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Abstract

We present a new part-of-speech tagger that
demonstrates the following ideas: (i) explicit
use of both preceding and following tag con-
texts via a dependency network representa-
tion, (ii) broad use of lexical features, includ-
ing jointly conditioning on multiple consecu-
tive words, (iii) effective use of priors in con-
ditional loglinear models, and (iv) fine-grained
modeling of unknown word features. Using
these ideas together, the resulting tagger gives
a 97.24% accuracy on the Penn Treebank WSJ,
an error reduction of 4.4% on the best previous
single automatically learned tagging result.

1 Introduction

Almost all approaches to sequence problems such as part
of-speech tagging take a unidirectional approach to col

ditioning inference along the sequence. Regardless
whether one is using HMMs, maximum entropy condi

tional sequence models, or other techniques like decisi

trees, most systems work in one direction through th

sequence (normally left to right, but occasionally righ
to left, e.g., Church (1988)). There are a few exce
tions, such as Brill’s transformation-based learningl{Bri

1995), but most of the best known and most successfi

approaches of recent years have been unidirectional.

Most sequence models can be seen as chaining tI
gether the scores or decisions from successive local mota-

els to form a global model for an entire sequence. Clear
the identity of a tag is correlated with both past and futur
tags’ identities. However, in the unidirectional (causal
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first-order HMM, the current tatp is predicted based on
the previous tag_1 (and the current word). The back-
ward interaction betweety and the next tag,1 shows
up implicitly later, whent, 1 is generated in turn. While
unidirectional models are therefore able to capture both
directions of influence, there are good reasons for sus-
pecting that it would be advantageous to make informa-
tion from both directions explicitly available for condi-
tioning at each local point in the model: (i) because of
smoothing and interactions with other modeled features,
terms likeP (tg|t+1, . . .) might give a sharp estimate tf
evenwhen terms lik€ (t;1[to, . . .) do not, and (ii) jointly
considering the left and right context together might be
especially revealing. In this paper we exploit this idea,
using dependency networks, with a series of local con-
ditional loglinear (aka maximum entropy or multiclass
logistic regression) models as one way of providing ef-
ficient bidirectional inference.
Secondly, while all taggers use lexical information,
d, indeed, it is well-known that lexical probabilities
e much more revealing than tag sequence probabilities
harniak et al., 1993), most taggers make quite limited
use of lexical probabilities (compared with, for example,
e bilexical probabilities commonly used in current sta-
fistical parsers). While moderntaggers may be more prin-
cipled than the classic CLAWS tagger (Marshall, 1987),
they are in some respects inferior in their use of lexical
iurlformation: CLAWS, through its IDIOMTAG module,
categorically captured many important, correct taggings
of frequent idiomatic word sequences. In this work, we

O'Corporate appropriate multiword feature templates so

n

i

e at such facts can be learned and used automatically by

1Rather than subscripting all variables with a position ide
}Ne use a hopefully clearer relative notation, whigyeenotes

case, only one direction of influence is explicitly consid+tnhe current position antl, andt  are left and right context
ered at each local point. For example, in a left-to-rightags, and similarly for words.



@ @ @ >@ That is, the replicated s.tructure is a local model
P(tot_1, wo).2 Of course, if there are too many con-
ditioned quantities, these local models may have to be

@ @ T estimated in some sophisticated way; it is typical in tag-

(a) Left-to-Right CMM ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
() () for P(to|t_1, wo) with a maxent model of the form:
@ EXP(Ato,t_1) + Afto,wo))
2t @XPCh g ) A, uo)

@ @ < <<<<<<<<<<<<< >@ In this case, thevg andt_; can have joineffectsonty, but
there are not joinfeaturesinvolving all three variables
@ é @ o é (though there could have been such features). We say that
this model uses thieature templatesto, t_1) (previous
(c) Bidirectional Dependency Network tag features) antto, wo) (current word features).
Clearly, boththe preceding tagl-1 and following tag
Figure 1: Dependency networks: (a) the (standard) leftgiot  t 1 carry useful information about a current tag Unidi-
first-order CMM, (b) the (reversed) right-to-left CMM, and) (' rectional models do not ignore this influence; in the case
the bidirectional dependency network. of a left-to-right CMM, the influence of_1 ontg is ex-
the model plicit in the P(to_|t,_1, w_o)_ I_ocaI model, while the influ-
) nce oft; 1 ontp is implicit in the local model at the next

