
A low-complexity, broad-coverage probabilistic Dependency Parser for
English

Gerold Schneider
Institute of Computational Linguistics, University of Zurich

Department of Linguistics, University of Geneva
gerold.schneider@lettres.unige.ch

Abstract

Large-scale parsing is still a complex and time-
consuming process, often so much that it is in-
feasible in real-world applications. The parsing
system described here addresses this problem
by combining finite-state approaches, statisti-
cal parsing techniques and engineering knowl-
edge, thus keeping parsing complexity as low
as possible at the cost of a slight decrease in
performance. The parser is robust and fast
and at the same time based on strong linguis-
tic foundations.

1 Introduction

Many extensions to text-based, data-intensive knowledge
management approaches, such as Information Retrieval
or Data Mining, focus on integrating the impressive re-
cent advances in language technology. For this, they need
fast, robust parsers that deliver linguistic data which is
meaningful for the subsequent processing stages. This
paper presents such a parsing system. Its output is a hi-
erarchical structure of syntactic relations, functional de-
pendency structures, which are discussed in section 2.

The parser differs on the one hand from successful De-
pendency Grammar implementations (e.g. (Lin, 1998),
(Tapanainen and Järvinen, 1997)) by using a statistical
base, and on the other hand from state-of-the-art statisti-
cal approaches (e.g. (Collins, 1999)) by carefully follow-
ing an established formal grammar theory, Dependency
Grammar (DG). It combines two probabilistic models of
language, similar to (Collins, 1999), which are discussed
in section 3. Both are supervised and based on Maximum
Likelihood Estimation (MLE). The first one is based on
the lexical probabilities of the heads of phrases, similar
to (Collins and Brooks, 1995). It calculates the probabil-
ity of finding specific syntactic relations (such as subject,
sentential object, etc.) between given lexical heads. Two

simple extensions for the interaction between several de-
pendents of the same mother node are also used. The
second probability model is a PCFG for the production
of the VP. Although traditional CFGs are not part of DG,
VP PCFG rules can model verb subcategorization frames,
an important DG component.

The parser has been trained, developed and tested on
a large collection of syntactically analyzed sentences, the
Penn Treebank (Marcus et al., 1993). It is broad-coverage
and robust and returns an optimal set of partial structures
when it fails to find a complete structure for a sentence. It
has been designed to keep complexity as low as possible
during the parsing process in order to be fast enough to be
useful for parsing large amounts of unrestricted text. This
has been achieved by observing the following constraints,
discussed in section 4:

• using a syntactic theory known for its relatively flat
structures and lack of empty nodes (see also subsec-
tion 2.4)

• relying on finite-state preprocessing

• discarding unlikely readings with a beam search

• using the fast Cocke-Younger-Kasami (CYK) pars-
ing algorithm

• using a restrictive hand-written linguistic grammar

The parsing system uses a divide-and-conquer approach.
Low-level linguistic tasks that can be reliably solved by
finite-state techniques are handed over to them. These
low-level tasks are the recognition of part-of-speech by
means of tagging, and the recognition of base NPs and
verbal groups by means of chunking. The parser then re-
lies on the disambiguation decisions of the tagging and
chunking stage and can profit from a reduced search
space, at the cost of a slightly decreased performance due
to tagging and chunking errors.

The paper ends with a preliminary evaluation of this
work in progress.

 Edmonton, May-June 2003
 Student Research Workshop , pp. 31-36
 Proceedings of HLT-NAACL 2003

the/D man/N that/IN came/V eats/V bananas/N with/IN a/D fork/N
�

Subj

�
Det

W

Rel

�

Subj

W

Obj

W

PP

W

PObj

�
Det

eats/Vhhhhhhhhh
(((((((((

man/N
XXXXX��
�����

the/D

the

man/N

man

came/V
b
bb

"
""

