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Abstract

To support summarization of automatically
transcribed meetings, we introduce a classifier
to recognize agreement or disagreement utter-
ances, utilizing both word-based and prosodic
cues. We show that hand-labeling efforts can
be minimized by using unsupervised training
on a large unlabeled data set combined with
supervised training on a small amount of data.
For ASR transcripts with over 45% WER, the
system recovers nearly 80% of agree/disagree
utterances with a confusion rate of only 3%.

1 Introduction

Meetings are an integral component of life in most or-
ganizations, and records of meetings are important for
helping people recall (or learn for the first time) what
took place in a meeting. Audio (or audio-visual) record-
ings of meetings offer a complete record of the inter-
actions, but listening to the complete recording is im-
practical. To facilitate browsing and summarization of
meeting recordings, it is useful to automatically annotate
topic and participant interaction characteristics. Here, we
focus on interactions, specifically identifying agreement
and disagreement. These categories are particularly im-
portant for identifying decisions in meetings and infer-
ring whether the decisions are controversial, which can be
useful for automatic summarization. In addition, detect-
ing agreement is important for associating action items
with meeting participants and for understanding social
dynamics. In this study, we focus on detection using both
prosodic and language cues, contrasting results for hand-
transcribed and automatically transcribed data.

The agreement/disagreement labels can be thought of
as a sort of speech act categorization. Automatic classifi-
cation of speech acts has been the subject of several stud-
ies. Our work builds on (Shriberg et al., 1998), which
showed that prosodic features are useful for classifying
speech acts and lead to increased accuracy when com-
bined with word based cues. Other studies look at predic-
tion of speech acts primarily from word-based cues, using

language models or syntactic structure and discourse his-
tory (Chu-Carroll, 1998; Reithinger and Klesen, 1997).
Our work is informed by these studies, but departs signif-
icantly by exploring unsupervised training techniques.

2 Approach

Our experiments are based on a subset of meeting record-
ings collected and transcribed by ICSI (Morgan et al.,
2001). Seven meetings were segmented (automatically,
but with human adjustment) into 9854 total spurts. We
define a ‘spurt’ as a period of speech by one speaker that
has no pauses of greater than one half second (Shriberg et
al., 2001). Spurts are used here, rather than sentences,
because our goal is to use ASR outputs and unsuper-
vised training paradigms, where hand-labeled sentence
segmentations are not available.

We define four categories: positive, backchannel, neg-
ative, and other. Frequent single-word spurts (specifi-
cally, yeah, right, yep, uh-huh,andok) are separated out
from the ‘positive’ category as backchannels because of
the trivial nature of their detection and because they may
reflect encouragement for the speaker to continue more
than actual agreement. Examples include:

Neg: (6%) “This doesn’t answer the question.”
Pos: (9%) “Yeah, that sounds great.”
Back: (23%) “Uh-huh.”
Other: (62%) “Let’s move on to the next topic.”
The first 450 spurts in each of four meetings were

hand-labeled with these four categories based on listening
to speech while viewing transcripts (so a sarcastic “yeah,
right” is labeled as a disagreement despite the positive
wording). Comparing tags on 250 spurts from two label-
ers produced a kappa coefficient (Siegel and Castellan,
1988) of .6, which is generally considered acceptable.
Additionally, unlabeled spurts from six hand-transcribed
training meetings are used in unsupervised training ex-
periments, as described later. The total number of au-
tomatically labeled spurts (8094) is about five times the
amount of hand-labeled data.

For system development and as a control, we use hand-
transcripts in learning word-based cues and in training.
We then evaluate the model with both hand-transcribed
words and ASR output. The category labels from the



hand transcriptions are mapped to the ASR transcripts,
assigning an ASR spurt to a hand-labeled reference if
more than half (time wise) of the ASR spurt overlaps the
reference spurt.

Feature Extraction. The features used in classification
include heuristic word types and counts, word-based fea-
tures derived from n-gram scores, and prosodic features.

Simple word-based features include: the total num-
ber of words in a spurt, the number of “positive” and
“negative” keywords, and the class (positive, negative,
backchannel, discourse marker, other) of the first word
based on the keywords. The keywords were chosen based
on an “effectiveness ratio,” defined as the frequency of a
word (or word pair) in the desired class divided by the fre-
quency over all dissimilar classes combined. A minimum
of five occurrences was required and then all instances
with a ratio greater than .6 were selected as keywords.

Other word-based features are found by computing the
perplexity (average log probability) of the sequence of
words in a spurt using a bigram language model (LM)
for each of the four classes. The perplexity indicates the
goodness of fit of a spurt to each class. We used both
word and class LMs (with part-of-speech classes for all
words except keywords). In addition, the word-based LM
is used to score the first two words of the spurt, which
often contain the most information about agreement and
disagreement. The label of the most likely class for each
type of LM is a categorical feature, and we also compute
the posterior probability for each class.

Prosodic features include pause, fundamental fre-
quency (F0), and duration (Baron et al., 2002). Features
are derived for the first word alone and for the entire
spurt. Average, maximum and initial pause duration fea-
tures are used. The F0 average and maximum features
are computed using different methods for normalizing F0
relative to a speaker-dependent baseline, mean and max.
For duration, the average and maximum vowel duration
from a forced alignment are used, both unnormalized and
normalized for vowel identity and phone context. Spurt
length in terms of number of words is also used.