. _ e
Having expressive templates Ieaqs to a large num,bﬁf)sition (viaP(t+1]to, wy1)). The situation is reversed
of features, but we show that by suitable use of a priag, . \ha right-to-left CMM in figure 1(b)
(i.e.,regularizatior) in the conditional loglinear model - - | a seat-of-the-pants machine learning perspective,

something not ushe;j by prewousbma)((jl;m:jm _er;ltropy G5 hen building a classifier to label the tag at a certain posi-
gers — many such features can be added with an overg, n, the obvious thing to do is to explicitly include in the

positive effect on the model. Indeed, as for the voted P€[5cal model all predictive features, no matter on which
ceptron of Collins (2002), we can get performance 9aN§de of the target position they lie. There are two good

by reducing the support threshold for features to be ing, 5 reasons to expect that a model explicitly condi-
cluded in the model. Combining all these ideas, togeth?ironing on both sides atach position, like figure 1(c)
with a few additional handcrafted unknown word fea-Could be advantageous. First be(’:ause of smoothing

tures, gives us a part-of-speech tagger with a per-positiQiite o5 ang interaction with other conditioning features
tag accuracy of 97.24%, and a Whole-sentence_ cprre&itke the words), left-to-right factors liké®(to|t_1, wo)
rate of 56.34% on Penn Treebank WSJ data. This is t not always suffice whetg is implicitly needed to de-
best automatically learned part-of-speech tagging reSWyminet_1. For example, consider a case of observation
known to us, representing an error reduction of 4.4% %Bias (Klein and Manning, 2002) for a first-order left-to-
the model presented in Collins (2002), using the Samr?’ghtCMM. The wordto has only one tagr) in the PTB
data splits, and a larger error reduction of 12.1% from thfag set. Theo tag is often preceded by nouns, but rarely
more simil_ar best previous loglinear model in Toutanov%y modals ¢p). In a sequencaill to fight, that trend
and Manning (2000). indicates thatvill should be a noun rather than a modal
- . verb. However, that effect is completely lost in a CMM
2 Bidirectional Dependency Networks like (a): P(tyi |will, (start)) prefers the modal tagging,
SandP(To|to, twill ) is roughly 1 regardless of;; . While
Ee model has an arrow between the two tag positions,
t

using a directed graphical model (e.g., an HMM (Brants, at_path of ianue.nce js severédrhe same proble.m ex-
2000) or a conditional Markov model (CMM) (Ratna-'StS in the other direction. If we use the symmetric right-

parkhi, 1996)). In such models, the pro.bability assigned 2Throughout this paper we assume that enough boundary

to a tagged sequence of words= (t, w) is the product symbols always exist that we can ignore the differences hvhic

of a sequence of local portions of the graphical modelyould otherwise exist at the initial and final few positions.

one from each time slice. For example, in the left-to-right 3DbeSIDite use gf namehs like “Igbel bias” (Laflfle”.y et a|-,§£01
P or “observation bias”, these effects are really just unednt

CMM shown in figure 1(a), explaining-away effects (Cowell et al., 1999, 19), where tw

nodes which are not actually in causal competition have been

P, w) = l_[i P(tilti—1, wi) modeled as if they were.

Py (tolt—1, wo) =

When building probabilistic models for tag sequence
we often decompose the global probability of sequencé



function bests
(W<>(B) et bestSooroaub(s 2, (end end end);
(@)

(b) (©) function bestScoreSub{- 1, (t _1, tj, tj11))
% memoization
Figure 2: Simple dependency nets: (a) the Bayes’ net for if (cached{ + 1, (tj_1, ti, ti+1)))

P(A)P(B|A), (b) the Bayes’ net foP(A|B)P(B), (c) a bidi- return cache(+ 1, (tj_1, tj, tj+1));
rectional net with models dP(A|B) andP(B|A), which is not % left boundary case
a Bayes' net. if (i =-1)
if ((ti_1,t,tiy1) == (start, start, start))
) . L return 1;
to-left model, fight will receive its more common noun else
tagging by symmetric reasoning. However, the bidirec- return 0;

tional model (c) discussed in the next section makes both % recursive case
directions available for conditioning at all locations; us return max_, bestScoreSuh((t —2.ti-1. ))x
ing replicated models oP (tg|t_1, t11, wp), and will be PGilti—1. i1, wi);

able to get this example corrett. Figure 3: Pseudocode for polynomial inference for the first-
order bidirectional CMM (memoized version).

