
Indexing Methods for Efficient Parsing

Cosmin Munteanu
Department of Computer Science, University of Toronto

10 King’s College Rd., Toronto, M5S 3G4, Canada
E-mail: mcosmin@cs.toronto.edu

Abstract

This paper presents recent developments of an
indexing technique aimed at improving parsing
times. Although several methods exist today
that serve this purpose, most of them rely on
statistical data collected during lengthy train-
ing phases. Our goal is to obtain a reliable
method that exhibits an optimal efficiency/cost
ratio, without lengthy training processes. We
focus here on static analysis of the grammar,
a method that has unworthily received less at-
tention in the last few years in computational
linguistics. The paper is organized as follows:
first, the parsing and indexing problem are in-
troduced, followed by a description of the gen-
eral indexing strategy for chart parsing; sec-
ond, a detailed overview and performance anal-
ysis of the indexing technique used for typed-
feature structure grammars is presented; finally,
conclusions and future work are outlined.

1 Introduction

One of the major obstacles in developing efficient parsers
for natural language grammars is the slow parsing
time. As recent years witnessed an increase in the use
of unification-based grammars (UBG) or large-scale
context-free grammars, the need for improving the
recognition (parsing) times is more stringent.

Our approach is based on the observation that CFG or
UBG parsing has to deal with large amount of data and/or
data with complex structure, which leads to slower pro-
cessing times. This problem is similar to that of the re-
trieval/updating process in databases, and for this area, it
was solved by indexing. This similarity leads to the as-
sumption that the same solution could be applied to pars-
ing.

For chart-parsing techniques, one of the most time-
consuming operations is the retrieval of categories from
the chart. This is a look-upprocess: the retrieved category
should match a daughter description from the grammar.
For large-scale CFGs, one position in the chart could con-
tain a large amount of categories; for UBGs, this amount
is usually smaller, but the unification process itself is very
costly. Thus, as mentioned in (Carpenter, 1995), an in-
dexing method that reduces the number of unifications is
much needed.

1.1 Our Goal

Most of the research aimed at improving parsing times
uses statistical methods that require training. As men-
tioned in (Malouf et al., 2000), during grammar devel-
opment, the time spent for the entire edit-test-debug cy-
cle is important, therefore a method needing considerable
time for gathering statistical data could burden the devel-
opment process. Our goal is to find better indexing meth-
ods that are time-efficient for the entire grammar develop-
ment cycle.

Current techniques (such as quick-check, (Malouf et
al., 2000)) reduce the parsing times by means of filtering
unnecessary unifications. Using an index presents the ad-
vantage of a more organized, yet flexible, approach. In-
dexing methods are widely used in databases (Elmasri and
Navathe, 2000) and automated reasoning (Ramakrishnan
et al., 2001).

1.2 Related Work

An empirical method that addresses the efficiency issue
is quick-check (Malouf et al., 2000), a method that relies
on statistical data collected through training. Other tech-
niques are focused on implementational aspects (Wint-
ner and Francez, 1999), or propose approaches similar
to indexing for typed-feature structures (TFS) retrieval
(Ninomiya et al., 2002). An automaton-based index-
ing for generation is proposed in (Penn and Popescu,
1997), while (Penn, 1999b) improves the efficiency by re-

 Edmonton, May-June 2003
 Student Research Workshop , pp. 25-30
 Proceedings of HLT-NAACL 2003

ordering of feature encoding. A method (similar to the
one introduced in Section 7) that uses pre-compiled rule
filters is presented in (Kiefer et al., 1999), although the au-
thors did not focus on the indexing potential of the static
analysis of mother-daughter relations, nor present the in-
dexing in a large experimental context.

2 Preliminaries

The indexing method proposed here can be applied to
any chart-based parser. We chose for illustration the EFD
parser implemented in Prolog (an extensive presentation
of EFD can be found in (Penn, 1999c)). EFD is a bottom-
up, right-to-left parser, that needs no active edges. It uses
a chart to store the passive edges. Edges are added to the
chart as the result of closing (completing) grammar rules.
The chart contains n � 1 entries (n is the number of words
in the input sentence), each entry i holdingedges that have
their right margin at position i.

2.1 TFS Encoding

To ensure that unification is carried through internal Pro-
log unification, we encoded descriptions as Prolog terms
for parsing TFSGs. From the existing methods that ef-
ficiently encode TFS into Prolog terms ((Mellish, 1988),
(Gerdemann, 1995), (Penn, 1999a)), we used embedded
Prolog lists to represent feature structures. As shown in
(Penn, 1999a), if the feature graph is N-colourable, the
least number of argument positions in a flat encoding is N.
Types were encoded using the attributed variables from
SICSTus (SICS, 2001).

