. We found out that in 
general, when complex questions are involved, reformu-
lating the question (using either simple rewrites or ques-
tion-answer term translations) more often hurts the 
performance than improves on it.  
 Another widely used technique in factoid QA is 
sentence parsing, along with question-type determina-
tion. As mentioned by Hovy et al. (2001), their hierar-
chical QA typology contains 79 nodes, which in many 
cases can be even further differentiated.   While we ac-
knowledge that QA typologies and hierarchical question 
types have the potential to be extremely useful beyond 
factoid QA, the volume of work involved is likely to 
exceed by orders of magnitude the one involved in the 
existing factoid QA typologies. We postpone such work 
for future endeavors. 
 The techniques we propose for handling our ex-
tended QA task are less linguistically motivated and 
more statistically driven. In order to have access to the 
right statistics, we first build a question-answer pair 
training corpus by mining FAQ pages from the Web, as 
described in Section 3. Instead of sentence parsing, we 
devise a statistical chunker that is used to transform a 
question into a phrase-based query (see Section 4). After 
a search engine uses the formulated query to return the N 
most relevant documents from the Web, an answer to the 
given question is found by computing an answer lan-
guage model probability (indicating how similar the pro-
posed answer is to answers seen in the training corpus), 
and an answer/question translation model probability 
(indicating how similar the proposed answer/question 
pair is to pairs seen in the training corpus). In Section 5 
we describe the evaluations we performed in order to 
assess our system’s performance, while in Section 6 we 
analyze some of the issues that negatively affected our 
system’s performance.  

3 A Question-Answer Corpus for FAQs 

In order to employ the learning mechanisms described in 
the previous section, we first need to build a large train-
ing corpus consisting of question-answer pairs of a broad 
lexical coverage. Previous work using FAQs as a source 
for finding an appropriate answer (Burke et al., 1996) or 
for learning lexical correlations (Berger et al., 2000) 
focused on using the publicly available Usenet FAQ 

collection and other non-public FAQ collections, and 
reportedly worked with an order of thousands of ques-
tion-answer pairs. 
 Our approach to question/answer pair collection 
takes a different path. If one poses the simple query 
“FAQ” to an existing search engine, one can observe that 
roughly 85% of the returned URL strings corresponding 
to genuine FAQ pages contain the substring “faq”, while 
virtually all of the URLs that contain the substring “faq” 
are genuine FAQ pages. It follows that, if one has access 
to a large collection of the Web’s existent URLs, a sim-
ple pattern-matching for “faq” on these URLs will have 
a recall close to 85% and precision close to 100% on 
returning FAQ URLs from those available in the collec-
tion. Our URL collection contains approximately 1 bil-
lion URLs, and using this technique we extracted 
roughly 2.7 million URLs containing the (uncased) 
string “faq”, which amounts to roughly 2.3 million FAQ 
URLs to be used for collecting question/answer pairs. 
 The collected FAQ pages displayed a variety of for-
mats and presentations. It seems that the variety of ways 
questions and answers are usually listed in FAQ pages 
does not allow for a simple high-precision high-recall 
solution for extracting question/answer pairs: if one 
assumes that only certain templates are used when 
presenting FAQ lists, one can obtain clean ques-
tion/answer pairs at the cost of losing many other such 
pairs (which happen to be presented in different tem-
plates); on the other hand, assuming very loose con-
straints on the way information is presented on such 
pages, one can obtain a bountiful set of question/answer 
pairs, plus other pairs that do not qualify as such. We 
settled for a two-step approach: a first recall-oriented 
pass based on universal indicators such as punctuation 
and lexical cues allowed us to retrieve most of the ques-
tion/answer pairs, along with other noise data; a second 
precision-oriented pass used several filters, such as lan-
guage identification, length constrains, and lexical cues 
to reduce the level of noise of the question/answer pair 
corpus. Using this method, we were able to collect a total 
of roughly 1 million question/answer pairs, exceeding by 
orders of magnitude the amount of data previously used 
for learning question/answer statistics.      

