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Abstract overlapping intervals. This constraint is weaker than iso-
morphism. However, we will show that it can produce a

We present a syntax-based constraint for word significant increase in alignment quality.

alignment, known as the cohesion constraint. It
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The IBM statistical machine translation (SMT) models

have been extremely influential in computational linguis-

tics in the past decade. The (arguably) most striking char-

acteristic of the IBM-style SMT models is their total lack

of linguistic knowledge. The IBM modgl; demonstratedz Cohesion Constraint

how much one can do with pure statistical techniques,

which have inspired a whole new generation of NLP reGiven an English sentendé = e;e; ... ¢, and a French

search and systems. sentence”’ = fi f5 ... fm, @analignmentis a set of links
More recently, there have been many proposals teetween the words iz and F'. An alignment can be

introduce syntactic knowledge into SMT models (Wuepresented as a binary relatiehin [1,1] x [1,m]. A

1997; Alshawi et al., 2000; Yamada and Knight, 2001pair (i,7) is in A if e; and f; are a translation (or part

Lopez et a|_, 2002) A common theme among thes@f a tranSlatiOn) of each other. We call such pdlmks

approaches is the assumption that the syntactic strué: Figure 2, the links in the alignment are represented by

tures of a pair of source-target sentences are isomdfashed lines.

phic (or nearly isomorphic). This assumption seems too

strong. Human translators often use non-literal transla- T et

tions, which result in differences in syntactic structures. (de‘\f”“‘\ﬁ‘\/% ,/ ("\\y

According to a study in (Dorr et al., 2002), such transla-  The reboot causes the host to discover all the devices

Figure 1: A cohesion constraint violation

tional divergences are quite common, involving 11-31% 12 3 4 356 7 g 9 10
of the sentences.
We introduce a constraint that uses the dependency treg , % 55 Y & 610 11
of the English sentence to maintain phrasal cohesion it 3 Ia rsinitialisation , I' hote repére tous les périphériques
the French sentence. In other words, if two phrases ak@:r t the reboot the host locate all the peripherals

disjoint in the English sentence, the alignment must not

map them to overlapping intervals in the French sentence.

For example, in Figure 1, the cohesion constraint willrule  Figure 2: An example pair of aligned sentence

out the possibility of aligningo with a. The phrasethe

rebootandthe host to discover all the devicese dis- The cohesion constraint(Fox, 2002) uses the depen-
joint, but the partial alignment in Figure 1 maps them talency treel’rs (Mel'€uk, 1987) of the English sentence



to restrict possible link combinations. L&z (e;) be 3. For eache,, (k > 0), check for a head-modifier
the subtree off r rooted ate;. The phrase spanof e;, overlap between the updated phrase span,f,
spanp(e;, T, A), is the image of the English phrase and the head span ef, .

headed by; in F' given a (partial) alignmentl. More
precisely,spanp(e;, Tg, A) = [k1, ko], where 4. If an overlap is found, return true (the constraint is
violated). Otherwise, return false.
ki =min{j|(u,j) € A ey € T(e;)}

ko = max{j|(u,j) € A, e, € Tr(e;)} 3 Evaluation

The head spanis the image ofe; itself. We define To determine the utility of the cohesion constraint, we
spang (ei, Tk, A) = [k1, k2], where incorporated it into two alignment algorithms. The algo-
ki = min{j|(i, j) € A} rithms take as input an English-French sentence pair and
ko = max{j|(i,j) € A} the dependency tree of the English sentence. Both algo-
) ) rithms build an alignment by adding one link at a time.
In Figure 2, the phrase span of the natiscoveris  \ye implement two versions of each algorithm: one with
[6, 11] and the head span is [8, 8]; the phrase span of thge cohesion constraint and one without. We will describe
noderebootis [3, 4] and the head span is [4, 4]. The wordihe versions without cohesion constraint below. For the
causehas a phrase span of [3,11] and its head span is th@rsjons with cohesion constraint, it is understood that
empty set). each new link must also pass the test described in Sec-
With these definitions of phrase and head spans, we dggp, 2.
fine two notions of overlap, originally introduced in (Fox,  The first algorithm is similar to Competitive Linking
2002) ascrossings Given a head node, and its modi-  (\velamed, 1997). We use a sentence-aligned corpus
fier e,,., ahead-modifier overlapoccurs when: to compute thep? correlation metric (Gale and Church,
spang (en, T, A) N spanp(em, Tr, A) # 0 1991) betwe_en all Engli_sh-F_rench word pair_s. For a given
sentence pair, we begin with an empty alignment. We
Given two nodes,,,, ande,,, which both modify the then add links in the order of thej’ scores so that each
same head node, modifier-modifier overlap occurs word participates in at most one link. We will refer to this
when: as thep? method.
The second algorithm uses a best-first search (with
fixed beam width and agenda size) to find an alignment

Following (Fox, 2002), we say an alignment is cohethat maximizesP(A|E, F'). A state in this search space
sive with respect td’;; if it does not introduce any head- is a partial alignment. A transition is defined as the ad-
modifier or modifier-modifier overlaps. For example, thedition of a single link to the current state. The algorithm
alignment A in Figure 1 is not cohesive because thereomputesP(A|E, F') based on statistics obtained from a
is an overlap betweespan p(reboot, T, A)=[4,4] and word-aligned corpus. We construct the initial corpus with
spanp(discover, Ty, A)=[2,11]. a system that is similar to thg? method. The algorithm

If an alignment4’ violates the cohesion constraint, anythen re-aligns the corpus and trains again for three iter-
alignmentA that is a superset o’ will also violate the ations. We will refer to this as th&(A|E, F') method.
cohesion constraint. This is because any pair of noddde details of this algorithm are described in (Cherry and
that have overlapping spans.t will still have overlap- Lin, 2003).
ping spans im. We trained our alignment programs with the same 50K

pairs of sentences as (Och and Ney, 2000) and tested it on

Cohesion Checking Algorithm: the same 500 manually aligned sentences. Both the train-

.VVe. now present an algorithm that checks whet.her ,ai'ﬂg and testing sentences are from the Hansard corpus.
individual link (e;, f;) causes a cohesion constraint vi-

. N ) . We parsed the training and testing corpora with Minfpar.
olation when it is added to a partial alignment. LetWe adopted the evaluation methodology in (Och and Ney,
€po> €y Cpa» - - - DE @ Sequence of nodesTiy such that 5454y '\ hich defines three metrics: precision, recall and
epo=e; ande,, =parentOfe,, _, ) (k = 1,2,...) alignment error rate (AER).

1. For allk > 0, update thespanp and thespany of Table 1 shows the results of our experiments. The first
ep,, toincludej. four rows correspond to the methods described above. As
o ... areference point, we also provide the results reported in

2. For eache,, (k > 0), check for a modifier-modifier éECh and Ney, 2000). They implemented IBM Model 4

spanp(em,, Tg, A) N spanp(em,, Tr, A) # 0

overlap between the updated the phrase span gf . qtstranning from an HMM model. The roWs—E
ep._, and the the phrase span of each of the othe

children ofe,, . Yavailable at http://www.cs.ualberta.dmdek/minipar.htm
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