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Abstract

We present a new part-of-speech tagger that
demonstrates the following ideas: (i) explicit
use of both preceding and following tag con-
texts via a dependency network representa-
tion, (ii) broad use of lexical features, includ-
ing jointly conditioning on multiple consecu-
tive words, (iii) effective use of priors in con-
ditional loglinear models, and (iv) fine-grained
modeling of unknown word features. Using
these ideas together, the resulting tagger gives
a 97.24% accuracy on the Penn Treebank WSJ,
an error reduction of 4.4% on the best previous
single automatically learned tagging result.

1 Introduction

Almost all approaches to sequence problems such as part-
of-speech tagging take a unidirectional approach to con-
ditioning inference along the sequence. Regardless of
whether one is using HMMs, maximum entropy condi-
tional sequence models, or other techniques like decision
trees, most systems work in one direction through the
sequence (normally left to right, but occasionally right
to left, e.g., Church (1988)). There are a few excep-
tions, such as Brill’s transformation-based learning (Brill,
1995), but most of the best known and most successful
approaches of recent years have been unidirectional.

Most sequence models can be seen as chaining to-
gether the scores or decisions from successive local mod-
els to form a global model for an entire sequence. Clearly
the identity of a tag is correlated with both past and future
tags’ identities. However, in the unidirectional (causal)
case, only one direction of influence is explicitly consid-
ered at each local point. For example, in a left-to-right

first-order HMM, the current tagt0 is predicted based on
the previous tagt−1 (and the current word).1 The back-
ward interaction betweent0 and the next tagt+1 shows
up implicitly later, whent+1 is generated in turn. While
unidirectional models are therefore able to capture both
directions of influence, there are good reasons for sus-
pecting that it would be advantageous to make informa-
tion from both directions explicitly available for condi-
tioning at each local point in the model: (i) because of
smoothing and interactions with other modeled features,
terms likeP(t0|t+1, . . .) might give a sharp estimate oft0
even when terms likeP(t+1|t0, . . .) do not, and (ii) jointly
considering the left and right context together might be
especially revealing. In this paper we exploit this idea,
using dependency networks, with a series of local con-
ditional loglinear (aka maximum entropy or multiclass
logistic regression) models as one way of providing ef-
ficient bidirectional inference.

Secondly, while all taggers use lexical information,
and, indeed, it is well-known that lexical probabilities
are much more revealing than tag sequence probabilities
(Charniak et al., 1993), most taggers make quite limited
use of lexical probabilities (compared with, for example,
the bilexical probabilities commonly used in current sta-
tistical parsers). While modern taggers may be more prin-
cipled than the classic CLAWS tagger (Marshall, 1987),
they are in some respects inferior in their use of lexical
information: CLAWS, through its IDIOMTAG module,
categorically captured many important, correct taggings
of frequent idiomatic word sequences. In this work, we
incorporate appropriate multiword feature templates so
that such facts can be learned and used automatically by

1Rather than subscripting all variables with a position index,
we use a hopefully clearer relative notation, wheret0 denotes
the current position andt−n and t+n are left and right context
tags, and similarly for words.
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(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of wordsx = 〈t, w〉 is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

P(t, w) =
∏

i
P(ti |ti−1, wi )

That is, the replicated structure is a local model
P(t0|t−1, w0).2 Of course, if there are too many con-
ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for P(t0|t−1, w0) with a maxent model of the form:

Pλ(t0|t−1, w0) =
exp(λ〈t0,t−1〉 + λ〈t0,w0〉)∑
t ′0

exp(λ〈t ′0,t−1〉
+ λ〈t ′0,w0〉

)

In this case, thew0 andt−1 can have jointeffectsont0, but
there are not jointfeaturesinvolving all three variables
(though there could have been such features). We say that
this model uses thefeature templates〈t0, t−1〉 (previous
tag features) and〈t0, w0〉 (current word features).

Clearly, both the preceding tagt−1 and following tag
t+1 carry useful information about a current tagt0. Unidi-
rectional models do not ignore this influence; in the case
of a left-to-right CMM, the influence oft−1 on t0 is ex-
plicit in the P(t0|t−1, w0) local model, while the influ-
ence oft+1 on t0 is implicit in the local model at the next
position (via P(t+1|t0, w+1)). The situation is reversed
for the right-to-left CMM in figure 1(b).