4 A QA System Architecture 

The architecure of our QA system is presented in Figure 
1. There are 4 separate modules that handle various 
stages in the system’s pipeline: the first module is called 
Question2Query, in which questions posed in natural 
language are transformed into phrase-based queries be-
fore being handed down to the SearchEngine module. 
The second module is an Information Retrieval engine 
which takes a query as input and returns a list of docu-
ments deemed to be relevant to the query in a sorted 
manner. A third module, called Filter, is in charge of 



filtering out the returned list of documents, in order to 
provide acceptable input to the next module. The forth 
module, AnswerExtraction, analyzes the content pre-
sented and chooses the text fragment deemed to be the 
best answer to the posed question. 

 
Figure 1: The QA system architecture 

 
 This architecture allows us to flexibly test for vari-
ous changes in the pipeline and evaluate their overall 
effect. We present next detailed descriptions of how each 
module works, and outline several choices that present 
themselves as acceptable options to be evaluated. 

4.1 The Question2Query Module 

A query is defined to be a keyword-based string that 
users are expected to feed as input to a search engine. 
Such a string is often thought of as a representation for a 
user’s “information need”, and being proficient in ex-
pressing one’s “need” in such terms is one of the key 
points in successfully using a search engine. A natural 
language-posed question can be thought of as such a 
query. It has the advantage that it forces the user to pay 
more attention to formulating the “information need” 
(and not typing the first keywords that come to mind). It 
has the disadvantage that it contains not only the key-
words a search engine normally expects, but also a lot of 
extraneous “details” as part of its syntactic and discourse 
constraints, plus an inherently underspecified unit-
segmentation problem, which can all confuse the search 
engine.  
 To counterbalance some of these disadvantages, we 
build a statistical chunker that uses a dynamic program-
ming algorithm to chunk the question into 
chunks/phrases. The chunker is trained on the answer 
side of the Training corpus in order to learn 2 and 3-
word collocations, defined using the likelihood ratio of 
Dunning (1993).  Note that we are chunking the question 
using answer-side statistics, precisely as a measure for 
bridging the stylistic gap between questions and answers.  
  Our chunker uses the extracted collocation statistics 
to make an optimal chunking using a Dijkstra-style dy-

namic programming algorithm. In Figure 2 we present 
an example of the results returned by our statistical 
chunker. Important cues such as “differ from” and 
“herbal medications” are presented as phrases to the 
search engine, therefore increasing the recall of the 
search. Note that, unlike a segmentation offered by a 
parser (Hermjakob et al., 2001), our phrases are not nec-
essarily syntactic constituents. A statistics-based chunker 
also has the advantage that it can be used “as-is” for 
question segmentation in languages other than English, 
provided training data (i.e., plain written text) is avail-
able. 

 
Figure 2: Question segmentation into query using a 
statistical chunker  

4.2 The SearchEngine Module 

This module consists of a configurable interface with 
available off-the-shelf search engines. It currently sup-
ports MSNSearch and Google. Switching from one 
search engine to another allowed us to measure the im-
pact of the IR engine on the QA task. 

4.3 The Filter Module 

This module is in charge of providing the AnswerExtrac-
tion module with the content of the pages returned by the 
search engine, after certain filtering steps. One first step 
is to reduce the volume of pages returned to only a man-
ageable amount. We implement this step as choosing to 
return the first N hits provided by the search engine. 
Other filtering steps performed by the Filter Module 
include tokenization and segmentation of text into sen-
tences. 
 One more filtering step was needed for evaluation 
purposes only: because both our training and test data 
were collected from the Web (using the procedure de-
scribed in Section 3), there was a good chance that ask-
ing a question previously collected returned its already 
available answer, thus optimistically biasing our evalua-
tion. The Filter Module therefore had access to the refer-
ence answers for the test questions as well, and ensured 
that, if the reference answer matched a string in some 
retrieved page, that page was discarded. Moreover, we 
found that slight variations of the same answer could 
defeat the purpose of the string-matching check. For the 
purpose of our evaluation, we considered that if the 
question/reference answer pair had a string of 10 words 
or more identical with a string in some retrieved page, 
that page was discarded as well. Note that, outside the 
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evaluation procedure, the string-matching filtering step 
is not needed, and our system’s performance can only 
increase by removing it. 