that/IN

that

came/V

came

eats/V̀
`````̀,,

       
eats/V

eats

bananas/N

bananas

with/IN
H
HH

���
with/IN

with

fork/N
ZZ��

a/D

a

fork/N

fork

Figure 1: A dependency representation and its typically unlabeled constituency counterpart

2 Dependency Grammar

This system quite strictly follows DG assumptions. De-
pendency Grammar (DG) is essentially a valency gram-
mar in which the valency concept is extended from verbs
to nouns and adjectives and finally to all word classes.

2.1 Relation to Constituency

In its simplest definition, a projective DG is a binary ver-
sion (except for valency, see 2.2) of a constituent gram-
mar which only knows lexical items, which entails that

• for every mother node, the mother node and exactly
one of its daughters, the so-called head, are isomor-
phic

• projection is deterministic, endocentric and can thus
not fail, which gives DG a robustness advantage

• equivalent constituency CFG trees can be derived

• it is in Chomsky Normal Form (CNF), the efficient
CYK parsing algorithm can thus be used

Any DG has an equivalent constituency counterpart
(Covington, 1994). Figure 1 shows a dependency struc-
ture and its unlabeled constituency counterpart.

2.2 Valency as an isomorphism constraint

Total equivalence between mother and head daughter
could not prevent a verb from taking an infinite number of
subjects or objects. Therefore, valency theory is as vital
a part of DG as is its constituency counterpart, subcat-
egorization. The manually written rules check the most
obvious valency constraints. Verbal valency is modeled
by a PCFG for VP production.

What did you think Mary said
�
Subj

�

aux

�

Obj

�
Subj

W

Sentobj

Figure 2: Non-projective analysis of a WH-question

2.3 Functionalism

DG was originally conceived to be a deep-syntactic,
proto-semantic theory (Tesnière, 1959). The version of
DG used here retains syntactic functions as dependency
labels, like in LFG, which means that the dependency
analyses returned by the parser are also a simple ver-
sion of LFG f-structures, a hierarchy of syntactic rela-
tions between lexical heads which serves as a bridgehead
to semantics. Functional DG only accepts content words
as heads. This has the advantage that no empty heads
(for example empty complementizers for zero-relatives)
are needed. It also means that its syntactical structures
are closer to argument-structure representation than tra-
ditional constituency-based structures such as those of
GB or the Treebank. The closeness to argument-structure
makes them especially useful for subsequent stages of
knowledge management processing.

A restricted use of Tesnière-style translations is also
made. Adjectives outside a noun chunk may function as
a nominal constituent (the poor/JJ are the saint/JJ ). Par-
ticiples may function as adjectives (Western industrial-
ized/VBN countries). Present participles may also func-
tion as nouns (after winning/VBG the race).

Traditional constituency analyses such as those in the



Treebank contain many discontinuous constituents, also
known as long-distance dependencies, expressed by the
use of structure-copying methods. This parser deals
with them by allowing non-projectivity in specific, well-
defined situations, such as in WH-questions (Figure 2).
But in order to keep complexity low, discontinuity is re-
stricted to a minimum. Many long-distance dependen-
cies are not strictly necessary. For example, the analy-
sis of passive clauses does not need to involve discon-
tinuity, in which a subordinate VP whose absent object
is structure-shared with the subject of the superordinate
VP. Because the verb form allows a clear identification of
passive clauses, a surface analysis is sufficient, as long as
an appropriate probability model is used. In this parser,
passive subjects use their own probability model, which
is completely distinct from active subjects.

2.4 Mapping the Treebank to Functional
Dependency

A popular query tool for the extraction of tree structures
from Treebanks,tgrep, has been used for the mapping
to dependencies. The mapping from aconfigurational
paradigm to afunctionalone turns out to be non-trivial
(Musillo and Sima’an, 2002). A relatively simple exam-
ple, the verb-object (obj) relation is discussed now.

In a first approximation, a verb–object relation holds
between the head of a VP and the head of the NP im-
mediately under the VP. In most cases, the VP head is the
lowest verb and the NP head is the lowest rightmost noun.

As tgrep seriously overgenerates, a large number of
highly specific subqueries had to be used, specifying
