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Abstract

It is well known that frame independence
assumption is a fundamental limitation of
current HMM based speech recognition sys-
tems. By treating each speech frame inde-
pendently, HMM:s fail to capture trajectory
information in the acoustic signal. This pa-
per introduces Gaussian Transition Mod-
els (GTM) to model trajectories implic-
itly. Comparing to alternative approaches,
such as segment modeling and parallel path
HMM, GTM has the advantage that it in-
tegrates seamlessly with the HMM frame-
work; it can model a large number of trajec-
tories and there is no need to define a topol-
ogy a priori. Preliminary experiments on
Switchboard, a large vocabulary conversa-
tional speech recognition task, have shown
promising results.

1 Motivation

Hidden Markov model (HMM) has been the domi-
nant approach in automatic speech recognition for
years. Several assumptions are made in HMMs, one
of which is frame independence: all speech frames
are conditionally independent given the hidden state
sequence. This makes HMMs ineffective in modeling
trajectories.

Speech production differs from a random process
in that articulators move along a low dimensional
manifold. As a result, speech trajectory is relatively
smooth in the feature space. But HMM, as a gener-
ative model, does not necessarily generate a smooth
trajectory, due to the conditional independence as-
sumption. This is best illustrated by considering
a gender independent HMM, using Gaussian Mix-
ture Model (GMM) as output density function (Fig-

ure 1). Let us assume certain mixture components
are trained mostly on male speakers, while other
components of the same mixture are trained mostly
on females. Sampling the HMM produces a frame se-
quence randomly switching between male and female
at any time.
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Figure 1: HMM-GMM as a generative model (shaded
area stands for male speech, non-shaded area stands
for female.)

Variations in speaker, context and speaking mode
can all produce completely different trajectories for
the same phone. If modeled by a single state se-
quence as in a regular HMM, trajectories will be all
mixed up, resulting in a model with poor discrimi-
nation between trajectories.

Segment models attempt to exploit time-
dependencies in the acoustic signal (Ostendorf et al.,
1996), by modeling trajectories either parametri-
cally or non-parametrically. Since these approaches
typically fall outside the HMM framework, they
can not take full advantage of the efficient HMM
training and recognition algorithms.

Iyer et al. proposed the parallel path HMM to
better model multiple trajectories (Iyer et al., 1998).
This stays within the HMM framework. However,
the number of parallel paths is normally quite limited
(two or three). Choosing the right number of paths
is also an unsolved problem.

In this paper, we propose a new model, namely
Gaussian Transition Model (GTM), which attempts
to capture dependency between adjacent frames by
modeling Gaussian transitions. GTM is able to



model a large number of trajectories. It also fits

nicely within the HMM framework.

2 Gaussian Transition Model

To introduce the idea of GTM, let us consider the
probability of a sequence of frames O = (01, - -, 0r)
given a sequence of Gaussian mixture models M =
(ml,- . ,mT):
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where g;1(-) is the kth Gaussian in the tth model,
Ty s the mixture weight.

This is illustrated in Figure 2, where (a) shows the
mixture model sequence and (b) shows the equiva-
lent full Gaussian transition network. Think of each
Gaussian gy, as a modeling unit by itself, [, gix,
represents a unique trajectory, weighted by [, m, .
In the traditional HMM-GMM, all possible trajecto-
ries are allowed. Say some Gaussians model male
speech while others model female speech, HMM-
GMM allows trajectories that hop between the two
genders in the middle of an utterance!
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(b) The Equivalent Full Gaussian Transition Model
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Figure 2: Gaussian Transition Network

GTM restricts the set of allowable trajectories by
modeling transition probabilities between Gaussians
in adjacent states:

Q5 = P((It = gj|Qt71 = gi)

where a;; is the probability of transition from Gaus-
sian g; to Gaussian g;, subject to the constraint
>_jaij = 1. Figure 2(c) shows a GTM after pruning
away unlikely transitions.

2.1 HMM-GMM as a Special Case

It can be shown that traditional HMM-GMM is a
special case of GTM where a;; = 7; i.e. transition
probability a;; equals mixture weight of the desti-
nation Gaussian, independent of the identity of the
source Gaussian. In other words, transition models
are tied for all Gaussians in the same mixture.