3 Chart Parsing with Indexing

In order to close a rule, all the rules’ daughters should be
found in the chart as edges. Looking for a matching edge
for a daughter is accomplished by attempting unifications
with edges stored in the chart, resulting in many failed
unifications.

3.1 General Indexing Strategy

The purpose of indexing is to reduce the amount of failed
unifications when searching for an edge in the chart. This
is accomplished by indexing the access to the chart. Each
edge (edge’s category or description) in the chart has an
associated index key, that uniquely identifies sets of cat-
egories that can match with that edge’s category. When
closing a rule, the chart parsing algorithm looks up in the
chart for edges matching a specific daughter. Instead of
visiting all edges in the chart, the daughter’s index key
will select a restricted number of edges for traversal, thus
reducing the number of unnecessary unification attempts.

3.2 Index Building

The passive edges added to the chart represent rules’
mothers. Each time a rule is closed, its mother is added to

the chart according to the indexing scheme. The indexing
scheme selects the hash entries where the mother 1 is in-
serted. For each mother M , the indexing scheme is a list
containing the index keys of daughters that are possible
candidates to a successful unification with M . The index-
ing scheme is re-built only when the grammar changes,
thus sparing important compiling time.

In our experiments, the index is represented as a hash2 ,
where the hash function applied to a daughter is equiva-
lent to the daughter’s index key. Each entry in the chart
has a hash associated with it. When passive edges are
added to the chart, they are inserted into one or several
hash entries. For an edge representing a mother M , the
list of hash entries where it will be added is given by the
indexing scheme for M .

3.3 Using the Index

Each category (daughter) is associated with a unique in-
dex key. During parsing, a specific daughter is searched
for in the chart by visiting only the list of edges that have
the appropriate key, thus reducing the time needed for
traversing the chart. The index keys can be computed off-
line (when daughters are indexed by their position, see
Section 7) or during parsing (as in Sections 4, 6).

4 Indexing for CFG Chart Parsing

4.1 Indexing Method

The first indexing method presented in this paper is aimed
at improving the parsing times for CFGs. The index key
for each daughter is daughter’s category itself. In or-
der to find the edges that match a specific daughter, the
search take place only in the hash entry associated with
that daughter’s category. This increases to 100% the ratio
of successful unifications (Table 1 illustrates the signifi-
cance of this gain by presenting the successful unification
rate for non-indexing parser).

Number Successful Failed Success
of rules unifications unifications rate (%)

124 104 1,766 5.56
473 968 51,216 1.85
736 2,904 189,528 1.51
1369 7,152 714,202 0.99
3196 25,416 3,574,138 0.71

Table 1: Successful unification rate for non-indexing parser (for
the CFGs from Section 4.2.)

4.2 Experiments for CFG indexing

Several experiments were carried to determine the actual
run-times of the EFD and indexed EFD parsers for CFGs.

1Through the rest of the paper, we will also use the shorter
term mother to denote rule’s mother.

2Future work might also take into consideration other dy-
namic data structures as a support for indexing.

Nine CFGs with atomic categories were built from the
Wall Street Journal (Penn Tree Bank release 2) annotated
parse trees, by constructing a rule from each sub-tree of
every parse tree, and removing the duplicates.

For all experiments we chose a test set of 5 sentences
(with lengths of 15, 14, 15, 13, and 18 words) such that
each grammar will parse successfully all sentences and
each word has only one lexical use in all 5 parses. The
number of rules varied from 124 to 3196.

Figure 1 shows that even for a smaller number of rules,
the indexed parser outperforms the non-indexed version.
As the number of rules increases, the need for indexing
becomes more stringent. Although unification costs are
small for atomic CFGs, using an indexing method is well
justified.

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 P
ar

si
ng

 T
im

e
[s

ec
]

Number of rules

EFD on CFG
EFD with indexing on CFG

Figure 1: Parsing times for EFD and EFD-indexing applied to
CFGs with atomic categories

The performance measurements for all CFG experi-
ments (as well as for TFSG experiments presented later)
were carried on a Sun Workstation with an UltraSparc v.9
processor at 440 MHz and with 1024 MB of memory. The
parser was implemented in SICStus 3.8.6 for Solaris 8.

5 Typed-Feature Structure Indexing

Compared to CFG parsing, for TFSGs the amount of at-
tempted unifications is much smaller (usually UBGs have
fewer rules than CFGs), but the unification itself is very
costly. Again, indexing could be the key to efficient pars-
ing by reducing the number of unifications while retriev-
ing categories from the chart.