From a seat-of-the-pants machine learning perspective,
when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides ateachposition, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors likeP(t0|t−1, w0)

do not always suffice whent0 is implicitly needed to de-
terminet−1. For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The wordto has only one tag (TO) in the PTB
tag set. TheTO tag is often preceded by nouns, but rarely
by modals (MD). In a sequencewill to fight, that trend
indicates thatwill should be a noun rather than a modal
verb. However, that effect is completely lost in a CMM
like (a): P(twill |wi ll , 〈star t〉) prefers the modal tagging,
andP(TO|to, twill ) is roughly 1 regardless oftwill . While
the model has an arrow between the two tag positions,
that path of influence is severed.3 The same problem ex-
ists in the other direction. If we use the symmetric right-

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.
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Figure 2: Simple dependency nets: (a) the Bayes’ net for
P(A)P(B|A), (b) the Bayes’ net forP(A|B)P(B), (c) a bidi-
rectional net with models ofP(A|B) andP(B|A), which is not
a Bayes’ net.

to-left model,fight will receive its more common noun
tagging by symmetric reasoning. However, the bidirec-
tional model (c) discussed in the next section makes both
directions available for conditioning at all locations, us-
ing replicated models ofP(t0|t−1, t+1, w0), and will be
able to get this example correct.4

2.1 Semantics of Dependency Networks

While the structures in figure 1(a) and (b) are well-
understood graphical models with well-known semantics,
figure 1(c) is not a standard Bayes’ net, precisely because
the graph has cycles. Rather, it is a more generalde-
pendency network(Heckerman et al., 2000). Each node
represents a random variable along with a local condi-
tional probability model of that variable, conditioned on
the source variables of all incoming arcs. In this sense,
the semantics are the same as for standard Bayes’ nets.
However, because the graph is cyclic, the net does not
correspond to a proper factorization of a large joint prob-
ability estimate into local conditional factors. Consider
the two-node cases shown in figure 2. Formally, for the
net in (a), we can writeP(a, b) = P(a)P(b|a). For (b)
we write P(a, b) = P(b)P(a|b). However, in (c), the
nodes A and B carry the informationP(a|b) andP(b|a)

respectively. The chain rule doesn’t allow us to recon-
struct P(a, b) by multiplying these two quantities. Un-
der appropriate conditions, we couldreconstruct P(a, b)

from these quantities using Gibbs sampling, and, in gen-
eral, that is the best we can do. However, while recon-
structing the joint probabilities from these local condi-
tional probabilities may be difficult, estimating the local
probabilities themselves is no harder than it is for acyclic
models: we take observations of the local environments
and use any maximum likelihood estimation method we
desire. In our experiments, we used local maxent models,
but if the event space allowed, (smoothed) relative counts
would do.

4The effect of indirect influence being weaker than direct in-
fluence is more pronounced for conditionally structured models,
but is potentially an issue even with a simple HMM. The prob-
abilistic models for basic left-to-right and right-to-left HMMs
with emissions on their states can be shown to be equivalent us-
ing Bayes’ rule on the transitions, provided start and end sym-
bols are modeled. However, this equivalence is violated in prac-
tice by the addition of smoothing.

function bestScore()
return bestScoreSub(n + 2, 〈end, end, end〉);

function bestScoreSub(i + 1, 〈ti−1, ti , ti+1〉)
% memoization
if (cached(i + 1, 〈ti−1, ti , ti+1〉))

return cache(i + 1, 〈ti−1, ti , ti+1〉);
% left boundary case
if ( i = −1)

if ( 〈ti−1, ti , ti+1〉 == 〈star t, star t, star t〉)
return 1;

else
return 0;

% recursive case
return maxti−2 bestScoreSub(i, 〈ti−2, ti−1, ti 〉)×

P(ti |ti−1, ti+1, wi );

Figure 3: Pseudocode for polynomial inference for the first-
order bidirectional CMM (memoized version).