4.4 The AnswerExtraction Module 

Authors of previous work on statistical approaches to 
answer finding (Berger et al., 2000) emphasized the need 
to “bridge the lexical chasm” between the question terms 
and the answer terms. Berger et al. showed that tech-
niques that did not bridge the lexical chasm were likely 
to perform worse than techniques that did.  
 For comparison purposes, we consider two different 
algorithms for our AnswerExtraction module: one that 
does not bridge the lexical chasm, based on N-gram co-
occurrences between the question terms and the answer 
terms; and one that attempts to bridge the lexical chasm 
using Statistical Machine Translation inspired techniques 
(Brown et al., 1993) in order to find the best answer for a 
given question. 
 For both algorithms, each 3 consecutive sentences 
from the documents provided by the Filter module form 
a potential answer. The choice of 3 sentences comes 
from the average number of sentences in the answers 
from our training corpus. The choice of consecutiveness 
comes from the empirical observation that answers built 
up from consecutive sentences tend to be more coherent 
and contain more non-redundant information than an-
swers built up from non-consecutive sentences. 

4.4.1 N-gram Co-Occurrence Statistics for Answer 
Extraction  

N-gram co-occurrence statistics have been successfully 
used in automatic evaluation (Papineni et al. 2002, Lin 
and Hovy 2003), and more recently as training criteria in 
statistical machine translation (Och 2003).  
 We implemented an answer extraction algorithm 
using the BLEU score of Papineni et al. (2002) as a 
means of assessing the overlap between the question and 
the proposed answers. For each potential answer, the 
overlap with the question was assessed with BLEU (with 
the brevity penalty set to penalize answers shorter than 3 
times the length of the question). The best scoring poten-
tial answer was presented by the AnswerExtraction 
Module as the answer to the question. 

4.4.2 Statistical Translation for Answer Extraction 

As proposed by Berger et al. (2000), the lexical gap be-
tween questions and answers can be bridged by a statis-
tical translation model between answer terms and 
question terms. Their model, however, uses only an An-
swer/Question translation model (see Figure 3) as a 
means to find the answer.   
 A more complete model for answer extraction can 
be formulated in terms of a noisy channel, along the 
lines of Berger and Lafferty (2000) for the Information 

Retrieval task, as illustrated in Figure 3: an answer gen-
eration model proposes an answer A according to an an-
swer generation probability distribution; answer A is 
further transformed into question Q by an an-
swer/question translation model according to a question-
given-answer conditional probability distribution. The 
task of the AnswerExtraction algorithm is to take the 
given question q and find an answer a in the potential 
answer list that is most likely both an appropriate and 
well-formed answer. 

 
Figure 3: A noisy-channel model for answer  
extraction 
 
 The AnswerExtraction procedure employed depends 
on the task T we want it to accomplish. Let the task T be 
defined as “find a 3-sentence answer for a given ques-
tion”. Then we can formulate the algorithm as finding 
the a-posteriori most likely answer given question and 
task, and write it as p(a|q,T). We can use Bayes’ law to 
write this as: 
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Because the denominator is fixed given question and 
task, we can ignore it and find the answer that maxi-
mizes the probability of being both a well-formed and an 
appropriate answer as: 
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The decomposition of the formula into a question-
independent term and a question-dependent term allows 
us to separately model the quality of a proposed answer 
a with respect to task T, and to determine the appropri-
ateness of the proposed answer a with respect to ques-
tion q to be answered in the context of task T.  
 Because task T fits the characteristics of the ques-
tion-answer pair corpus described in Section 3, we can 
use the answer side of this corpus to compute the prior 
probability p(a|T). The role of the prior is to help down-
grading those answers that are too long or too short, or 
are otherwise not well-formed. We use a standard tri-
gram language model to compute the probability distri-
bution p(·|T). 
 The mapping of answer terms to question terms is 
modeled using Black et al.’s (1993) simplest model, 
called IBM Model 1. For this reason, we call our model 
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Model 1 as well. Under this model, a question is gener-
ated from an answer a of length n according to the fol-
lowing steps: first, a length m is chosen for the question, 
according to the distribution ψ(m|n) (we assume this 
distribution is uniform); then, for each position j in q, a 
position i in a is chosen from which qj is generated, ac-
cording to the distribution t(·| ai ). The answer is as-
sumed to include a NULL word, whose purpose is to 
generate the content-free words in the question (such as 
in “Can you please tell me…?”). The correspondence 
between the answer terms and the question terms is 
called an alignment, and the probability p(q|a) is com-
puted as the sum over all possible alignments. We ex-
press this probability using the following formula: 
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where t(qj| ai ) are the probabilities of “translating” an-
swer terms into question terms, and c(ai|a) are the rela-
tive counts of the answer terms. Our parallel corpus of 
questions and answers can be used to compute the trans-
lation table t(qj| ai ) using the EM algorithm, as described 
by Brown et al. (1993). Note that, similarly with the 
statistical machine translation framework, we deal here 
with “inverse” probabilities, i.e. the probability of a 
question term given an answer, and not the more intui-
tive probability of answer term given question.  
 Following Berger and Lafferty (2000), an even sim-
pler model than Model 1 can be devised by skewing the 
translation distribution t(·| ai ) such that all the probabil-
ity mass goes to the term ai. This simpler model is called 
Model 0. In Section 5 we evaluate the proficiency of 
both Model 1 and Model 0 in the answer extraction task. 