The major difference between indexing for CFGs and
for TFSGs lies in the nature of the categories used: CFGs
are mostly associated with the use of atomic categories,
while TFSGs employs complex-structure categories
(typed-feature structures). This difference makes index-
ing more difficult for typed-feature structure parsers,
since the extraction of an index key from each category
is not a trivial process anymore. The following sections

describe the solution chosen for indexing typed-feature
structure parsers.

5.1 Statistical and Non-Statistical Indexing

In our quest for improving the parsing times for TFSGs,
we took two different approaches to indexing. The first
approach uses statistical measurements carried on a cor-
pus of training sentences to determine the most appropri-
ate indexingscheme. The second approach relies on a pri-
ori analysis of the grammar rules, and no training is re-
quired.

5.2 Experimental Resources

For both statistical and non-statistical indexing schemes,
a simplified version of the MERGE grammar was used.
MERGE is the adaptation for TRALE (Meurers and Penn,
2002) of the English Resource Grammar (CSLI, 2002).
The simplified version has 13 rules with 2 daughters each
and 4 unary rules, and 136 lexical entries. The type hier-
archy contains 1157 types, with 144 features introduced.
The features are encoded as Prolog terms (lists of length
13) according to their feature-graph colouring.

For performance measurements, we used a test set con-
taining 40 sentences of lengths from 2 to 9 words 3 (5 sen-
tences for each length). For training the statistical index-
ing scheme we use an additional corpus of 60 sentences.

6 Statistical Indexing for TFS

6.1 Path Indexing

Our statistical approach to indexing has its roots in
the automaton-based indexing from (Penn and Popescu,
1997), used in generation, but adapted to indexed edge
retrieval. The solution we chose is similar to the quick-
check vector presented in (Malouf et al., 2000). When
parsing sentences in the training corpus, the parser is
modified in order to record, for each unification between
two feature structures that failed, the feature path that
caused the unification failure. The path causing most of
the unification failures across all training corpus will be
refered to as the indexing path. The type value at the end
of the indexing path is used as an index key.

6.1.1 Index Building

The indexing scheme used for adding edges to the chart
during parsing is a slightlymodified version of the general
scheme presented in Section 3.2. Each edge is associated
with an index key. For our statistical indexing, we used
the type at the end of an edge’s indexing path as the index
key for that edge.

3The coverage of our version of the MERGE grammar is
quite limited, therefore the test sentences are rather short (which
is, however, a common characteristic of TFSGs compared to
CFGs).

An edge describing a rule’s mother M is added to the
indexed chart at all positions indicated by the keys in the
list L

�
M � . Since types are used as index keys, this list is

defined as L
�
M ����� t � t � kM ��	 ��
 � , where kM is the in-

dex key for M ,
 is the unique most general type, and �
is the type unification.

6.1.2 Using the Index

The retrieval of edges from the indexed chart is accom-
plished as described in Section 3.3. The index key for
each daughter is the type value at the end of the indexing
path. In case the indexed path is not specified for a given
daughter, the type
 is used for the key. Hence, searching
for a matching edge in the entry described by
 is identi-
cal to using a non-indexed chart parsing.

6.2 Path Indexing with Quick Check

The path indexing scheme presented above makes use
of a single feature path that causes most of the failed
unifications over a corpus of sentences. Since each of
the paths causing unification failures represents relatively
small percentages of the total failures (the first two paths
account for only 18.6% and 17.2%, respectively), we de-
cided to use the first two paths in a mixed approach: the
type at the end of the first path was still used as an index
key, while the traversal of edges in a hash entry was ac-
companied by a quick-check along the second path.

6.3 Performance

Four parsers were tested: the non-indexed EFD parser,
the path-indexed parser (using one path), the non-indexed
EFD parser using quick-check, and the combination of
path indexing and quick-checking. The results are pre-
sented in Table 2.

Words per Non-indexed Path-indexed EFD with Path-indexed �
sentence EFD EFD quick-check quick-check EFD

2 0.9 0.9 1.0 0.9
3 4.0 4.4 3.9 4.4
4 15.5 16.4 14.9 16.0
5 46.2 46.9 44.2 46.5
6 103.8 102.5 98.1 100.8
7 184.8 186.9 176.0 180.7
8 311.4 313.5 301.0 295.3
9 594.6 562.7 554.7 551.7

Table 2: Average parsing times [msec] for statistical indexing,
using the converted MERGE grammar.

Although the number of unifications dropped almost
to 18% for the combination of path indexing and quick-
check, the difference in parsing times is not as significant.
This is due to the costs of maintaining the index: simple
path indexing is constantly slower than quick-check. Path
indexing combined with quick-check outperforms quick-
check for sentences longer than 7 words.