2.1 Semantics of Dependency Networks 2.2 Inferencefor Linear Dependency Networks

While the structures in figure 1(a) and (b) are well-Cyclic or not, we can view the product of local probabil-
understood graphical models with well-known semanticsiies from a dependency network as a score:

figure 1(c) is not a standard Bayes’ net, precisely because
the graph has cycles. Rather, it is a more genéeal scorgx) = 1_[ P(xi [Pa(xi))
pendency networiHeckerman et al., 2000). Each node !
represents a random variable along with a local condivherePa(x;) are the nodes with arcs to the nogeln the
tional probability model of that variable, conditioned oncase of an acyclic model, this score will be the joint prob-
the source variables of all incoming arcs. In this sensebility of the evenk, P(x). In the general case, it will not
the semantics are the same as for standard Bayes’ ndjs. However, we can still ask for the event, in this case the
However, because the graph is cyclic, the net does ngig sequence, with the highest score. For dependency net-
correspond to a proper factorization of a large joint probworks like those in figure 1, an adaptation of the Viterbi
ability estimate into local conditional factors. Consideralgorithm can be used to find the maximizing sequence
the two-node cases shown in figure 2. Formally, for thén polynomial time. Figure 3 gives pseudocode for the
netin (a), we can writd®(a, b) = P(a)P(bja). For (b) concrete case of the network in figure 1(d); the general
we write P(a, b) = P(b)P(alb). However, in (c), the case is similar, and is in fact just a max-plus version of
nodes A and B carry the informatida(alb) andP(bla)  standard inference algorithms for Bayes’ nets (Cowell et
respectively. The chain rule doesn't allow us to reconal., 1999, 97). In essence, there is no difference between
struct P(a, b) by multiplying these two quantities. Un- inference on this network and a second-order left-to-right
der appropriate conditions, we coutgtonstruct Ra,b)  CMM or HMM. The only difference is that, when the
from these quantities using Gibbs sampling, and, in gemarkov window is at a position, rather than receiving
eral, that is the best we can do. However, while reconthe score forP(t; |ti_1, ti_2, wi), one receives the score
structing the joint probabilities from these local condi-for P(tj_1]t;, ti_2, wi_1).
tional probabilities may be difficult, estimating the local There are some foundational issues worth mention-
probabilities themselves is no harder than it is for acyclithg. As discussed previously, the maximum scoring se-
models: we take observations of the local environmentguence need not be the sequence with maximum likeli-
and use any maximum likelihood estimation method wéood according to the model. There is therefore a worry
desire. In our experiments, we used local maxent modekgith these models about a kind of “collusion” where the
but if the event space allowed, (smoothed) relative countaodel locks onto conditionally consistent but jointly un-
would do. likely sequences. Consider the two-node network in fig-
ure 2(c). If we have the following distribution of ob-
4The effect of indirect influence being weaker than direct inS€rvations (in the fornab) (11,11, 11, 12, 21, 33), then
fluence is more pronounced for conditionally structuredetgd clearly the most likely state of the network is 11. How-
but is potentially an issue even with a simple HMM. The probever, the score of 11 iB(a = llb=1)Pb=1a=1)

abilistic models for basic left-to-right and right-to4diMMs ~ _ 3/4 x 3/4 = 9/16, while the score of 33 is 1. An ad-
with emissions on their states can be shown to be equivasent Uit | related bi is that the traini t'I
ing Bayes’ rule on the transitions, provided start and end-sy d!tional related problem is that the training set 10ss (sum

bols are modeled. However, this equivalence is violatedanp Of negative logarithms of the sequence scores) does not
tice by the addition of smoothing. bound the training set error (0/1 loss on sequences) from



