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Abstract 

In this paper, we propose a novel 
Cooperative Model for natural language 
understanding in a dialogue system. We 
build this based on both Finite State Model 
(FSM) and Statistical Learning Model 
(SLM). FSM provides two strategies for 
language understanding and have a high 
accuracy but little robustness and flexibility. 
Statistical approach is much more robust 
but less accurate. Cooperative Model 
incorporates all the three strategies together 
and thus can suppress all the shortcomings 
of different strategies and has all the 
advantages of the three strategies.  

 
 
1 Introduction 
 
In this paper, we propose a novel language 
understanding approach, Cooperative Model, for a 
dialogue system. It combines both Finite State Model 
and Statistical Learning Model for sentence 
interpretation. 

This approach is implemented in the project MRE 
(Mission Rehearsal Exercise). The goal of MRE is to 
provide an immersive learning environment in which 
army trainees experience the sights, sounds and 
circumstances they will encounter in real-world 
scenarios (Swartout et al., 2001). In the whole 
procedure, language processing part plays the role to 
support the communication between trainees and 
computers. 

In the language processing pipeline, audio signals 
are first transformed into natural language sentences by 
speech recognition. Sentence interpretation part is used 
to “understand” the sentence and extract an information 
case frame for future processing such as dialogue 
management and action planning. We adopt the 
Cooperative Model as the overall frame of sentence 
interpretation, which incorporates two mainly used 
language processing approaches: the Finite State Model 

and the Statistical Learning Model. Currently there is 
relatively little work on the cooperation of the two kinds 
of models for language understanding. 

The Cooperative Model has great advantages. It 
balances the shortcomings of each separate model. It is 
easy to implement the parsing algorithm and get the 
exact expected result for finite state model (FSM) but 
it’s difficult and tedious to design the finite state 
network by hand. Also, the finite state model is not too 
robust and the failure of matching produces no results. 
On the other hand, statistical learning model (SLM) can 
deal with unexpected cases during designing and 
training by giving a set of candidate results with 
confidence scores. It is a must to provide some kind of 
rules to select results needed. However, applying it may 
not give a completely satisfactory performance. 

The rest of this paper is organized as follows: 
Section 2 describes the case frame as the semantic 
representation produced by the cooperative model. In 
section 3, we explain our cooperative language 
understanding model and discuss two different 
strategies of the Finite State Model and the Statistical 
Learning Model. We analyze the experimental results in 
Section 4. Section 5 concludes with on-going research 
and future work. 
 
2 Semantic Representation 
 
The goal of automated natural language understanding 
is to parse natural language string, extract meaningful 
information and store them for future processing. For 
our application of training environment, it’s impossible 
to parse sentences syntactically and we here directly 
produce the nested information frames as output. The 
topmost level of the information frame is defined as 
follows: 

 
 
 

Figure 1. Topmost-Level Information Frame 
 

In the definition, <semantic-object> consists of 

<i-form> := ( ^mood <mood> 
^sem <semantic-object>) 



 

three types: question, action and proposition. Here, 
question refers to requests for information, action refers 
to orders and suggestions except requests, and all the 
rest falls into the category of proposition. 

Each of these types can also be further 
decomposed as Figure 2 and 3.  

 
 
 

 
 
 
 
 
 
 
 

Figure 2. Second-Level Information Frame 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3. Third-Level Information Frame 
 

These information frames can be further extended 
and nested as necessary. In our application, most of the 
information frames obtained contain at most three levels. 
In Figure 4, we give an example of information frame 
for the English sentence “who is not critically hurt?”. 
All the target information frames in our domain are 
similar to that format. 

 
 
 
 
 
 
 
 
 
 

Figure 4. Example Nested Information Frame 

Since the information frames are nested, for the 
statistical learning model to be addressed, ideally both 
the semantic information and structural information 
should be represented correctly. Therefore we use prefix 
strings to represent the cascading level of each 
slot-value pair. The case frame in Figure 4 can be 
re-represented as shown in Figure 5. Here we assume 
that the slots in the information frame are independent 
of each other. Reversely the set of meaning items can be 
restored to a normal nested information frame. 