2.2 Inference for Linear Dependency Networks

Cyclic or not, we can view the product of local probabil-
ities from a dependency network as a score:

score(x) =
∏

i
P(xi |Pa(xi ))

wherePa(xi ) are the nodes with arcs to the nodexi . In the
case of an acyclic model, this score will be the joint prob-
ability of the eventx, P(x). In the general case, it will not
be. However, we can still ask for the event, in this case the
tag sequence, with the highest score. For dependency net-
works like those in figure 1, an adaptation of the Viterbi
algorithm can be used to find the maximizing sequence
in polynomial time. Figure 3 gives pseudocode for the
concrete case of the network in figure 1(d); the general
case is similar, and is in fact just a max-plus version of
standard inference algorithms for Bayes’ nets (Cowell et
al., 1999, 97). In essence, there is no difference between
inference on this network and a second-order left-to-right
CMM or HMM. The only difference is that, when the
Markov window is at a positioni , rather than receiving
the score forP(ti |ti−1, ti−2, wi ), one receives the score
for P(ti−1|ti , ti−2, wi−1).

There are some foundational issues worth mention-
ing. As discussed previously, the maximum scoring se-
quence need not be the sequence with maximum likeli-
hood according to the model. There is therefore a worry
with these models about a kind of “collusion” where the
model locks onto conditionally consistent but jointly un-
likely sequences. Consider the two-node network in fig-
ure 2(c). If we have the following distribution of ob-
servations (in the formab) 〈11, 11, 11, 12, 21, 33〉, then
clearly the most likely state of the network is 11. How-
ever, the score of 11 isP(a = 1|b = 1)P(b = 1|a = 1)

= 3/4 × 3/4 = 9/16, while the score of 33 is 1. An ad-
ditional related problem is that the training set loss (sum
of negative logarithms of the sequence scores) does not
bound the training set error (0/1 loss on sequences) from



Data Set Sect’ns Sent. Tokens Unkn
Training 0–18 38,219 912,344 0
Develop 19–21 5,527 131,768 4,467
Test 22–24 5,462 129,654 3,649

Table 1: Data set splits used.

above. Consider the following training set, for the same
network, with each entire data point considered as a label:
〈11, 22〉. The relative-frequency model assigns loss 0 to
both training examples, but cannot do better than 50%
error in regenerating the training data labels. These is-
sues are further discussed in Heckerman et al. (2000).
Preliminary work of ours suggests that practical use of
dependency networks is not in general immune to these
theoretical concerns: a dependency network can choose a
sequence model that is bidirectionally very consistent but
does not match the data very well. However, this problem
does not appear to have prevented the networks from per-
forming well on the tagging problem, probably because
features linking tags and observations are generally much
sharper discriminators than tag sequence features.

It is useful to contrast this framework with the con-
ditional random fields of Lafferty et al. (2001). The
CRF approach uses similar local features, but rather than
chaining together local models, they construct a sin-
gle, globally normalized model. The principal advan-
tage of the dependency network approach is that advan-
tageous bidirectional effects can be obtained without the
extremely expensive global training required for CRFs.

To summarize, we draw a dependency network in
which each node has as neighbors all the other nodes
that we would like to have influence it directly. Each
node’s neighborhood is then considered in isolation and
a local model is trained to maximize the conditional like-
lihood over the training data of that node. At test time,
the sequence with the highest product of local conditional
scores is calculated and returned. We can always find the
exact maximizing sequence, but only in the case of an
acyclic net is it guaranteed to be the maximum likelihood
sequence.

3 Experiments

The part of speech tagged data used in our experiments is
the Wall Street Journal data from Penn Treebank III (Mar-
cus et al., 1994). We extracted tagged sentences from the
parse trees.5 We split the data into training, development,
and test sets as in (Collins, 2002). Table 1 lists character-

5Note that these tags (and sentences) arenot identical to
those obtained from thetagged/pos directories of the same disk:
hundreds of tags in the RB/RP/IN set were changed to be more
consistent in theparsed/mrg version. Maybe we were the last to
discover this, but we’ve never seen it in print.

istics of the three splits.6 Except where indicated for the
modelBEST, all results are on the development set.

One innovation in our reporting of results is that we
present whole-sentence accuracy numbers as well as the
traditional per-tag accuracy measure (over all tokens,
even unambiguous ones). This is the quantity that most
sequence models attempt to maximize (and has been mo-
tivated over doing per-state optimization as being more
useful for subsequent linguistic processing: one wants to
find a coherent sentence interpretation). Further, while
some tag errors matter much more than others, to a first
cut getting a single tag wrong in many of the more com-
mon ways (e.g., proper noun vs. common noun; noun vs.
verb) would lead to errors in a subsequent processor such
as an information extraction system or a parser that would
greatly degrade results for the entire sentence. Finally,
the fact that the measure has much more dynamic range
has some appeal when reporting tagging results.