DataSet | Sect'ns | Sent. | Tokens | Unkn istics of the three split8.Except where indicated for the
Training 0-18| 38,219| 912,344 0 modelBEST, all results are on the development set.
Develop | 19-21| 5,527| 131,768| 4,467 One innovation in our reporting of results is that we
Test 22-24| 5,462 129,654| 3,649 present whole-sentence accuracy numbers as well as the
) traditional per-tag accuracy measure (over all tokens,
Table 1: Data set splits used. even unambiguous ones). This is the quantity that most

) ) o sequence models attempt to maximize (and has been mo-
above. Consider the following training set, for the sameyated over doing per-state optimization as being more
network, with each entire data point considered as a labg|sefy| for subsequent linguistic processing: one wants to
(11,22). The relative-frequency model assigns loss O 16 5 coherent sentence interpretation). Further, while
both training examples, but cannot do better than 50%,me tag errors matter much more than others, to a first
error in regenerating the training data labels. These igq getting a single tag wrong in many of the more com-
sues are further discussed in Heckerman et al. (200Q)qn ways (e.g., proper noun vs. Common noun; Noun vs.
Preliminary work of ours suggests that practical use Qferh) would lead to errors in a subsequent processor such
dependency networks is not in general immune to thesg an information extraction system or a parser that would
theoretical concerns: a dependency network can choosgaatly degrade results for the entire sentence. Finally,
sequence model that is bidirectionally very consistent byfe fact that the measure has much more dynamic range
does not match the data very well. However, this problerfas some appeal when reporting tagging results.
doe; not appear to have prevented the networks from per-te per-state models in this paper are log-linear mod-
forming well on the tagging problem, probably becausgs pyilding upon the models in (Ratnaparkhi, 1996) and
features I|_nk|ng Fags and observations are generally mu‘%ﬁ*outanova and Manning, 2000), though some models are
sharper discriminators than tag sequence features. i fact strictly simpler. The features in the models are

It is useful to contrast this framework with the con-defined using templates; there are different templates for
ditional random fields of Lafferty et al. (2001). Therare words aimed at learning the correct tags for unknown
CRF approach uses similar local features, but rather thajbrds? We present the results of three classes of experi-
chaining together local models, they construct a sinments: experiments with directionality, experiments with

gle, globally normalized model. The principal advaniexjcalization, and experiments with smoothing.
tage of the dependency network approach is that advan-

tageous bidirectional effects can be obtained without th&1 Experimentswith Directionality

extremely expensive global training required for CRFs. | this section, we report experiments using log-linear
To summarize, we draw a dependency network ITMMs to populate nets with various structures, exploring

which each node has as neighbors all the other nodgse relative value of neighboring words’ tags. Table 2 lists

that we would like to have influence it directly. Eachthe discussed networks. All networks have the same ver-

node’s neighborhood is then considered in isolation angcal feature templatesto, wo) features for known words

a local model is trained to maximize the conditional like-and variousito, o (w1n)) word signature features for all

lihood over the training data of that node. At test timewords, known or not, including spelling and capitaliza-

the sequence with the highest product of local conditiongon features (see section 3.3).

scores is calculated and returned. We can always find thegyst this vertical conditioning gives an accuracy of

exact maximizing sequence, but only in the case of a93.69% (denoted as “Baseline” in table®)Condition-

acyclic netis it guaranteed to be the maximum likelihoo

sequence. 6Tagger results are only comparable when tested not only on
the same data and tag set, but with the same amount of training

. data. Brants (2000) illustrates very clearly how taggingqre

3 Experiments mance increases as training set size grows, largely betaeise
percentage of unknown words decreases while system perfor-

The part of speech tagged data used in our experimentsmgnce on them increases (they become increasingly restrict

the Wall Street Journal data from Penn Treebank 111 (Maras to word class). .

. . . for common word features and 35 for rare word features (tem-
parse tree$.We split the data into training, development, lates need a support set strictly greater in size than tto#fcu

and test sets as in (Collins, 2002). Table 1 lists charactg{atore they are included in the model).