5 Evaluations and Discussions 

We evaluated our QA system systematically for each 
module, in order to assess the impact of various algo-
rithms on the overall performance of the system. The 
evaluation was done by a human judge on a set of 115 
Test questions, which contained a large variety of non-
factoid questions. Each answer was rated as either cor-
rect(C), somehow related(S), wrong(W), or cannot 
tell(N). The somehow related option allowed the judge 
to indicate the fact that the answer was only partially 
correct (for example, because of missing information, or 
because the answer was more general/specific than re-
quired by the question, etc.). The cannot tell option was 
used in those cases when the validity of the answer could 
not be assessed. Note that the judge did not have access 
to any reference answers in order to asses the quality of a 
proposed answer. Only general knowledge and human 
judgment were involved when assessing the validity of 
the proposed answers. Also note that, mainly because 

our system’s answers were restricted to a maximum of 3 
sentences, the evaluation guidelines stated that answers 
that contained the right information plus other extrane-
ous information were to be rated correct.  
 For the given set of Test questions, we estimated the 
performance of the system using the formula 
(|C|+.5|S|)/(|C|+|S|+|W|). This formula gives a score of 1 
if the questions that are not “N” rated are all considered 
correct, and a score of 0 if they are all considered wrong. 
A score of 0.5 means that, in average, 1 out of 2 ques-
tions is answered correctly.   

5.1 Question2Query Module Evaluation 

We evaluated the Question2Query module while keeping 
fixed the configuration of the other modules 
(MSNSearch as the search engine, the top 10 hits in the 
Filter module), except for the AnswerExtraction module, 
for which we tested both the N-gram co-occurrence 
based algorithm (NG-AE) and a Model 1 based algo-
rithm (M1e-AE, see Section 5.4). 
 The evaluation assessed the impact of the statistical 
chunker used to transform questions into queries, against 
the baseline strategy of submitting the question as-is to 
the search engine. As illustrated in Figure 4, the overall 
performance of the QA system significantly increased 
when the question was segmented before being submit-
ted to the SearchEngine module, for both AnswerExtrac-
tion algorithms. The score increased from 0.18 to 0.23 
when using the NG-AE algorithm, and from 0.34 to 0.38 
when using the M1e-AE algorithm.  

0

0.1

0.2

0.3

0.4

NG-AE M1e-AE

As-is
Segmented

Figure 4: Evaluation of the Question2Query  
module 

5.2 SearchEngine Module Evaluation 

The evaluation of the SearchEngine module assessed the 
impact of different search engines on the overall system 
performance. We fixed the configurations of the other 
modules (segmented question for the Question2Query 
module, top 10 hits in the Filter module), except for the 
AnswerExtraction module, for which we tested the per-
formance while using for answer extraction the NG-AE, 
M1e-AE, and ONG-AE algorithms. The later algorithm 
works exactly like NG-AE, with the exception that the 
potential answers are compared with a reference answer 