2.2 GTM and Pronunciation Modeling for
Sloppy Speech

As mentioned before, sloppy speech has a trajectory
different from carefully articulated speech. Explicit
pronunciation modeling (by adding alternative pro-
nunciations to the lexicon) has so far been difficult,
since many reductions are too subtle to be classified
as either phoneme substitutions or deletions. Par-
tial reduction or partial realization may actually be
better modeled at a sub-phoneme level. Gaussian
transition models can be thought of as pronuncia-
tion networks at the Gaussian level. In this sense,
GTM provides a way to model alternative pronunci-
ations implicitly. GTM provides finer model resolu-
tion, compared to pronunciation modeling at either
phoneme level or state level (Saraclar et al., 2000).

3 Training GTM

When viewing each Gaussian as a state by itself,
GTM can be readily trained using the existing
Baum-Welch algorithm. Following notations of (Ra-
biner, 1989),
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where « is the forward probability and (3 is the back-
ward probability, b; (o) is now a single Gaussian. The
update formula is:
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In practice, GTM training faces two major issues:
insufficient data and pruning.
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3.1 Trainability

GTM can take a large number of parameters. First,
transition between two mixtures of n components
each requires n? transition probabilities. Second, in
an LVCSR system with thousands of mixture mod-
els, transition can happen between many of them.



Hence data sufficiency becomes a concern. In our
experiments, we choose to model only frequent tran-
sitions. For everything else, we revert to the tradi-
tional HMM-GMM model: a;; = ;.

3.2 Pruning

Even in conventional HMM training, it is common to
ignore transition probabilities. Their contribution to
the overall score is quite small, in comparison to ob-
servation probabilities in a continuous HMM (which
is several orders of magnitude larger). The same
is true for Gaussian transition probabilities. While
GTM offers better discrimination between trajecto-
ries, all trajectories are nonetheless still permitted.
Pruning unlikely transitions leads to a model that
is both more compact and more prudent. In reality,
however, we need to exercise great care in pruning
S0 as not to prune away unseen trajectories (due to
a limited training set).

4 Experiments

Experiments are carried out on the Switchboard
(SWB) task using the Janus system (Soltau et al.,
2002). The test set is a 1 hour subset of the 2001
Hubbe evaluation set. Acoustic training uses a 66
hours subset of the SWB data. We use a 15k vocab-
ulary and a trigram language model trained on SWB
and CallHome. The front-end has vocal tract length
normalization, cepstral mean normalization, an 11-
frame window to derive delta and double-delta, linear
discriminant analysis and semi-tied covariance with
a single class. The acoustic model has roughly 6000
mixtures with a total of 86K Gaussians, on average
14 Gaussians per model.

We apply a two-tiered strategy to cope with the
data sufficiency issue. Before training, we count the
number of transitions for each model pair on the
training data, using Viterbi alignment. Only tran-
sitions with counts above a certain threshold are
modeled with GTM. Of about 6000 mixture mod-
els, a total of 40K model pairs (out of a poten-
tial 6K x6K=36M) has been observed. It turns out
that most of the transitions (72%) are within the
same model (corresponding to self-loop in HMM).
We choose to model the most frequent 9400 model
pairs with GTM. Not surprisingly, most of the 6000
same-model pairs are among those chosen. During
training, we also apply a minimum count criterion:
a transition model is updated only if the Gaussian
receives enough training counts.

One iteration of Baum-Welch training gives signif-
icant improvement in term of likelihood. Log like-
lihood per frame improves from —50.67 to —49.18,
while conventional HMM training can only improve

less than 0.1. Considering the baseline acoustic
model has already been highly optimized, this in-
dicates improved acoustic modeling.

GTM transitions are pruned if their probabilities
fall below a certain threshold (default is le-5). Ta-
ble 1 shows word error rates for GTM models pruned
against different thresholds. It is encouraging that a
0.5% gain is obtained after pruning away almost 2/3
of all transitions.

Pruning | Avg. # Transitions | WER
Threshold per Gaussian (%)
baseline 14.4 34.1
le-5 9.7 33.7
le-3 6.6 33.7
0.01 4.6 33.6
0.05 2.7 33.9

Table 1: Word Error Rates on Switchboard

5 Future Work

In this paper, we have presented Gaussian Transition
Model, a new approach to model trajectories within
the HMM framework. Preliminary experiments have
shown encouraging improvements.

There are several possibilities for further im-
provements. First, when modifying the decoder to
use GTM, we used Viterbi approximation at word
boundaries, which means trajectory information is
lost upon word transition. Second, we plan to ex-
tend GTM to handle deletions in sloppy speech, a
major challenge in LVCSR.
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