- 8Charniak et al. (1993) noted that such a simple model got
SNote that these tags (and sentences)rareidentical to  90.25%, but this was with no unknown word model beyond

those obtained from theagged/pos directories of the same disk: a prior distribution over tags. Abney et al. (1999) raises thi

hundreds of tags in the RB/RP/IN set were changed to be motmseline to 92.34%, and with our sophisticated unknown word

consistent in the@arsed/mrg version. Maybe we were the last to model, it gets even higher. The large number of unambiguous

discover this, but we've never seen it in print. tokens and ones with very skewed distributions make the-base



M odel Feature Templates Features | Sentence Token | Unkn. Word

Accuracy | Accuracy Accuracy
Baseline [ 56,805 26.74% 93.69% 82.61%
L (to, t_1) 27,474 41.89% 95.79% 85.49%
R (to, t41) 27,648 36.31% 95.14% 85.65%
L, {to, t_1), {to, t_2) 32,035| 44.04%| 96.05% 85.92%
R+Ry (to, t41), (to, ty2) 33,423| 37.20%| 95.25% 84.49%
L+R (to, t_1), (to. ty1) 32,610 49.50% | 96.57% 87.15%
LL (tp, t_1,t_2) 45,532 44.60% 96.10% 86.48%
RR (to, ty1, t42) 45,446 38.41% 95.40% 85.58%
LR (to, t_1, t41) 45,478 49.30% 96.55% 87.26%
L+LL+LLL (tg, t—1), (to, t_1,t_2), (to, t_1,t_2,t_3) 118,752 45.14% 96.20% 86.52%
R+LR+LLR (to, to1), (to, t_1, tp1), (to, t1,t_o, ty1) 115,790 51.69% | 96.77% 87.91%
L+LL+LR+RR+R | (tg,t_1), (to,t_1,1_2), (to, t_1,t41), {to, t41), (to, ty1,142) 81,049 53.23% 96.92% 87.91%

Table 2: Tagging accuracy on the development set with diffesequence feature templates. TAll models include the santical

word-tag features({p, wg) and varioustg, o (w1n))), though the baseline uses a lower cutoff for these features

Model Feature Templates Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy

BASELINE | (tg, wo) 2 6,501 1.63% 60.16% 82.98%
(to, wo) 0 56,805 26.74% 93.69% 82.61%

3w (tg, wo), (to, w_1), (tp, w41) 2| 239,767 48.27% 96.57% 86.78%
3W+TAGS | tag sequencesip, wo), {to, w_1), {tp, w41) 2| 263,160 53.83% 97.02% 88.05%
BEST see text 2 | 460,552 55.31% 97.15% 88.61%

Table 3: Tagging accuracy with different lexical featunmpdates on the development set.

Model | Feature Templates | Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy
BEST | see text 2 | 460,552 56.34% 97.24% 89.04%

Table 4: Final tagging accuracy for the best model on thestgst

ing on the previous tag as well (model ltp,t_1) fea- 3.2 Lexicalization

tures) gives 95.79%. The reverse, model R, using the . . . .
next tag instead, is slightly inferior at 95.14%. Moderl]‘eXICahzatlon has been a key factor in the advance of

L+R, using both tags simultaneously (but with only th statlst|cel parsing models, bl_Jt has been less exploited
o S . or tagging. Words surrounding the current word have
individual-direction features) gives a much better accu:-

Yeen occasionally used in taggers, such as (Ratnaparkhi,

0 . . .
racy of 96.57%. Since this model has roughly twice a3996), Brill's transformation based tagger (Brill, 1995),

many tag-tag features, the fact that it outperforms the uni- i
directional models is not by itself compelling evidenceand the HMM model of Lee et al. (2000), but neverthe

for using bidirectional networks. However, it also out- . :

performs model L+ which adds theito. t_5) second- ging models is the dependence of the part of speech tag
previous word features instead of next word featureso,faword_ on the word itsel - .

which gives only 96.05% (and R-Rjives 95.25%). We In maximum entropy modele, joint features wh_lc_h look
conclude that, if one wishes to condition on two neighfjlt surrounding words and their tags, as well as joint fea-

boring nodes (using two sets of 2-tag features), the Synt]gres of the current word and surrounding words are in

metric bidirectional model is superior principle straightforward additions, but have not been in-

. . . . ._corporated into previous models. We have found these
High-performance taggers typically also include JOImfeatures to be very useful. We explore here lexicaliza-

three-tag counts in some way, either as tag trigrargs

ess, the only lexicalization consistently included in-tag

(Brants, 2000) or tag-triple features (Ratnaparkhi, 199 ion both alone and in combination with preceding and