The per-state models in this paper are log-linear mod-
els, building upon the models in (Ratnaparkhi, 1996) and
(Toutanova and Manning, 2000), though some models are
in fact strictly simpler. The features in the models are
defined using templates; there are different templates for
rare words aimed at learning the correct tags for unknown
words.7 We present the results of three classes of experi-
ments: experiments with directionality, experiments with
lexicalization, and experiments with smoothing.

3.1 Experiments with Directionality

In this section, we report experiments using log-linear
CMMs to populate nets with various structures, exploring
the relative value of neighboring words’ tags. Table 2 lists
the discussed networks. All networks have the same ver-
tical feature templates:〈t0, w0〉 features for known words
and various〈t0, σ (w1n)〉 word signature features for all
words, known or not, including spelling and capitaliza-
tion features (see section 3.3).

Just this vertical conditioning gives an accuracy of
93.69% (denoted as “Baseline” in table 2).8 Condition-

6Tagger results are only comparable when tested not only on
the same data and tag set, but with the same amount of training
data. Brants (2000) illustrates very clearly how tagging perfor-
mance increases as training set size grows, largely becausethe
percentage of unknown words decreases while system perfor-
mance on them increases (they become increasingly restricted
as to word class).

7Except where otherwise stated, a count cutoff of 2 was used
for common word features and 35 for rare word features (tem-
plates need a support set strictly greater in size than the cutoff
before they are included in the model).

8Charniak et al. (1993) noted that such a simple model got
90.25%, but this was with no unknown word model beyond
a prior distribution over tags. Abney et al. (1999) raise this
baseline to 92.34%, and with our sophisticated unknown word
model, it gets even higher. The large number of unambiguous
tokens and ones with very skewed distributions make the base-



Model Feature Templates† Features Sentence Token Unkn. Word
Accuracy Accuracy Accuracy

Baseline ∅ 56,805 26.74% 93.69% 82.61%
L 〈t0, t−1〉 27,474 41.89% 95.79% 85.49%
R 〈t0, t+1〉 27,648 36.31% 95.14% 85.65%
L+L2 〈t0, t−1〉, 〈t0, t−2〉 32,935 44.04% 96.05% 85.92%
R+R2 〈t0, t+1〉, 〈t0, t+2〉 33,423 37.20% 95.25% 84.49%
L+R 〈t0, t−1〉, 〈t0, t+1〉 32,610 49.50% 96.57% 87.15%
LL 〈t0, t−1, t−2〉 45,532 44.60% 96.10% 86.48%
RR 〈t0, t+1, t+2〉 45,446 38.41% 95.40% 85.58%
LR 〈t0, t−1, t+1〉 45,478 49.30% 96.55% 87.26%
L+LL+LLL 〈t0, t−1〉, 〈t0, t−1, t−2〉, 〈t0, t−1, t−2, t−3〉 118,752 45.14% 96.20% 86.52%
R+LR+LLR 〈t0, t+1〉, 〈t0, t−1, t+1〉, 〈t0, t−1, t−2, t+1〉 115,790 51.69% 96.77% 87.91%
L+LL+LR+RR+R 〈t0, t−1〉, 〈t0, t−1, t−2〉, 〈t0, t−1, t+1〉, 〈t0, t+1〉, 〈t0, t+1, t+2〉 81,049 53.23% 96.92% 87.91%

Table 2: Tagging accuracy on the development set with different sequence feature templates. †All models include the same vertical
word-tag features (〈t0, w0〉 and various〈t0, σ (w1n)〉), though the baseline uses a lower cutoff for these features.

Model Feature Templates Support Features Sentence Token Unknown
Cutoff Accuracy Accuracy Accuracy

BASELINE 〈t0, w0〉 2 6,501 1.63% 60.16% 82.98%
〈t0, w0〉 0 56,805 26.74% 93.69% 82.61%

3W 〈t0, w0〉, 〈t0, w−1〉, 〈t0, w+1〉 2 239,767 48.27% 96.57% 86.78%
3W+TAGS tag sequences,〈t0, w0〉, 〈t0, w−1〉, 〈t0, w+1〉 2 263,160 53.83% 97.02% 88.05%
BEST see text 2 460,552 55.31% 97.15% 88.61%

Table 3: Tagging accuracy with different lexical feature templates on the development set.