Classifier design and feature selection. The overall
approach to classifying spurts uses a decision tree clas-
sifier (Breiman et al., 1984) to combine the word based
and prosodic cues. In order to facilitate learning of cues
for the less frequent classes, the data was upsampled (du-
plicated) so that there were the same number of training
points per class. The decision tree size was determined
using error-based cost-complexity pruning with 4-fold
cross validation. To reduce our initial candidate feature
set, we used an iterative feature selection algorithm that
involved running multiple decision trees (Shriberg et al.,
2000). The algorithm combines elements of brute-force
search (in a leave-one-out paradigm) with previously de-

termined heuristics for narrowing the search space. We
used entropy reduction of the tree after cross-validation
as a criterion for selecting the best subtree.

Unsupervised training. In order to train the models
with as much data as possible, we used an unsupervised
clustering strategy for incorporating unlabeled data. Four
bigram models, one for each class, were initialized by
dividing the hand transcribed training data into the four
classes based upon keywords. First, all spurts which con-
tain the negative keywords are assigned to the negative
class. Backchannels are then pulled out when a spurt con-
tains only one word and it falls in the backchannel word
list. Next, spurts are selected as agreements if they con-
tain positive keywords. Finally, the remaining spurts are
associated with the “other” class.

The keyword separation gives an initial grouping; fur-
ther regrouping involves unsupervised clustering using a
maximum likelihood criterion. A preliminary language
model is trained for each of the initial groups. Then, by
evaluating each spurt in the corpus against each of the
four language models, new groups are formed by asso-
ciating spurts with the language model that produces the
lowest perplexity. New language models are then trained
for the reorganized groups and the process is iterated un-
til there is no movement between groups. The final class
assignments are used as “truth” for unsupervised training
of language and prosodic models, as well as contributing
features to decision trees.

3 Results and Discussion

Hand-labeled data from one meeting is held out for test
data, and the hand-labeled subset of three other meet-
ings are used for training decision trees. Unlabeled spurts
taken from six meetings, different from the test meeting,
are used for unsupervised training. Performance is mea-
sured in terms of overall 3-way classification accuracy,
merging the backchannel and agreement classes. The
overall accuracy results can be compared to the “chance”
rate of 50%, since testing is on 4-way upsampled data.
In addition, we report the confusion rate between agree-
ments and disagreements and their recovery (recall) rate,
since these two classes are most important for our appli-
cation.

Results are presented in Table 1 for models using only
word-based cues. The simple keyword indicators used
in a decision tree give the best performance on hand-
transcribed speech, but performance degrades dramati-
cally on ASR output (with WER> 45%). For all other
training conditions, the degradation in performance for
the system based on ASR transcripts is not as large,
though still significant. The system using unsupervised
training clearly outperforms the system trained only on a
small amount of hand-labeled data. Interestingly, when



Hand Transcriptions ASR Transcriptions
Overall A/D A/D Overall A/D A/D

Features Accuracy Confusion Recovery Accuracy Confusion Recovery

Keywords 82% 2% 87% 61% 7% 53%
Hand Trained LM 71% 13% 74% 64% 10% 67%
Unsupervised LM 78% 10% 81% 67% 14% 70%
All word based 79% 8% 83% 71% 3% 78%

Table 1: Results for detection with different classifiers using word based features.

the keywords are used in combination with the language
model, they do provide some benefit in the case where
the system uses ASR transcripts.

The results in Table 2 correspond to models using only
prosodic cues. When these models are trained on only a
small amount of hand-labeled data, the overall accuracy
is similar to the system using keywords when operating
on the ASR transcript. Performance is somewhat better
than chance, and use of hand vs. ASR transcripts (and as-
sociated word alignments) has little impact. There is a
small gain in accuracy but a large gain in agree/disagree
recovery from using the data that was labeled via the un-
supervised language model clustering technique. Unfor-
tunately, when the prosody features are combined with
the word-based features, there is no performance gain,
even for the case of errorful ASR transcripts.

Transcripts Overall A/D A/D
Train/Test Accuracy Confusion Recovery

Hand/Hand 62% 17% 62%
Unsup./Hand 66% 13% 72%

Hand/ASR 62% 16% 61%
Unsup./ASR 64% 14% 75%

Table 2: Results for classifiers using prosodic features.

4 Conclusion

In summary, we have described an approach for au-
tomatic recognition of agreement and disagreement in
meeting data, using both prosodic and word-based fea-
tures. The methods can be implemented with a small
amount of hand-labeled data by using unsupervised LM
clustering to label additional data, which leads to signifi-
cant gains in both word-based and prosody-based classi-
fiers. The approach is extensible to other types of speech
acts, and is especially important for domains in which
very little annotated data exists. Even operating on ASR
transcripts with high WERs (45%), we obtain a 78% rate
of recovery of agreements and disagreements, with a very
low rate of confusion between these classes. Prosodic

features alone provide results almost as good as the word-
based models on ASR transcripts, but no additional ben-
efit when used with word-based features. However, the
good performance from prosody alone offers hope for
performance gains given a richer set of speech acts with
more lexically ambiguous cases (Bhagat et al., 2003).
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