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1 Introduction

In the text retrieval area including XML and Region Al-
gebra, many researchers pursued models for specifying
what kinds of information should appear in specified
structural positions and linear positions (Chinenyanga
and Kushmerick, 2001; Wolff et al., 1999; Theobald and
Weilkum, 2000; Clarke et al., 1995). The models at-
tracted many researchers because they are considered to
be basic frameworks for retrieving or extracting complex
information like events. However, unlike IR by keyword-
based search, their models are not robust, that is, they
support only exact matching of queries, while we would
like to know to what degree the contents in specified
structural positions are relevant to those in the query even
when the structure does not exactly match the query.

This paper describes a new ranked retrieval model
that enables proximal and structural search for structured
texts. We extend the model proposed in Region Alge-
bra to be robust by i) incorporating the idea of ranked-
ness in keyword-based search, and ii) expanding queries.
While in ordinary ranked retrieval models relevance mea-
sures are computed in terms of words, our model assumes
that they are defined in more general structural fragments,
i.e., extents(continuous fragments in a text) proposed in
Region Algebra. We decompose queries into subqueries
to allow the system not only to retrieve exactly matched
extents but also to retrieve partially matched ones. Our
model is robust like keyword-based search, and also en-
ables us to specify the structural and linear positions in
texts as done by Region Algebra.

The significance of this work is not in the development
of a new relevance measure nor in showing superiority
of structure-based search over keyword-based search, but
in the proposal of a framework for integrating proximal
and structural ranking models. Since the model treats all
types of structures in texts, not only ordinary text struc-
tures like “title,” “abstract,” “authors,” etc., but also se-
mantic tags corresponding to recognized named entities

or events can also be used for indexing text fragments
and contribute to the relevance measure. Since extents
are treated similarly to keywords in traditional models,
our model will be integrated with any ranking and scala-
bility techniques used by keyword-based models.

We have implemented the ranking model in our re-
trieval engine, and had preliminary experiments to eval-
uate our model. Unfortunately, we used a rather small
corpus for the experiments. This is mainly because
there is no test collection of the structured query and
tag-annotated text. Instead, we used the GENIA cor-
pus (Ohta et al., 2002) as structured texts, which was
an XML document annotated with semantics tags in the
filed of biomedical science. The experiments show that
our model succeeded in retrieving the relevant answers
that an exact-matching model fails to retrieve because of
lack of robustness, and the relevant answers that a non-
structured model fails because of lack of structural spec-
ification.

2 A Ranking Model for Structured
Queries and Texts

This section describes the definition of the relevance be-
tween a document and a structured query represented by
the region algebra. The key idea is that a structured query
is decomposed into subqueries, and the relevance of the
whole query is represented as a vector of relevance mea-
sures of subqueries.

The region algebra (Clarke et al., 1995) is a set of op-
erators, which represent the relation between theextents
(i.e. regions in texts). In this paper, we suppose the re-
gion algebra has seven operators; four containment oper-
ators (¤, ¢, 6¤, 6¢) representing the containment relation
between the extents, two combination operators (4, 5)
corresponding to “and” and “or” operator of the boolean
model, and ordering operator (3) representing the order
of words or structures in the texts. For convenience of
explanation, we represent a query as a tree structure as



�

�� ��

�

�������	�
�	�
������������	�
���

�� ��

�������������������������������������

��� �!�"�#���%$�&��'�

���!���	�
�(��� �������	�	�
�)�
� ���!���������
������������������
�
�
�*� �)�"�#���%$�&��+�

�

�������������)�
��	�!�	�	���
���

�

�������������)�
��	�!�	�	���
���

�

���!�,�-�����
�����������������������

�

���!�,�-�����
�����������������������

�
�� ��

���!���������
���.�	�����������������

�*� �(�"�#����$�&
�+��
�� ��

���!���������
���.�	�����������������

�*� �(�"�#����$�&
�+�

/103254.6 79854;:�<
=>8@? 7A8B4C:(<

DE

FG HI

JG
KG

LG
MNOGPN

QR

ST

UT VT

WT XT

YZ[\
]Z

^

Figure 1: Subqueries of the query ‘[book]¤ ([title] ¤

“retrieval”)’

shown in Figure 11 . This query represents ‘Retrieve the
books whose title has the word “retrieval.” ’

Our model assigns a relevance measure of the struc-
tured query as a vector of relevance measures of the sub-
queries. In other words, the relevance is defined by the
number of portions matched with subqueries in a docu-
ment. If an extent matches a subquery of queryq, the
extent will be somewhat relevant toq even when the ex-
tent does not exactly matchq. Figure 1 shows an example
of a query and its subqueries. In this example, even when
an extent does not match the whole query exactly, if the
extent matches “retrieval” or ‘[title]¤“retrieval”’, the ex-
tent is considered to be relevant to the query. Subqueries
are formally defined as following.

Definition 1 (Subquery) Let q be a given query and
n1, ..., nm be the nodes ofq. Subqueriesq1, ..., qm of q
are the subtrees ofq. Eachqi has nodeni as a root node.

When a relevanceσ(qi, d) between a subqueryqi and
a documentd is given, the relevance of the whole query
is defined as following.

Definition 2 (Relevance of the whole query)Letq be a
given query,d be a document andq1, ..., qm subqueries of
q. The relevance vectorΣ(q, d) of d is defined as follows:

Σ(q, d) = 〈σ(q1, d), σ(q2, d), ..., σ(qm, d)〉

A relevance of a subquery should be defined similarly to
that of keyword-based queries in the traditional ranked re-
trieval. For example, TFIDF, which is used in our experi-
ments in Section 3, is the most simple and straightforward
one, while other relevance measures recently proposed in
(Robertson and Walker, 2000) can be applied. TF value is
calculated using the number of extents matching the sub-
query, and IDF value is calculated using the number of
documents including the extents matching the subquery.

While we have defined a relevance of the structured
query as a vector, we need to sort the documents accord-
ing to the relevance vectors. In this paper, we first map
a vector into a scalar value, and then sort the documents

1In this query, ‘[x]’ is a syntax sugar of ‘〈x〉 3 〈/x〉’.

according to this scalar measure. Three methods are in-
troduced for the mapping from the relevance vector to the
scalar measure. The first one simply works out the sum
of the elements of the relevance vector.

Definition 3 (Simple Sum)

ρsum(q, d) =
m∑

i=1

σ(qi, d)

The second represents the rareness of the structures.
When the query isA ¤ B or A ¢ B, if the number of
extents matching the query is close to the number of ex-
tents matchingA, matching the query does not seem to
be very important because it means that the extents that
matchA mostly matchA ¤ B or A ¢ B. The case of the
other operators is the same as with¤ and¢.

Definition 4 (Structure Coefficient) When the operator
op is 4, 5 or 3, the structure coefficient of the query
A op B is:

scAopB =
C(A) + C(B)− C(A op B)

C(A) + C(B)

and when the operatorop is ¤ or ¢, the structure coeffi-
cient of the queryA op B is:

scAopB =
C(A)− C(A op B)

C(A)

whereA andB are the queries andC(A) is the number
of extents that matchA in the document collection.

The scalar measureρsc(qi, d) is then defined as

ρsc(q, d) =
m∑

i=1

scqi · σ(qi, d)

The third is a combination of the measure of the query
itself and the measure of the subqueries. Although we
calculate the score of extents by subqueries instead of us-
ing only the whole query, the score of subqueries can not
be compared with the score of other subqueries. We as-
sume normalized weight of each subquery and interpolate
the weight of parent node and children nodes.