 
 
 
 
 
 
 
 

 
Figure 5. Re-representation to handle cascading 

 
We introduce the cooperative model in the 

following section to extract meaningful information 
frames for all the English sentences in our domain. 
 
3 Cooperative Model 
 
The Cooperative Model (CM) combines two 
commonly-used methods in natural language processing, 
Finite State Model (FSM) and Statistical Learning 
Model (SLM). We discuss them in section 3.1 and 3.2 
respectively. 
 
3.1 Finite State Model 
The main idea of finite state model is to put all the 
possible input word sequences and their related output 
information on the arcs. 

For our application, the input is a string composed 
of a sequence of words, and the output should be a 
correctly structured information frame. We apply two 
strategies of FSM. The Series Mode refers to build a 
series of finite state machine with each corresponding to 
a single slot. The Single Model builds only one complex 
Finite State Machine that incorporates all the sentence 
patterns and slot-value pairs. 
 
3.1.1 Strategy I: Series Model of Finite State 

Machine 
For this strategy, we analyze our domain to obtain a list 
of all possible slots. From the perspective of linguistics, 
a slot can be viewed as characterized by some specific 
words, say, a set of feature words. We therefore can 
make a separate semantic filter for each slot. Each 
sentence passes through a series of filters and as soon as 

<question> := (  ^type question 
^q-slot <prop-slot-name> 
^prop <proposition>) 

 
<action>  := (  ^type action-type 

^name <event-name> 
^<prop-slot-name> <val>) 
 

<proposition> := <state> | <event> | <relation> 

<state> :=  (  ^type state 
^object-id ID 
^polarity <pol> 
…) 
 

<event>  := (  ^type event-type 
^name <event-name> 
^<prop-slot-name> <val> 
…) 
 

<relation> := (  ^type relation 
^relation <rel-name> 
^arg1 <semantic-object> 

     ^arg2 <semantic-object>) 

<i> ^mood interrogative  
    <i> ^sem <t0> 

<i> <t0> ^type question  
<i> <t0> ^q-slot agent  
<i> <t0> ^prop <t1> 
<i> <t0> <t1> ^type event-type  
<i> <t0> <t1> ^time present  
<i> <t0> <t1> ^polarity negative  
<i> <t0> <t1> ^degree critical-injuries  
<i> <t0> <t1> ^attribute health-status  
<i> <t0> <t1> ^value health-bad 

Input Sentence:  who is not critically hurt?
Output Information Frame:  
(<i>  ^mood interrogative  

^sem <t0>)  
(<t0> ^type question  

^q-slot agent  
^prop <t1>)  

(<t1> ^type event-type  
^time present  
^polarity negative  
^degree critical-injuries  
^attribute health-status  
^value health-bad) 



 

we find the “feature” words, we extract their 
corresponding slot-value pairs. All the slot-value pairs 
extracted produce the final nested case frame. 
 
  Sentence                   Information Frame 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. An Example from Series Model of FSM 
 

Figure 6 is an example of the way that series 
model of finite state machine works. For example, three 
slot-value pairs are extracted from the word “who”. 
Practically, we identified 27 contexts and built 27 finite 
state machines as semantic filters, with each one 
associated with a set of feature words. The number of 
arcs for each finite state machine ranges from 4 to 70 
and the size of the feature word set varies from 10 to 50.  

This strategy extracts semantic information based 
on the mapping between words and slots. It is relatively 
easy to design the finite state machine networks and 
implement the parsing algorithm. For every input 
sentence it will provide all possible information using 
the predefined mappings. Even if the sentence contains 
no feature words, the system will end gracefully with an 
empty frame. However, this method doesn’t take into 
account the patterns of word sequences. Single word 
may have different meanings under different situations. 
In most cases it is also difficult to put one word into one 
single class; sometimes a word can even belong to 
different slots’ feature word sets that can contradict each 
other. On the other hand, the result produced may have 
some important slot-value pairs missed and the number 
of slots is fixed. 
 