Toutanova and Manning, 2000). Models LL, RR, and C bliowing tag histories.
use only the vertical features and a single set of tag-triple 12°€ 3 shows the development set accuracy of several
features: the left tags (2, t_; andto), right tags (o, t.1 models with various lexical features. All models use the

t,2), or centered tags (1, to, t.1) respectively. Again, same rare word features as the models in Table 2. The

with roughly equivalent feature sets, the left context idirst two rows show a baseline model using the current

better than the right, and the centered context is bett@ford only. The count cutoff for th|s feature was 0 in the
than either unidirectional context. first model and 2 for the model in the second row. As

there are no tag sequence features in these models, the ac-
curacy drops significantly if a higher cutoff is used (from
a per tag accuracy of about 93.7% to onlyB%).

line for this task high, while substantial annotator noissates
an unknown upper bound on the task.



The third row shows a model where a tag is def Smoothed | Features | Sentence | Token | Unk.W.
cided solely by the three words centered at the tag p)-yes p— Ac:zrgg} 96?((:)%) 5 G'Zg;)
L i , . ()} . (] . (]
sition (3W). As far as we are aware, models_ of thig = 45532 | 42.81% | 95.88%| 83.08%
sort have not _been e_zxplored p_reV|ou§Iy, but its accy “ves 202,649 54.88% | 97.10% | 88.20%
racy is surprisingly high: despite having no sequenceno 292,649| 48.85% | 96.54% | 85.20%

model at all, it is more accurate than a model which USES o5 A ith and without quadrati \arizati
standard tag fourgram HMM feature(sso( w0>’ (to, t71>’ aple 5. Accuracy with and without quadratic regularizatlo

{to. t-1.t-2). (fo, t-1. L2, t-3), shown in Table 2, model performance. By far the most significant is a crude com-

L+LL+LLL). . o
, _ . pany name detector which marks capitalized words fol-
_The_ fourth an_d fith rows show models with bi- lowed within 3 words by a company name suffix like.
directional tagging features. The fourth model

or Inc. This suggests that further gains could be made by
. corporating a good named entity recognizer as a prepro-
the last model in Table 2 (i.t1). (fo.t-1,1-2), cessor to the tagger (reversing the most common order of

(to, t-1, tJaﬂ’ <t0t’ t“)’éto’ t*.#ht“l)) ?nd c(;JrIreEt, previ- dprocessing in pipelined systems!), and is a good example
ous, and next word. € last model has In ady something that can only be done when using a condi-
dition the feature templatedgp, wo,t-1), (to, wo, t+1),

; _ tional model. Minor gains come from a few additional
(to, w_1, wo), and (tg, wo, wy1), and includes the im-

o] K 4 modeling di di features: an allcaps feature, and a conjunction feature of
provem%n S IN UNKNOWN word modetling diSCUSSed In SeGq s that are capitalized and have a digit and a dash in
tion 3.37 We call this modelBEST. BEST has a to-

) them (such words are normally common nouns, such as
ken accuracy on the final test set of 97.24% and a se ( y

EFC-120r F/A-18. We also found it advant t
tence accuracy of 56.34% (see Table 4). A 95% conf&/ or §. We also found it advantageous to

(BW+TAGS) uses the same tag sequence features

q . [for th : bi 2l mod se prefixes and suffixes of length up to 10. Together
ence interval for the accuracy (using a binomial mode ith the larger templates, these features contribute to our

Is (97.15% 97.33%). . L unknown word accuracies being higher than those of pre-
In order to understand the gains from using right Con\'/iously reported taggers

text tags and more lexicalization, let us look at an exam-
ple of an error that the enriched models learn notto make.4  Smoothing