available to an Oracle, rather than against the question. 
The performance obtained using the ONG-AE algorithm 
can be thought of as indicative of the ceiling in the per-
formance that can be achieved by an AE algorithm given 
the potential answers available.  
 As illustrated in Figure 5, both the MSNSearch and 
Google search engines achieved comparable perform-
ance accuracy. The scores were 0.23 and 0.24 when us-
ing the NG-AE algorithm, 0.38 and 0.37 when using the 
M1e-AE algorithm, and 0.46 and 0.46 when using the 
ONG-AE algorithm, for MSNSearch and Google, re-
spectively. As a side note, it is worth mentioning that 
only 5% of the URLs returned by the two search engines 
for the entire Test set of questions overlapped. There-
fore, the comparable performance accuracy was not due 
to the fact that the AnswerExtraction module had access 
to the same set of potential answers, but rather to the fact 
that the 10 best hits of both search engines provide simi-
lar answering options. 
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Figure 5: MSNSearch and Google give similar 
performance both in terms of realistic AE 
algorithms and oracle-based AE algorithms 

5.3 Filter Module Evaluation 

As mentioned in Section 4, the Filter module filters out 
the low score documents returned by the search engine 
and provides a set of potential answers extracted from 
the N-best list of documents. The evaluation of the Filter 
module therefore assessed the trade-off between compu-
tation time and accuracy of the overall system: the size 
of the set of potential answers directly influences the 
accuracy of the system while increasing the computation 
time of the AnswerExtraction module. The ONG-AE 
algorithm gives an accurate estimate of the performance 
ceiling induced by the set of potential answers available 
to the AnswerExtraction Module. 
 As illustrated in Figure 6, there is a significant per-
formance ceiling increase from considering only the 
document returned as the first hit (0.36) to considering 
the first 10 hits (0.46). There is only a slight increase in 
performance ceiling, however, from considering the first 
10 hits to considering the first 50 hits (0.46 to 0.49). 
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Figure 6: The scores obtained using the ONG-AE 
answer extraction algorithm for various N-best lists 

5.4 AnswerExtraction Module Evaluation 

The Answer-Extraction module was evaluated while 
fixing all the other module configurations (segmented 
question for the Question2Query module, MSNSearch as 
the search engine, and top 10 hits in the Filter module). 
 The algorithm based on the BLEU score, NG-AE, 
and its Oracle-informed variant ONG-AE, do not depend 
on the amount of training data available, and therefore 
they performed uniformly at 0.23 and 0.46, respectively 
(Figure 7). The score of 0.46 can be interpreted as a per-
formance ceiling of the AE algorithms given the avail-
able set of potential answers. 
 The algorithms based on the noisy-channel architec-
ture displayed increased performance with the increase 
in the amount of available training data, reaching as high 
as 0.38. An interesting observation is that the extraction 
algorithm using Model 1 (M1-AE) performed poorer 
than the extraction algorithm using Model 0 (M0-AE), 
for the available training data.  Our explanation is that 
the probability distribution of question terms given an-
swer terms learnt by Model 1 is well informed (many 
mappings are allowed) but badly distributed, whereas the 
probability distribution learnt by Model 0 is poorly in-
formed (indeed, only one mapping is allowed), but better 
distributed. Note the steep learning curve of Model 1, 
whose performance gets increasingly better as the distri-
bution probabilities of various answer terms (including 
the NULL word) become more informed (more map-
pings are learnt), compared to the gentle learning curve 
of Model 0, whose performance increases slightly only 
as more words become known as self-translations to the 
system (and the distribution of the NULL word gets bet-
ter approximated). 
 From the above analysis, it follows that a model 
whose probability distribution of question terms given 
answer terms is both well informed and well distributed 
is likely to outperform both M1-AE and M0-AE. Such a 
model was obtained when Model 1 was trained on both 
the question/answer parallel corpus from Section 3 and 
an artificially created parallel corpus in which each ques-
tion had itself as its “translation”.  This training regime 



allowed the model to assign high probabilities to identity 
mappings (and therefore be better distributed), while also 
distributing some probability mass to other question-
answer term pairs (and therefore be well informed). We 
call the extraction algorithm that uses this model M1e-
AE, and the top score of 0.38 was obtained by M1e-AE 
when trained on 1 million question/answer pairs. Note 
that the learning curve of algorithm M1e-AE in Figure 7 
indeed indicates that this answer extraction procedure is 
well informed about the distribution probabilities of vari-
ous answer terms (it has the same steepness in the 
learning curve as for M1-AE), while at the same time 
uses a better distribution of the probability mass for each 
answer term compared to M1-AE (it outperforms M1-
AE by roughly a constant amount for each training set 
size in the evaluation).  
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Figure 7: The performance of our QA system with 
various answer extraction algorithms and different 
training set sizes 