all possible configurations of arbitrarily nested NPs and
VPs. Since hundreds of possible configurations are thus
mapped onto one dependency relation, statistical mod-
els based on them are much less sparse than lexicalized
PCFGs, which is an advantage as lexicalized models of-
ten suffer from sparseness. In order to extract relations
compatible to the parser’s treatment of conjunction and
apposition, the queries had to be further specified, thereby
missing few structures that should match.

In order to restrict discontinuity to where it is strictly
necessary, copular verb complements and small clause
complements are also treated as objects. Since the func-
tion of such objects can be unambiguously derived from a
verb’s lexical entry this is a linguistically viable decision.

The mapping from the Penn treebank to dependencies
by means oftgrep is a close approximation but not a
complete mapping. A few structures corresponding to
a certain dependency are almost certain to be missed or
doubled. Also, structures involving genuine discontinuity
like the verb–object relation in figure 2 are not extracted.

3 Probabilistic Models of Language

Writing grammar rules is an easy task for a linguist, par-
ticularly when using a framework that is close to tra-
ditional school grammar assumptions, such as DG. Ac-
knowledged facts such as the one that a verb has typically
one but never two subjects are expressed in hand-written
declarative rules. The rules of this parser are based on
the Treebank tags of heads of chunks. Since the tagset is
limited and dependency rules are binary, even a broad-
coverage set of rules can be written in relatively little
time.

What is much more difficult, also for a linguist, is to as-
sess the scope of application of a rule and the amount of
ambiguity it creates. Long real-world sentences typically
have dozens to hundreds of syntactically correct complete
analyses and thousands of partial analyses, although most
of them are semantically so odd that one would never
think of them. Here, machine-learning approaches, such
as probabilizing the manually written rules, are vital to
any parser, for two reasons: first, the syntactically possi-
ble analyses can be ranked according to their probabili-
ties. For subsequent processing stages like semantic in-
terpretation or document classification it then often suf-
fices to take the first ranked or then first ranked readings.
Second, in the course of the parsing process, very im-
probable analyses can be abandoned, which greatly im-
proves parsing efficiency (see section 4).

The parser uses two linguistic probability models. The
first one is based on the lexical probabilities of the heads
of phrases. Two simple extensions for the interaction be-
tween several dependents of the same mother node are
also used. The second probability model is a PCFG for
the expansion of the VP.

Since the parser aims at a global disambiguation, all
local probabilities are stored in the parsing chart. The
global probability of a parse is the product of all its local
probabilities, a product of disambiguation decisions.

3.1 Lexical Dependencies

Given two adjacent lexical heads (saya andb), the prob-
abilities of the possible dependency relations between
them are calculated as Maximum Likelihood (MLE) esti-
mates. In a binary CFG, constituents which are adjacent
at some stage in the parsing process are candidates for the
right-hand side (RHS) of a rewrite rule. If a rule exists for
these constituents (sayA andB), then in a DG or in Bare
Phrase Structure, one of these is isomorphic to the LHS,
i.e. the head. DG rules additionally use a syntactic re-
lation labelR, for which the probabilities are calculated
in this probability model. The dependency rules used are
based on Treebank tags, the relation probabilities are con-



ditioned on them and on the lexical heads.

p(R|A → AB, a, b) =
#(R,A → AB, a, b)
#(A → AB, a, b)

(1)

All that A → AB expresses is that in the dependency
relation the dependency is towards the right, it is therefore
rewritten asright.

p(R|right, a, b) =
#(R, right, a, b)
#(right, a, b)

(2)

Such a probability model is used to model the local
competition between object and adjunct relation (he left
town vs. he left yesterday), in which the verb is always
the left RHS constituent. But in some cases, the direc-
tion is also a parameter, for example in the subject–verb
relation (she saidversussaid she). There, the probability
space is divided into two equal sections.

p(R, right|a, b) =
1
2
∗ #(R, right, a, b)

#(right, a, b) + #(left, a, b)