Definition 5 (Interpolated Coefficient) The interpo-
lated coefficient of the queryqi is recursively defined as
follows:

ρic(qi, d) = λ · σ(qi, d) + (1− λ)

∑
ci

ρic(qci , d)
l

whereci is the child of nodeni, l is the number of children
of nodeni, and0 ≤ λ ≤ 1.

This formula means that the weight of each node is de-
fined by a weighted average of the weight of the query
and its subqueries. Whenλ = 1, the weight of each
query is normalized weight of the query. Whenλ = 0,
the weight of each query is calculated from the weight of
the subqueries, i.e. the weight is calculated by only the
weight of the words used in the query.



1 ‘([cons]¤([sem]¤“G#DNA domainor region”))4(“in” 3([cons]¤([sem]¤(“G#tissue”5“G#body part”))))’
2 ‘([event]¤([obj]¤“gene”))4(“in” 3([cons]¤([sem]¤(“G#tissue”5“G#body part”))))’
3 ‘([event]¤([obj]3([sem]¤“G#DNA domainor region”)))4(“in” 3([cons]¤([sem]¤(“G#tissue”5“G#body part”))))’
4 ‘([event]¤([dummy]¤“G#DNA domainor region”))4(“in” 3([cons]¤([sem]¤(“G#tissue”5“G#body part”))))’

Table 1: Queries submitted in the experiments

3 Experiments

In this section, we show the results of our preliminary
experiments of text retrieval using our model. Because
there is no test collection of the structured query and tag-
annotated text, we used the GENIA corpus (Ohta et al.,
2002) as a structured text, which was an XML document
composed of paper abstracts in the field of biomedical
science. The corpus consisted of 1,990 articles, 873,087
words (including tags), and 16,391 sentences.

We compared three retrieval models, i) our model, ii)
exact matching of the region algebra (exact), and iii)
not-structuredflat model. In theflat model, the query
was submitted as a query composed of the words in the
queries in Table 1 connected by the “and” operator (4).

The queries submitted to our system are shown in Ta-
ble 1, and the document was “sentence” represented by
“〈sentence〉” tags. Query 1, 2, and 3 are real queries made
by an expert in the field of biomedicine. Query 4 is a toy
query made by us to see the robustness compared with
theexactmodel easily. The system output the ten results
that had the highest relevance for each model2.

Table 2 shows the number of the results that were
judged relevant in the top ten results when the ranking
was done usingρsum. The results show that our model
was superior to theexactand flat models for Query 1,
2, and 3. Compared to theexactmodel, our model out-
put more relevant documents, since our model allows the
partial matching of the query, which shows the robust-
ness of our model. In addition, our model outperforms
the flat model, which means that the structural specifi-
cation of the query was effective for finding the relevant
documents. For Query 4, our model succeeded in find-
ing the relevant results although theexactmodel failed
to find results because Query 4 includes the tag not con-
tained in the text (“〈dummy〉” tag). This result shows the
robustness of our model.

Although we omit the results of usingρsc andρic be-
cause of the limit of the space, here we summarize the
results of them. The number of relevant results usingρsc

was the same as that ofρsum, but the rank of irrelevant

2For theexactmodel, ten results were selected randomly
from the exactly matched results if the total number of results
was more than ten. After we had the results for each model,
we shuffled these results randomly for each query, and the shuf-
fled results were judged by an expert in the field of biomedicine
whether they were relevant or not.

Query our model exact flat

1 10/10 9/10 9/10
2 6/10 5/ 5 3/10
3 10/10 9/ 9 8/10
4 7/10 0/ 0 9/10

Table 2: (The number of relevant results) / (the number
of all results) in top 10 results.

results usingρsc was lower than that ofρsum. The results
usingρic varied between the results of theflat model and
the results ofρsum depending on the value ofλ.

4 Conclusions

We proposed a ranked retrieval model for structured
queries and texts by extending the region algebra to be
ranked. Our model achieved robustness by extending the
concept of words to extents and by matching with sub-
queries decomposed from a given query instead of match-
ing the entire query or words.
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