7 Non-Statistical Indexing for TFS

Statistical indexing and quick-check have a major disad-
vantage if they are used during grammar development cy-
cles. If the grammar suffers important changes, or the sen-
tences to be parsed are not similar to those from training,
the training phase has to be re-run. Hence, an indexing
scheme that does not need training is needed.

The indexing scheme presented in this section reduces
the number of hash entries used, thus reducing the cost of
manipulating the index. The index key for each daughter
is represented by its position (rule number and daughter
position in the rule), therefore the time spent in computing
the index key during parsing is practically eliminated.

7.1 Index Building

The structure of the index is determined at compile-
time (or can be constructed off-line and saved for
further uses if parsing is done with the same gram-
mar). The first step is to create the list containing
the descriptions of all rules’ mothers in the grammar.
Then, for each mother description, a list L

�
Mother �
�

� � Ri � D j ��� daughters that can match Mother � is created,
where each element of the list L represents the rule
number Ri and daughter position D j (inside rule Ri) of a
category that can match with Mother.

For CFGs, the list L
�
Mother � would contain only the

daughters that are guaranteed to match with a specific
Mother (thus creating a “perfect” index). For UBGs, it
is not possible to determine the exact list of matches,
since the content of a daughter can change during pars-
ing. However, it is possible to rule out before parsing the
daughters that are incompatible (with respect to unifica-
tion) with a certain Mother, hence the list L

�
Mother � has

a length between that of a “perfect” indexing scheme and
that of using no index at all. Indeed, for the 17 mothers in
the MERGE grammar, the number of matching daughters
statically determined before parsing ranges from 30 (the
total number of daughters in the grammar) to 2. This com-
promise pays off by its simplicity, reflected in the time
spent managing the index.

During run-time, each time an edge (representing a
rule’s mother) is added to the chart, its category Cat is in-
serted into the corresponding hash entries associated with
the positions

�
Ri � D j � from the list L

�
Cat � . The entry asso-

ciated to the key
�
Ri � D j � will contain only categories that

can possibly unify with the daughter at position
�
Ri � D j �

in the grammar. Compared to the path indexing scheme
(Section 6.1) where the number of entries could reach
1157 (total number of types), in this case the number is
limited to 30 (total number of daughters).

7.2 Using the Index

Using a positional index key for each daughter presents
the advantage of not needing an indexing (hash) function

during parsing. When a rule is extended during parsing,
each daughter is looked up in the chart for a matching
edge. The position of the daughter

�
Ri � D j � acts as the in-

dex key, and matching edges are searched only in the list
indicated by the key

�
Ri � D j � .

8 Using Statistical Measures to Improve
Non-Statistical Indexing for TFS

Although the statistical and non-statistical indexing tech-
niques can be merged in several ways into a single
method, the cost of maintaining a complicated indexing
scheme overshadows the benefits. An experiment that
combined all indexing techniques presented in this paper
produced parsing times almost four times longer than the
slowest non-statistical indexing. However, as shown in
the followingparagraphs, the statistical information about
paths causing unification failures can be used to improve
the efficiency of indexing.

8.1 Encoding Re-ordering

The unification of feature structures is accomplished by
means of Prolog term unifications, as described in Sec-
tion 2.1. This means that the unification of features en-
coded on the first position in their lists will take place be-
fore the unification of features that are encoded at the end
of the lists.

During the training phase presented in Section 6, we
observed that features causing most of the unification fail-
ures are not placed at the beginning of the list in their en-
codings. Therefore, we re-arranged the placement of en-
coded features according to their probability to cause uni-
fication failures.

9 Performance

Similar to the experiments carried for statistical indexing,
the experimental resources presented in Section 5.2 were
also used for the indexing method introduced in Section 7.
Figure 2 and Figure 3 present the comparison between the
original EFD parser and the same parser with indexing
(results from statistical indexing experiments are also pre-
sented here in order to illustrate the differences between
all methods). For sentences having more than 4 words,
the indexed parser outperforms both the EFD parser and
the best statistical indexing method. Figures 2 and 3 also
present the parsing times for the new feature encoding de-
scribed in Section 8.1.

10 Conclusions

In this paper, we presented an indexing method that
uses a hash to index categories during chart parsing.
This method works for both context-free grammars with
atomic categories, and typed feature structure grammars.
The index keys rely on compatibility relations between

rules’ mothers and daughters statically determined be-
fore parsing. Other techniques (like statistic-based quick-
check tests or feature re-ordering) can be combined in or-
der to improve the parsing time. Overall, static analysis
of grammar rules that index daughters by their position
proved to be an efficient method that eliminates the train-
ing needed by statistical indexing techniques. Statistical
data can improve this method especially by means of fea-
ture re-ordering.