An interesting example of a common tagging error of the, . . N .
g P 9ging .?/Vlth so many features in the model, overtraining is a dis-

s_|m_pler models whm_h could b? corrected by a determlm%—nct possibility when using pure maximum likelihood es-
tic fixup rule of the kind used in the IDIOMTAG module . = * A . . ;
: : timation. We avoid this by using a Gaussian prior (aka
of (Marshall, 1987) is the expressi@s X as(often, as : o . o .
guadratic regularization or quadratic penalization) Whic

far ag). This should be taggeas/RB X{RB,JJ} as/INin : ! .
the Penn Treebank. A model using only current word an[]eS'StS high feature weights unless they produce great
X score gain. The regularized objectiFas:

two left tags (model L+k in Table 2), made 87 errors on
this expression, tagging &s/IN X as/IN- since the tag 52
sequence probabilities do not give strong reasons to dis-  F(\) = Z log(Py(ti |w, t)) + Zn 1
prefer the most common tagging &$ (it is tagged as IN : i=1202

over 80% of the time). However, the model 3WASS,  gjnce we use a conjugate-gradient procedure to maximize
which uses two right tags and the two surrounding wordg,e qata likelihood, the addition of a penalty term is eas-
in addition, made only 8 errors of this kind, and modelyy, jncorporated. Both the total size of the penalty and
BESTmade only 6 errors. the partial derivatives with repsect to each are triv-

ial to compute; these are added to the log-likelihood and
log-likelihood derivatives, and the penalized optimiaati
Most of the models presented here use a set of UBtocedes without further modification.

known word features basically inherited from (Ratna- \yg have not extensively experimented with the value
parkhi, 1996), which include using charaategram pre- ¢ ;2 _ \yhich can even be set differently for different pa-

fixes and suffixes (fon up to 4), and detectors for a few rmeters or parameter classes. All the results in this paper
other prominent features of words, such as capitalizgjse 5 constant?2 = 0.5. so that the denominator disap-
tion, hyphens, and numbers. Doing error analysis 0n Uears in the above expression. Experiments on a simple
known words on a simple tagging model (wila, t-1),  model withe made an order of magnitude higher or lower

(fo, t-1, t-2), and{wo, to) features) suggested several ady o, resulted in worse performance than with= 0.5.
ditional specialized features that can usefully improve o, experiments show that quadratic regularization

9Thede and Harper (1999) use 1, to, wo) templates in is very effectiv_e in improving the ger?eraliza_tion perfor-
their “full-second order” HMM, achieving an accuracy of mance of tagging models, mostly by increasing the num-
96.86%. Here we can add the opposite tiling and other femtureber of features which could usefully be incorporated. The

3.3 Unknown word features



Tagger Support cutoff  Accuracy 57 -
H ! —+—No Smoothin
Collins (2002) 5o 9966.762(())/0/0 o |
. 0
Model 3W+TAGS variant 1 96.97% g:; (.
5  96.93% = o .
g 96,8 I \
Table 6: Effect of changing common word feature cutoffs{fea g %7 | ~_
tures with suppork cutoff are excluded from the model). 96,6 | ~
96,5

number of features used in our complex models — in the 964 ;{
several hundreds of thousands, is extremely high in com- B
parison with the data set size and the number of features Training lterations