(3)

The PP-attachment model probabilities are condi-
tioned on three lexical heads – the verb, the preposition
and the description noun (Collins and Brooks, 1995). The
probability model is backed off across several levels. In
addition to backing off to only partly lexicalized counts
(ibid.), semantic classes are also used in all the modeled
relations, for verbs the Levin classes (Levin, 1993), for
nouns the top Wordnet class (Fellbaum, 1998) of the most
frequent sense. As an alternative to backing-off, linear in-
terpolation with the back-off models has also been tried,
but the difference in performance is very small.

A large subset of syntactic relations, the ones which are
considered to be most relevant for argument structure, are
modeled, specifically:

Relation Label Example

verb–subject subj he sleeps
verb–direct object obj sees it
verb–indirect object obj2 gave (her) kisses
verb–adjunct adj ate yesterday
verb–subord. clause sentobj saw (they) came
verb–prep. phrase pobj slept in bed
noun–prep. phrase modpp draft of paper
noun–participle modpart report written
verb–complementizer compl to eat apples
noun–preposition prep to the house

Until now one relation has two distinct probability
models: verb–subject is different for active and passive
verbs, henceforth referred to asasubj andpsubj, where
needed. The disambiguation between complementizer
and preposition is necessary as the Treebank tagset unfor-
tunately uses the same tag (IN ) for both. Many relations
have slightly individualized models. As an example the
modpart relation will be discussed in detail.

3.1.1 An Example: Modification by Participle

The noun–participle relation is also known as reduced
relative clause. In the Treebank, reduced relative clauses
are adjoined to the NP they modify, and under certain
conditions also have an explicitRRC label. Reduced rel-
ative clauses are frequent enough to warrant a probabilis-
tic treatment, but considerably sparser than verb–non-
passive-subject or verb–object relations. They are in di-
rect competition with the subject–verb relation, because
its candidates are also a NP followed by a VP. We prob-
ably have a subject-verb relation inthe report announced
the deal and a noun-participle relation inthe report an-
nounced yesterday. The majority of modification by par-
ticiple relations, if the participle is a past participle, func-
tionally correspond to passive constructions (the report
written ∼= the report which has been written). In order to
reduce data sparseness, which could lead to giving pref-
erence to a verb–non-passive-subject reading (asubj),
the verb–passive-subject counts (psubj) are added to the
noun–participle counts. Some past participles also ex-
press adjunct readings (the week ended Friday); there-
fore the converse, i.e. adding noun–participle counts to
verb–passive-subject counts, is not recommended.

The next back-off step maps the nouna to its Wordnet-
classå and the verbb to its Levin-classb̊. If the counts
are still zero, counts on only the verb and then only the
noun are used.

p(modpart|a, b) = (4)
#(modpart,right,a,b)+#(psubj,left,a,b)

#(modpart,right,a,b)+#(psubj,left,a,b)+#(asubj,left,a,b)

if>0,else

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)

#(modpart,right,̊a,̊b)+#(psubj,left,̊a,̊b)+#(asubj,left,̊a,̊b)

if>0,else

#(modpart,right,b)+#(psubj,left,b)
#(modpart,right,b)+#(psubj,left,b)+#(asubj,left,b)

if>0,else

#(modpart,right,a)+#(psubj,left,a)
#(modpart,right,a)+#(psubj,left,a)+#(asubj,left,a)

As the last backoff, a low non-zero probability is as-
signed. In the verb–adjunct relation, which drastically in-
creases complexity but can only occur with a closed class
of nouns (mostly adverbial expressions of time), this last
backoff is not used.

3.2 Interaction between Several Dependents

For the verb–prepositional-phrase relation, two models
that take the interaction between the several PPs of the
same verb into account have been implemented. They
are based on the verbal head and the prepositions.

The first one estimates the probability of attaching a PP
introduced by prepositionp2, given that the verb to which
it could be attached already has another PP introduced by
the prepositionp1. Back-offs using the verb-classv̊ and



then the preposition(s) only are used.

p(p2|v, p1) = #(p2,v,p1)
#(v,p1) if > 0, else (5)

#(p2,̊v,p1)
#(̊v,p1) if > 0, else

#(p2,
⋃

v,p1)
#(

⋃
v,p1) if > 0, else

#(p2,
⋃

v)
#(

⋃
v)

The second model estimates the probability of attach-
ing a PP introduced by prepositionp2 as a non-first PP.