11 Future Work

Future work will focus on improving the indexing tech-
niques analyzed in this paper. Possible areas of investiga-
tion are substitution tree indexing (Graf, 1995) for non-
statistical methods, or restructuring decision trees (Ut-
goff et al., 1997), while trying to maintain index opera-
tion costs at a minimum. Performance profilingcombined
with software and database engineering techniques will
be used to determine the optimum trade-off between in-
dexing efficiency and implementation cost.

Since non-statistical indexing proved to be an efficient
solution, our main focus will be on improving the static
analysis. Type signature and appropriateness specifica-
tion will be used to identify both the paths prone to cause
unification failures and the paths that lead to successful
unifications. Empirical techniques (such as unifying par-
tial representations for TFS ordered by their probability
of causing unification failures) will be used, along with a
more efficient feature encoding that allows for earlier de-
tection of unification failures.

Acknowledgements

The author wishes to thank Professor Gerald Penn for his
restless support during this work, and the anonymous re-
viewers for their valuable comments.

References
B. Carpenter. 1995. Compiling CFG parsers in Prolog.

http://www.colloquial.com/carp/Publications.

CSLI. 2002. CSLI Lingo. http://lingo.stanford.edu/csli.

R. Elmasri and S. Navathe. 2000. Fundamentals of
database systems. Addison-Wesley.

D. Gerdemann. 1995. Term encoding of typed feature
structures. In Proceedings of the Fourth International
Workshop on Parsing Technologies.

P. Graf. 1995. Substitution tree indexing. In Proceed-
ings of the 6th International Conference on Rewriting
Techniques and Applications.

B. Kiefer, H.U. Krieger, J. Carroll, and R. Malouf. 1999.
A bag of useful techniques for efficient and robust pars-
ing. In Proceedings of the 37th Annual Meeting of the
ACL.

1

10

100

1000

2 3 4 5 6 7 8 9

A
ve

ra
ge

 p
ar

si
ng

 ti
m

e
(l

og
[m

se
c]

)

Number of words per sentence

non-indexed EFD
path-indexed EFD

EFD with quick-check
path-indexed EFD + quick check

indexed EFD
re-encoded indexed EFD

Figure 2: Average parsing times for all indexing methods, using the converted MERGE grammar.

R. Malouf, J. Carrol, and A. Copestake. 2000. Efficient
feature structure operations without compilation. Nat-
ural Language Engineering Journal, 1(1).

C. Mellish. 1988. Implementing systemic classification
by unification. Computational Linguistics, 14(1).

D. Meurers and G. Penn, 2002. Trale Milca Environment
v. 2.1.4. http://ling.ohio-state.edu/˜dm.

T. Ninomiya, T. Makino, and J. Tsujii. 2002. An index-
ing scheme for typed feature structures. In Proceedings
of the 19th InternationalConference on Computational
Linguistics.

G. Penn and O. Popescu. 1997. Head-driven generation
and indexing in ALE. In ACL Workshop on Compu-
tational Environments for Grammar Development and
Linguistic Engineering.

G. Penn. 1999a. An optimised Prolog encoding of typed
feature structures. In Arbeitspapiere des SFB 340,
number 138.

G. Penn. 1999b. Optimising don’t-care non-determinism
with statistical information. In Arbeitspapiere des SFB
340, number 140.

G. Penn. 1999c. A parsing algorithm to reduce copying
in Prolog. In Arbeitspapiere des SFB 340, number 137.

I.V. Ramakrishnan, R. Sekar, and Voronkov. A. 2001.
Term indexing. In Handbook of Automated Reasoning,
volume II, chapter 26. Elsevier Science.

SICS. 2001. SICStus Prolog. http://www.sics.se/sicstus.

P. Utgoff, N. Berkman, and J. Clouse. 1997. Decision
tree inductionbased on efficient tree restructuring. Ma-
chine Learning Journal, 29(1).

S. Wintner and N. Francez. 1999. Efficient implemen-
tation of unification-based grammars. Journal of Lan-
guage and Computation, 1(1).

100

200

300

400

500

600

7 8 9

A
ve

ra
ge

 p
ar

si
ng

 ti
m

e
[m

se
c]

Number of words per sentence

non-indexed EFD
path-indexed EFD

EFD with quick-check
path-indexed EFD + quick check

indexed EFD
re-encoded indexed EFD

Figure 3: Average parsing times for all indexing methods, using
the converted MERGE grammar – detailed view.