3.1.2 Strategy II: Single Model of Finite State 

Machine 
In this strategy we only build a big finite state network. 
When a new sentence goes into the big FSM parser, it 
starts from “START” state and a successful matching of 
prespecified patterns or words will move forward to 
another state. Any matching procedure coming to the 
“END” state means a successful parsing of the whole 
sentence. And all the outputs on the arcs along the path 
compose the final parsing result. If no patterns or words 
are successfully matched at some point, the parser will 
die and return failure.  

This strategy requires all the patterns to be 
processed with this finite state model available before 
designing the finite state network. The target sentence 
set includes 65 sentence patterns and 23 classes of 
words and we combine them into a complex finite state 
network manually. Figure 7 gives some examples of the 
collected sentence patterns and word classes. 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 7. Target Sentence Patterns 
 

Aimed at processing these sentences, we design 
our finite state network consisting of 128 states. This 
network covers more than 20k commonly-used 
sentences in our domain. It will return the exact parsing 
result without missing any important information. If all 
of the input sentences in the application belong to the 
target sentence set of this domain, this approach 
perfectly produces all of the correct results. However, 
the design of the network is done totally by hand, which 
is very tedious and time-consuming. The system is not 
very flexible or robust and it’s difficult to add new 
sentences into the network before a thorough 
investigation of the whole finite state network. It is not 
convenient and efficient for extension and maintenance. 

Finite state models can’t process any sentence with 
new sentence patterns. However in reality most systems 
require more flexibility, robustness, and more powerful 
processing abilities on unexpected sentences. The 
statistical machine learning model gives us some light 
on that. We discuss learning models in Section 3.2.  
 
3.2 Statistical Learning Model 
 
3.2.1 Naïve Bayes Learning 
Naïve Bayes learning has been widely used in natural 
language processing with good results such as statistical 
syntactic parsing (Collins, 1997; Charniak, 1997), 
hidden language understanding (Miller et al., 1994). 

We represent the mappings between words and 
their potential associated meanings (meaning items 
including level information and slot-value pairs) with 
P(M|W). W refers to words and M refers to meaning 
items. With Bayes’ theorem, we have the formula 3.1. 

P(W)
 P(M) * M)|P(Wmaxarg W)|P(Mmaxarg =    (3.1) 

 Here P(W|M) refers to the probability of words 
given their meanings. 

who  
is  
driving  
the  
car 

(<i> 
  ^mood interrogative 

^sem  <t0>) 
(<t0> 

^type question 
^q-slot agent 
^prop <t1>) 

(<t1> 
^type action 
^event drive 
^patient car 
^time present) 

$phrase1 = what is $agent doing; 
$phrase2 = [and|how about] (you|me|[the]  
           $vehicle|$agent); 
… 
 
$agent = he|she|$people-name|[the] ($person_civ | 
        $person_mil| $squad); 
$vehicle = ambulance | car | humvee | helicopter  
         |medevac; 
… 



 

In our domain, we can view P (W) as a constant 
and transform Formula 3.1 to Formula 3.2 as follows: 

P(M)*M)|P(WmaxargW)|P(Mmaxarg
mm

=     (3.2) 

 
3.2.2 Training Set and Testing Set 
We created the training sentences and case frames by 
running full range of variation on Finite State Machine 
described in Section 3.1.2. This gives a set of 20, 677 
sentences. We remove ungrammatical sentences and 
have 16,469 left. Randomly we take 7/8 of that as the 
training set and 1/8 as the testing set.  
 
3.2.3 Meaning Model 
The meaning model P(M) refers to the probability of 
meanings. In our application, meanings are represented 
by meaning items. We assume each meaning item is 
independent of each other at this point. In the meaning 
model, the meaning item not only includes slot-value 
pairs but level information. Let C(mi) be the number of 
times the meaning item mi appears the training set, we 
obtain P(M) as follows: 

∑
=

= n

j 1
j

i
i

)C(m

)C(m)P(m
 

(3.3) 

This can be easily obtained by counting all the 
meaning items of all the information frames in the 
training set. 
 