The usual backoffs are not printed here.

p(p2|v,
⋃

p1) = #(p2,v,
⋃

p1)
#(v,

⋃
p1) (6)

As prepositions are a closed class, a zero probability is
assigned if the last back-offs fail.

3.3 PCFG for Verbal Subcategoriation and VP
Production

Verbs often have several dependents. Ditransive verbs,
for example, have up to three NP complements, the sub-
ject, the direct object and the indirect object. An inde-
terminate number of adjuncts can be added. Transitivity,
expressed by a verb’s subcategorization, is strongly lex-
icalized. But because the Treebank does not distinguish
arguments and complements, and because a standard lex-
icon does not contain probabilistic subcategorization, a
probabilistic model has advantages. Dependency mod-
els as discussed hitherto fail to model complex depen-
dencies between the dependents of the same mother, un-
like PCFGs. A simple PCFG model for the production of
the VP rule which is lexicalized on the VP head and has
a non-lexicalized backoff, is therefore used. RHS con-
stituentsC, for the time being, are unlexicalized phrasal
categories likeNP ,PP , Comma, etc. At some stage
in the parsing process, given an attachment candidate
Cn and a verbal headv which already has attached con-
stituentsC1 to Cn−1, the probability of attachingCn is
estimated. This probability can also be seen as the prob-
ability of continuing versus ending the VP under produc-
tion.

p(attach|Cn, v, C1..Cn−1) = (7)

#(vp → v, C1, ...Cn)
#(vp → v, C1, ...Cn−1)

if > 0, else

#(vp →
⋃

v, C1, ...Cn)
#(vp →

⋃
v, C1, ...Cn−1)

4 Implementation

The parser has been implemented in Prolog, it runs in
SWI-Prolog and Sicstus Prolog. For SWI-Prolog, a
graphical interface has also been programmed in XPCE1.

1For more information, see

http://www.ifi.unizh.ch/CL/gschneid/parser

If no analysis spanning the entire length of the sentence
can be found, an optimal path of partial structures span-
ning as much of the sentence as possible is searched. The
algorithm devised for this accepts the first-ranked of the
longest of all the partial analyses found, sayS. Then, it
recursively searches for the first-ranked of the longest of
the partial analyses found to the left and to the right ofS,
and so on, until all or most of the sentence is spanned.

The parser uses the preprocessed input of a finite-state
tagger-chunker. Finite-state technology is fast enough
for unlimited amounts of data, taggers and chunkers are
known to be reliable but not error-free, with typical er-
ror rates between 2 and 5 %. Tagging and chunking is
done by a standard tagger and chunker,LTPos(Mikheev,
1997). Heads are extracted from the chunks and lem-
matized (Minnen et al., 2000). Parsing takes place only
between the heads of phrases, and only using the best tag
suggested by the tagger, which leads to a reduction in
complexity. The parser uses the CYK algorithm, which
has parsing complexity ofO(n3), where n is the number
of words in a word-based, but only chunks in a head-
of-chunk-based model. The chunk to word relation is
1.52 for Treebank section 0. In a test with a toy NP and
verb-group grammar parsing was about 4 times slower
when using unchunked input. Due to the insufficiency
of the toy grammar the lingusitic quality and the number
of complete parses decreased. The average number of
tags per token is 2.11 for the entire Treebank. With un-
tagged input, every possible tag would have to be taken
into consideration. Although untested, at least a similar
slowdown as for unchunked input can be expected.

In a hand-written grammar, some typical parsing er-
rors can be corrected by the grammar engineer, or rules
can explicitly ignore particularly error-prone distinctions.
Examples of rules that can correct tagging errors with-
out introducing many new errors are allowingV BD to
act as a participle or the possible translation ofV BG to
an adjective. As an example of ignoring error-prone dis-
tinctions, the disambiguation between prepositions and
verbal particles is unreliable. The grammar therefore
makes no distinction and treats all verbal particles as
prepositions, which leads to an incorrect but consistent
analysis for phrasal verbs. A hand-written grammar al-
lows to model complex but important phenomena which
overstep manageable ML search spaces, such as discon-
tinous analysis of questions can be expressed, while on
the other hand rare and marginal rules can be left out
to free resources. For tagging, (Samuelsson and Vouti-
lainen, 1997) have shown that a manually built tagger can
equal a statistical tagger.

5 Preliminary Evaluation