Model Feature Templates Support Features Sentence Token Unknown
Cutoff Accuracy Accuracy Accuracy

BEST see text 2 460,552 56.34% 97.24% 89.04%

Table 4: Final tagging accuracy for the best model on the testset.

ing on the previous tag as well (model L,〈t0, t−1〉 fea-
tures) gives 95.79%. The reverse, model R, using the
next tag instead, is slightly inferior at 95.14%. Model
L+R, using both tags simultaneously (but with only the
individual-direction features) gives a much better accu-
racy of 96.57%. Since this model has roughly twice as
many tag-tag features, the fact that it outperforms the uni-
directional models is not by itself compelling evidence
for using bidirectional networks. However, it also out-
performs model L+L2 which adds the〈t0, t−2〉 second-
previous word features instead of next word features,
which gives only 96.05% (and R+R2 gives 95.25%). We
conclude that, if one wishes to condition on two neigh-
boring nodes (using two sets of 2-tag features), the sym-
metric bidirectional model is superior.

High-performance taggers typically also include joint
three-tag counts in some way, either as tag trigrams
(Brants, 2000) or tag-triple features (Ratnaparkhi, 1996,
Toutanova and Manning, 2000). Models LL, RR, and CR
use only the vertical features and a single set of tag-triple
features: the left tags (t−2, t−1 andt0), right tags (t0, t+1,
t+2), or centered tags (t−1, t0, t+1) respectively. Again,
with roughly equivalent feature sets, the left context is
better than the right, and the centered context is better
than either unidirectional context.

line for this task high, while substantial annotator noise creates
an unknown upper bound on the task.

3.2 Lexicalization

Lexicalization has been a key factor in the advance of
statistical parsing models, but has been less exploited
for tagging. Words surrounding the current word have
been occasionally used in taggers, such as (Ratnaparkhi,
1996), Brill’s transformation based tagger (Brill, 1995),
and the HMM model of Lee et al. (2000), but neverthe-
less, the only lexicalization consistently included in tag-
ging models is the dependence of the part of speech tag
of a word on the word itself.

In maximum entropy models, joint features which look
at surrounding words and their tags, as well as joint fea-
tures of the current word and surrounding words are in
principle straightforward additions, but have not been in-
corporated into previous models. We have found these
features to be very useful. We explore here lexicaliza-
tion both alone and in combination with preceding and
following tag histories.

Table 3 shows the development set accuracy of several
models with various lexical features. All models use the
same rare word features as the models in Table 2. The
first two rows show a baseline model using the current
word only. The count cutoff for this feature was 0 in the
first model and 2 for the model in the second row. As
there are no tag sequence features in these models, the ac-
curacy drops significantly if a higher cutoff is used (from
a per tag accuracy of about 93.7% to only 60.2%).



The third row shows a model where a tag is de-
cided solely by the three words centered at the tag po-
sition (3W). As far as we are aware, models of this
sort have not been explored previously, but its accu-
racy is surprisingly high: despite having no sequence
model at all, it is more accurate than a model which uses
standard tag fourgram HMM features (〈t0, w0〉, 〈t0, t−1〉,

〈t0, t−1, t−2〉, 〈t0, t−1, t−2, t−3〉, shown in Table 2, model
L+LL+LLL).

The fourth and fifth rows show models with bi-
directional tagging features. The fourth model
(3W+TAGS) uses the same tag sequence features as
the last model in Table 2 (〈t0, t−1〉, 〈t0, t−1, t−2〉,
〈t0, t−1, t+1〉, 〈t0, t+1〉, 〈t0, t+1, t+2〉) and current, previ-
ous, and next word. The last model has in ad-
dition the feature templates〈t0, w0, t−1〉, 〈t0, w0, t+1〉,

〈t0, w−1, w0〉, and 〈t0, w0, w+1〉, and includes the im-
provements in unknown word modeling discussed in sec-
tion 3.3.9 We call this modelBEST. BEST has a to-
ken accuracy on the final test set of 97.24% and a sen-
tence accuracy of 56.34% (see Table 4). A 95% confi-
dence interval for the accuracy (using a binomial model)
is (97.15%, 97.33%).