3.2.4 Word Model 
In the naïve Bayes learning approach, P(W|M) stands 
for the probability of words appearing under given 
meanings. And from the linguistic perspective, the 
patterns of word sequences can imply strong 
information of meanings. We introduce a language 
model based on a Hidden Markov Model (HMM). The 
word model can be described as P (wi | mj, wi-2wi-1), P 
(wi | mj, wi-1) or P (wi | mj) for trigram model, bigram 
model, and unigram model respectively. They can be 
calculated with the following formulas: 

)w w,m(#
)w w,m(#

 )w w,m|P(w
1-i2-ij

1-i2-ij
1-i2-iji of

wof i=   (3.4) 

) w,m(#
) w,m(#

 )w,m|P(w
1-ij

1-ij
1-iji of

wof i=       (3.5) 

)m(#
) ,m(#

 )m|P(w
j

j
ji of

wof i=            (3.6) 

 
3.2.5 Weighted Sum Voting and Pruning 
We parse each sentence based on the naïve Bayes 
learning Formula 3.2. Each word in the sentence can be 
associated with a set of candidate meaning items. Then 
we normalize each candidate set of meaning items and 
use the voting schema to get the final result set with a 

probability for each meaning item. 
However, this inevitably produces noisy results. 

Sometimes the meanings obtained even contradict other 
useful meaning items. We employ two cutoff strategies 
to eliminate such noise. The first is to cut off 
unsatisfactory meaning items based on a gap in 
probability. The degree of jump can be defined with an 
arbitrary threshold value. The second is to group all the 
slot-value pairs with the same name and take the top one 
as the result. 
 
3.3 Cooperative Mechanism 
In the previous two sections, we discussed two 
approaches in our natural language understanding 
system. However, neither is completely satisfactory.  

Cooperative Model can combine all three 
approaches from these two models. The main idea is to 
run the three parsing models together whenever a new 
sentence comes into the system. With the statistical 
learning model, we obtain a set of information frames. 
For the result we get from single model of finite state 
machine, if an information frame exists, it means the 
sentence is stored in the finite state network. We 
therefore assign a score 1.0. The result should be no 
worse than any information frame we get from 
statistical learning model. Otherwise, it means this 
sentence is not stored in our finite state work, we can 
ignore this result. In the end, we combine this 
information frame with the frame set from statistical 
learning model and rank them according to the 
confidence scores. Generally we can consider the one 
with the highest confidence score as our parsing result. 

The cooperative model takes all advantages of the 
three methods and combines them together. The 
cooperative mechanism also suppresses the 
disadvantages of those methods. The series model of the 
finite state machine has the advantage of mapping 
between word classes and contexts, though it sometimes 
may lose some information, and it contains real 
semantic knowledge. The statistical learning model can 
produce a set of information frames based on the word 
patterns and its noise can be removed by the result of 
the series model of the finite state machine. For the 
single finite state machine model, if it can parse 
sentence successfully, the result will always be the best 
one. Therefore through the cooperation of the three 
methods, it can either produce the exact result for 
sentences stored in the finite state network or return the 
most probable result through statistical machine 
learning method if no sentence matching occurs. Also 
the noise is reduced by the other finite state machine 
model. The cooperative model is robust and has the 
ability to learn in our target domain. 
 
4 Experimental Results 
 
The cooperative model will demonstrate its ability on 
sentence processing no matter whether the sentence is in 



 

the original sentence set. However, currently we only 
have simple preference rule for the cooperation and 
haven’t obtained the overall performance. In this section, 
we’ll compare the different models’ performance to 
demonstrate the cooperative model’s potential ability. 

Based on our target sentence patterns and word 
classes, we built a blind set with 159 completely new 
sentences. Although all the words used belong to this 
domain these sentences don’t appear in the training set 
and the testing set. In the evaluation of its performance, 
we compare the results of the three approaches and get 
Table 1. As we can see from this table, finite state 
method is better in the relative processing speed and for 
processing existing patterns while statistical model is 
better for processing new sentence patterns, which 
makes the system very robust. 
 