The probabilistic language models have been trained on
section 2 to 24 and the parser tested on section 0. The



Percentage Values for
Subject Object PP-attach IN

Precision 77 72 67 80
Recall 70 75 49 78

Table 1: Provisional precision and recall values

held out training data and the first-ranked reading for each
sentence of section 0 are compared for evaluation (Lin,
1995). Parsing the 46527 words of section 0 takes 30
minutes on a 800 MHz Pentium 3 PC, including about 3
minutes for tagging and chunking. Current precision and
recall values for subject, object and PP-attachment rela-
tions, and for the disambiguation between prepositions
and complements are in table 1.

These results, slightly lower than state-of-the-art ((Lin,
1998), (Preiss, 2003)), are least merit figures or a proof
of concept rather than accurate figures. On the one hand,
the performance of the parser suffers from mistaggings
and mischunkings or a limited grammar, the price for the
speed increase. On the other hand, different grammatical
assumptions both between the Treebank and the chunker,
and between the Treebank and functional dependency, se-
riously affect the evaluation. For example, the chunker
often recognizes units longer than base-NPs like[many
of the people], or smaller or longer than verbal groups
[has] for a long time [been], [likely to bring] – correct
chunks which are currently considered as errors.

In addition, it is very difficult to avoidtgrepovergen-
erating or missing. It turns out that the mapping is accu-
rate enough for a statistical model but not for a reliable
evaluation. Some possible configurations are missed by
the current extraction queries. For example, extraposed
PPs such as the one starting this sentence, have escaped
unmapped until now. For the future, the use of a stan-
dardized DG test suite is envisaged (Carroll et al., 1999).

The grammar explicitly excludes a number of gram-
matical phenomena which cannot currently be treated re-
liably. For example, since no PP-interaction model such
as PCFG rules for NP-attached PPs exists yet, the current
grammar does not allow a NP to take several PPs, which
affects the analysis of relational nouns. The statistical
models, the dependency extraction, the grammar, the tag-
ger and chunker approach and the evaluation method will
continue to be improved.

References

John Carroll, Guido Minnen, and Ted Briscoe. 1999.
Corpus annotation for parser evaluation. InProceed-
ings of the EACL-99 Post-Conference Workshop on
Linguistically Interpreted Corpora, Bergen, Norway.

Michael Collins and James Brooks. 1995. Prepositional

attachment through a backed-off model. InProceed-
ings of the Third Workshop on Very Large Corpora,
Cambridge, MA.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.d. dissertation,
University of Pennsylvania, Philadelphia, PA.

Michael A. Covington. 1994. An empirically motivated
reinterpretation of Dependency Grammar. Techni-
cal Report AI1994-01, University of Georgia, Athens,
Georgia.

Christiane Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge, MA.

Beth C. Levin. 1993.English Verb Classes and Alter-
nations: a Preliminary Investigation. University of
Chicago Press, Chicago, IL.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InProceedings of
IJCAI-95, Montreal.

Dekang Lin. 1998. Dependency-based evaluation of
MINIPAR. In Workshop on the Evaluation of Parsing
Systems, Granada, Spain.

Mitch Marcus, Beatrice Santorini, and M.A.
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank.Computational
Linguistics, 19:313–330.

Andrei Mikheev. 1997. Automatic rule induction for
unknown word guessing.Computational Linguistics,
23(3):405–423.

Guido Minnen, John Carroll, and Darren Pearce. 2000.
Applied morphological generation. InProceedings
of the 1st International Natural Language Generation
Conference (INLG), Mitzpe Ramon, Israel.

Gabriele Musillo and Khalil Sima’an. 2002. Towards
comparing parsers from different linguistic frame-
works. In Proceedings of LREC 2002 Beyond PAR-
SEVAL Workshop, Las Palmas, Spain.

Judita Preiss. 2003. Using grammatical relations to com-
pare parsers. InProceedings of EACL 03, Budapest,
Hungary.

Christer Samuelsson and Atro Voutilainen. 1997. Com-
paring a linguistic and a stochastic tagger. InProceed-
ings of of ACL/EACL Joint Conference, Madrid.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser. InProceedings of the
5th Conference on Applied Natural Language Process-
ing, pages 64–71. Association for Computational Lin-
guistics.

Lucien Tesnìere. 1959.Eléments de Syntaxe Structurale.
Librairie Klincksieck, Paris.