used in other machine learning domains. We describe two
sets of experiments aimed at comparing models with angq re 4: Accuracy by training iterations, with and without
without regularization. One is for a simple model with aquadratic regularization.
relatively small number of features, and the other is for a
model with a large number of features. performance. Whereas Ratnaparkhi (1996) used feature
The usefulness of priors in maximum entropy modelsupport cutoffs and early stopping to stop overfitting of
is not new to this work: Gaussian prior smoothing is adthe model, and Collins (2002) contends that including
vocated in Chen and Rosenfeld (2000), and used in ddw support features harms a maximum entropy model,
the stochastic LFG work (Johnson et al., 1999). Howeur results show that low support features are useful in a
ever, until recently, its role and importance have not beeregularized maximum entropy model. Table 6 contrasts
widely understood. For example, Zhang and Oles (200Dbur results with those from Collins (2002). Since the
attribute the perceived limited success of logistic regresnodels are not the same, the exact numbers are incompa-
sion for text categorization to a lack of use of regularrable, but the difference in direction is important: in the
ization. At any rate, regularized conditional loglinearregularized model, performance improves with the inclu-
models have not previously been applied to the prolsion of low support features.
lem of producing a high quality part-of-speech tagger: Finally, in addition to being significantly more accu-
Ratnaparkhi (1996), Toutanova and Manning (2000), anchte, smoothed models train much faster than unsmoothed
Collins (2002) all present unregularized models. Indeednes, and do not benefit from early stopping. For ex-
the result of Collins (2002) that including low supportample, the first smoothed model in Table 5 required 80
features helps a voted perceptron model but harms a masenjugate gradient iterations to converge (somewhat ar-
imum entropy model is undone once the weights of theitrarily defined as a maximum difference of 1in fea-
maximum entropy model are regularized. ture weights between iterations), while its corresponding
Table 5 shows results on the development set from twansmoothed model required 335 iterations, thus training
pairs of experiments. The first pair of models use comwas roughly 4 times slowéP. The second pair of models
mon word template#tg, wo), (o, t—1, t_2) and the same required 134 and 370 iterations respectively. As might
rare word templates as used in the models in table 2. The expected, unsmoothed models reach their highest gen-
second pair of models use the same features as modaehlization capacity long before convergence and accu-
BEST with a higher frequency cutoff of 5 for common racy on an unseen test set drops considerably with fur-
word features. ther iterations. This is not the case for smoothed mod-
For the first pair of models, the error reduction fromels, as their test set accuracy increases almost monoton-
smoothing is 3% overall and 2% on unknownwords. ically with training iterations-! Figure 4 shows a graph
For the second pair of models, the error reduction isf training iterations versus accuracy for the second pair
even bigger: 182% overall after convergence an@% if  of models on the development set.
looking at the best accuracy achieved by the unsmoothed
model (by stopping training after 75 iterations; see be4 Conclusion
low). The especially large reduction in unknown word er- )
ror reflects the fact that, because penalties are effegtivefVe have shown how broad feature use, when combined
stronger for rare features than frequent ones, the preser¥é#h appropriate model regularization, produces a supe-
of penalties increases the degree to which more genefi" level of tagger performance. While experience sug-
cross-word signature features (which apply to unknown—;

WOI’FIlS) are used, relative to word-specific sparse featur?a%gest models require about 25 minupes iterationto train.
(which do not apply to unknown words). 11 practice one notices some wiggling in the curve, but

Secondly, use of regularization allows us to incorporatge trend remains upward even beyond our chosen convergence
features with low supportinto the model while improvingpoint.

On a 2GHz PC, this is still an important difference: our



gests that the final accuracy number presented here coidrk Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
be slightly improved upon by classifier combination, it is Stefan”RiezIer. 1999. Estimators for stochastic “unifiai
worth noting that not only is this tagger better than any based” grammars. IACL 37 pages 535-541. y
previous single tagger, but it also appears to outperforman Klein and Christopher D. Manning. 2002.  Conditional

- ! > structure versus conditional estimation in NLP models. In
Brill and Wu (1998), the best-known combination tagger gmNLP 2002 pages 9-16.
(they report an accuracy of 97.16% over the same WSbhn Lafferty, Andrew McCallum, and Fernando Pereira. 2001

data, but using a larger training set, which should favor Conditional random fields: Probabilistic models for seg-
them). menting and labeling sequence data.|@ML-2001, pages

! L . 282-289.
While part-of-speech tagging is now a fairly well-worn Sang-Zoo Lee, Jun ichi Tsujii, and Hae-Chang Rim. 2000 Part

road, and our ability to win performance increases in o speech tagging based on Hidden Markov Model assuming
this domain is starting to be limited by the rate of er- joint independence. IACL 38 pages 263—169.

rors and inconsistencies in the Penn Treebank trainirditchell P. Marcus, Beatrice Santorini, and Mary A. Mardigk
data, this work also has broader implications. Across Wicz. 1994. Building a large annotated corpus of English:
the many NLP problems which involve sequence mod- The Penn Treebank.Computational Linguistics19:313—

els over sparse multinomial distributions, it suggests th"ilan Meirshall. 1987. Tag selection using probabilistic rodth

feature-riCh mOde|S W|th eXtenSiVe |exica|izati0n, uidi{ In Roger Garside’ Geoffrey Sampson’ and Geoffrey Leech,
tional inference, and effective regularization will be key editors, The Computational analysis of English: a corpus-
elements in producing state-of-the-art results. based approachpages 42-65. Longman, London.
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