In order to understand the gains from using right con-
text tags and more lexicalization, let us look at an exam-
ple of an error that the enriched models learn not to make.
An interesting example of a common tagging error of the
simpler models which could be corrected by a determinis-
tic fixup rule of the kind used in the IDIOMTAG module
of (Marshall, 1987) is the expressionas X as(often,as
far as). This should be taggedas/RB X/{RB,JJ} as/IN in
the Penn Treebank. A model using only current word and
two left tags (model L+L2 in Table 2), made 87 errors on
this expression, tagging itas/IN X as/IN– since the tag
sequence probabilities do not give strong reasons to dis-
prefer the most common tagging ofas(it is tagged as IN
over 80% of the time). However, the model 3W+TAGS,
which uses two right tags and the two surrounding words
in addition, made only 8 errors of this kind, and model
BEST made only 6 errors.

3.3 Unknown word features

Most of the models presented here use a set of un-
known word features basically inherited from (Ratna-
parkhi, 1996), which include using charactern-gram pre-
fixes and suffixes (forn up to 4), and detectors for a few
other prominent features of words, such as capitaliza-
tion, hyphens, and numbers. Doing error analysis on un-
known words on a simple tagging model (with〈t0, t−1〉,
〈t0, t−1, t−2〉, and〈w0, t0〉 features) suggested several ad-
ditional specialized features that can usefully improve

9Thede and Harper (1999) use〈t−1, t0, w0〉 templates in
their “full-second order” HMM, achieving an accuracy of
96.86%. Here we can add the opposite tiling and other features.

Smoothed Features Sentence Token Unk. W.
Accuracy Acc. Acc.

yes 45,532 44.60% 96.10% 86.48%
no 45,532 42.81% 95.88% 83.08%
yes 292,649 54.88% 97.10% 88.20%
no 292,649 48.85% 96.54% 85.20%

Table 5: Accuracy with and without quadratic regularization.

performance. By far the most significant is a crude com-
pany name detector which marks capitalized words fol-
lowed within 3 words by a company name suffix likeCo.
or Inc. This suggests that further gains could be made by
incorporating a good named entity recognizer as a prepro-
cessor to the tagger (reversing the most common order of
processing in pipelined systems!), and is a good example
of something that can only be done when using a condi-
tional model. Minor gains come from a few additional
features: an allcaps feature, and a conjunction feature of
words that are capitalized and have a digit and a dash in
them (such words are normally common nouns, such as
CFC-12 or F/A-18). We also found it advantageous to
use prefixes and suffixes of length up to 10. Together
with the larger templates, these features contribute to our
unknown word accuracies being higher than those of pre-
viously reported taggers.

3.4 Smoothing

With so many features in the model, overtraining is a dis-
tinct possibility when using pure maximum likelihood es-
timation. We avoid this by using a Gaussian prior (aka
quadratic regularization or quadratic penalization) which
resists high feature weights unless they produce great
score gain. The regularized objectiveF is:

F(λ) =
∑

i
log(Pλ(ti |w, t)) +

∑n

j =1

λ2
j

2σ 2

Since we use a conjugate-gradientprocedure to maximize
the data likelihood, the addition of a penalty term is eas-
ily incorporated. Both the total size of the penalty and
the partial derivatives with repsect to eachλ j are triv-
ial to compute; these are added to the log-likelihood and
log-likelihood derivatives, and the penalized optimization
procedes without further modification.

We have not extensively experimented with the value
of σ 2 – which can even be set differently for different pa-
rameters or parameter classes. All the results in this paper
use a constantσ 2 = 0.5, so that the denominator disap-
pears in the above expression. Experiments on a simple
model withσ made an order of magnitude higher or lower
both resulted in worse performance than withσ 2 = 0.5.

Our experiments show that quadratic regularization
is very effective in improving the generalization perfor-
mance of tagging models, mostly by increasing the num-
ber of features which could usefully be incorporated. The



Tagger Support cutoff Accuracy
Collins (2002) 0 96.60%

5 96.72%
Model 3W+TAGS variant 1 96.97%

5 96.93%

Table 6: Effect of changing common word feature cutoffs (fea-
tures with support≤ cutoff are excluded from the model).

number of features used in our complex models – in the
several hundreds of thousands, is extremely high in com-
parison with the data set size and the number of features
used in other machine learning domains. We describe two
sets of experiments aimed at comparing models with and
without regularization. One is for a simple model with a
relatively small number of features, and the other is for a
model with a large number of features.