 Sentences 
in Domain 

Speed Existing 
Patterns 

New  
Patterns 

Series 
of 

FSM 

Fixed Fast 100% Partial 
Result 

Single 
FSM 

Fixed Fast 100% Die 

Stat 
Model 

Open Slow 85%(pre) 
95%(rec) 

75%(pre) 
92%(rec) 

Table 1. Results Comparison 
 

On the other hand, we investigate the performance 
of statistical model in more detail on the blind test. 
Given the whole blind testing set, the statistical learning 
model produced 159 partially correct information 
frames. We manually corrected them one by one. This 
took us 97 minutes in total. To measure this efficiency, 
we also built all the real information frames for the 
blind test set manually, one by one. It took 366 minutes 
to finish all the 159 information frames. This means it is 
much more efficient to process a completely new 
sentence set with the statistical learning model. 

We next investigate the precision and recall of this 
statistical learning model. Taking the result frames we 
manually built as the real answers, we define precision, 
recall, and F-score to measure the system’s 
performance.  

model learning from pairs value-slot of #
pairs value-slotcorrect  of #precsion =  

answer real from pairs value-slot of #
pairs value-slotcorrect  of #recall =  

recall precision 
)recall *precision (*2F_Score

+
=  

Our testing strategy is to randomly select some 
portion of the new blind set and add it into the training 
set. Then we test the system with sentences in the rest of 
the blind set. As more and more new sentences are 
added into the training set (1/4, 1/3, 1/2, etc) we can see 
the performance changing accordingly. We investigate 

the three models: P(M|W), P(W|M) and P(M)*P(M|W). 
All of them are tested with same testing strategy.  
 

Portion 0 1/4 1/3 1/2 2/3 
Prec 0.7131 0.7240 0.7243 0.7311 0.7370 
Rec 0.8758 0.8909 0.8964 0.9133 0.9254 
F-Score 0.7815 0.7943 0.7966 0.8073 0.8152 

Table 2. Result of P (M|W) 
 

Portion 0 1/4 1/3 1/2 2/3 
Prec 0.7218 0.7416 0.7444 0.7429 0.7540 
Rec 0.8871 0.9161 0.9276 0.9270 0.9386 
F-Score 0.7913 0.8147 0.8208 0.8197 0.8304 

Table 3. Result of P (W|M) 
 

Portion 0 1/4 1/3 1/2 2/3 
Prec 0.7545 0.7693 0.7704 0.7667 0.7839 
Rec 0.8018 0.8296 0.8407 0.8372 0.8323 
F-Score 0.7745 0.7950 0.8021 0.7985 0.8035 

Table 4. Result of P (W|M) * P (M) 
 

From the three tables, we can see that as new 
sentences are added into the training set, the 
performance improves. Comparing Tables 2, 3 and 4, 
the poor performance of P (W|M)* P (M) is partially due 
to unbalance in the training set. The higher occurrences 
of some specific meaning items increase P(M) and 
affect the result during voting. 
 
5 Conclusions 
 
In this paper we proposed a cooperative model 
incorporating finite state model and statistical model for 
language understanding. It takes all of their advantages 
and suppresses their shortcomings. The successful 
incorporation of the methods can make our system very 
robust and scalable for future use. 

We notice that the series model of the finite state 
machine model actually incorporates some semantic 
knowledge from human beings. Ongoing research work 
includes finding new ways to integrate semantic 
knowledge to our system. For the statistical learning 
model, the quality and the different configurations of 
training set highly affect the performance of models 
trained and thus their abilities to process sentences. The 
balance of training set is also a big issue. How to build a 
balanced training set with single finite state machine 
model will remain our important work in the future. For 
the learning mechanism, Naïve Bayesian learning 
requires more understanding of different factors’ roles 
and their importance. These problems should be 
investigated in future work. 
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