6 Performance issues 

In building our system, we have demonstrated that a 
statistical model can capitalize on large amounts of read-
ily available training data to achieve reasonable per-
formance on answering non-factoid questions. Our 
system was able to successfully answer a large variety of 
complex, non-factoid questions, such as: 
 

Q: Can I travel with the Ameripass in Mexico?  
A: The Ameripass includes all of USA excluding Alaska. 
In Canada, it is valid for travel to Montreal, Quebec, To-
ronto, Ontario, Vancouver BC, and New Westminster BC. 
In Mexico it is valid for travel to Matamoros, Nuevo 
Laredo, Tamaulipas and Tijuana Baja California. 
 
Q: What is a PIC Freeze? 
A: How to Prevent Slamming: Institute a PIC Freeze The 
best way to keep from being slammed, or having a long dis-
tance company change your service without your permis-
sion, is to request a "PIC freeze" for your line. PIC, or pre-

subscribed interexchange carrier, is the telecom industry 's 
term for a long distance company.  

 
   For those questions which were not answered cor-
rectly, we identified some of the most frequent causes 
which led to erroneous answers: 
• answer was not in the retrieved pages (see the 46% 

performance ceiling given by the Oracle) 
• answer was of the wrong “type” (e.g., an answer for 

“how-to” instead of “what-is”): 
Q: What are best graduate schools for AI?  
A: If you are applying for grad school in AI, and you did 
some research for an AI person, even if it was long ago 
and you don't consider it to be relevant, get a recommen-
dation if you think that the person likes you at all. […] 

• it pointed to where an answer might be instead of 
answering the question: 

Q: What do research studies say about massage therapy?  
A: It supports research on the efficacy of therapeutic 
massage through the public, charitable AMTA Founda-
tion. Additional information about massage therapy and 
about AMTA is available via the Web at 
www.amtamassage.org. 

• the translation model overweighed the answer lan-
guage model (too good a "translation", too bad an 
answer) 

Q: What are private and public keys? 
A: Private and public keys Private and public keys Algo-
rithms can use two types of keys: private and public. 

• did not pick up the key content word (in the exam-
ple below, eggs) 

Q: What makes eggs have thin, brittle shells? 
A: The soft-shelled clams, such as steamer, razor, and 
geoduck clams, have thin brittle shells that can't com-
pletely close. Cod - A popular lean, firm, white meat 
fish from the Pacific and the North Atlantic. 

It is worth pointing out that most of these errors do not 
arise from within a single module, but rather they are the 
result of various interactions between modules that miss 
on some relevant information. 

7 Conclusions 

Previous work on question answering has focused almost 
exclusively on building systems for handling factoid 
questions. These systems have recently achieved impres-
sive performance (Moldovan et al., 2002). The world 
beyond the factoid questions, however, is largely unex-
plored, with few notable exceptions (Berger et al., 2001; 
Agichtein et al., 2002; Girju 2003). The present paper 
attempts to explore the portion related to answering 
FAQ-like questions, without restricting the domain or 
type of the questions to be handled, or restricting the 
type of answers to be provided. While we still have a 
long way to go in order to achieve robust non-factoid 
QA, this work is a step in a direction that goes beyond 
restricted questions and answers. 



 We consider the present QA system as a baseline on 
which more finely tuned QA architectures can be built. 
Learning from the experience of factoid question an-
swering, one of the most important features to be added 
is a question typology for the FAQ domain. Efforts to-
wards handling specific question types, such as causal 
questions, are already under way (Girju 2003). A care-
fully devised typology, correlated with a systematic ap-
proach to fine tuning, seem to be the lessons for success 
in answering both factoid and beyond factoid questions.   
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