The usefulness of priors in maximum entropy models
is not new to this work: Gaussian prior smoothing is ad-
vocated in Chen and Rosenfeld (2000), and used in all
the stochastic LFG work (Johnson et al., 1999). How-
ever, until recently, its role and importance have not been
widely understood. For example, Zhang and Oles (2001)
attribute the perceived limited success of logistic regres-
sion for text categorization to a lack of use of regular-
ization. At any rate, regularized conditional loglinear
models have not previously been applied to the prob-
lem of producing a high quality part-of-speech tagger:
Ratnaparkhi (1996), Toutanova and Manning (2000), and
Collins (2002) all present unregularized models. Indeed,
the result of Collins (2002) that including low support
features helps a voted perceptron model but harms a max-
imum entropy model is undone once the weights of the
maximum entropy model are regularized.

Table 5 shows results on the development set from two
pairs of experiments. The first pair of models use com-
mon word templates〈t0, w0〉, 〈t0, t−1, t−2〉 and the same
rare word templates as used in the models in table 2. The
second pair of models use the same features as model
BEST with a higher frequency cutoff of 5 for common
word features.

For the first pair of models, the error reduction from
smoothing is 5.3% overall and 20.1% on unknown words.
For the second pair of models, the error reduction is
even bigger: 16.2% overall after convergence and 5.8% if
looking at the best accuracy achieved by the unsmoothed
model (by stopping training after 75 iterations; see be-
low). The especially large reduction in unknown word er-
ror reflects the fact that, because penalties are effectively
stronger for rare features than frequent ones, the presence
of penalties increases the degree to which more general
cross-word signature features (which apply to unknown
words) are used, relative to word-specific sparse features
(which do not apply to unknown words).

Secondly, use of regularization allows us to incorporate
features with low support into the model while improving

96,3


96,4


96,5


96,6


96,7


96,8


96,9


97


97,1


97,2


0
 100
 200
 300
 400


Training Iterations


A
c
c
u

ra
c
y



No Smoothing


Smoothing


Figure 4: Accuracy by training iterations, with and without
quadratic regularization.

performance. Whereas Ratnaparkhi (1996) used feature
support cutoffs and early stopping to stop overfitting of
the model, and Collins (2002) contends that including
low support features harms a maximum entropy model,
our results show that low support features are useful in a
regularized maximum entropy model. Table 6 contrasts
our results with those from Collins (2002). Since the
models are not the same, the exact numbers are incompa-
rable, but the difference in direction is important: in the
regularized model, performance improves with the inclu-
sion of low support features.

Finally, in addition to being significantly more accu-
rate, smoothed models train much faster than unsmoothed
ones, and do not benefit from early stopping. For ex-
ample, the first smoothed model in Table 5 required 80
conjugate gradient iterations to converge (somewhat ar-
bitrarily defined as a maximum difference of 10−4 in fea-
ture weights between iterations), while its corresponding
unsmoothed model required 335 iterations, thus training
was roughly 4 times slower.10 The second pair of models
required 134 and 370 iterations respectively. As might
be expected, unsmoothed models reach their highest gen-
eralization capacity long before convergence and accu-
racy on an unseen test set drops considerably with fur-
ther iterations. This is not the case for smoothed mod-
els, as their test set accuracy increases almost monoton-
ically with training iterations.11 Figure 4 shows a graph
of training iterations versus accuracy for the second pair
of models on the development set.

4 Conclusion

We have shown how broad feature use, when combined
with appropriate model regularization, produces a supe-
rior level of tagger performance. While experience sug-

10On a 2GHz PC, this is still an important difference: our
largest models require about 25 minutesper iterationto train.

11In practice one notices some wiggling in the curve, but
the trend remains upward even beyond our chosen convergence
point.



gests that the final accuracy number presented here could
be slightly improved upon by classifier combination, it is
worth noting that not only is this tagger better than any
previous single tagger, but it also appears to outperform
Brill and Wu (1998), the best-known combination tagger
(they report an accuracy of 97.16% over the same WSJ
data, but using a larger training set, which should favor
them).

While part-of-speech tagging is now a fairly well-worn
road, and our ability to win performance increases in
this domain is starting to be limited by the rate of er-
rors and inconsistencies in the Penn Treebank training
data, this work also has broader implications. Across
the many NLP problems which involve sequence mod-
els over sparse multinomial distributions, it suggests that
feature-rich models with extensive lexicalization, bidirec-
tional inference, and effective regularization will be key
elements in producing state-of-the-art results.
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