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Abstract

This paper investigates bootstrapping for statis-
tical parsers to reduce their reliance on manu-
ally annotated training data. We consider both
a mostly-unsupervised approaatn-training,

in which two parsers are iteratively re-trained
on each other’s output; and a semi-supervised
approach,corrected co-training in which a
human corrects each parser's output before
adding it to the training data. The selection of
labeled training examples is an integral part of
both frameworks. We propose several selection
methods based on the criteria of minimizing er-
rors in the data and maximizing training util-
ity. We show that incorporating the utility cri-
terion into the selection method results in better
parsers for both frameworks.

Introduction

tences with highraining utility for the human to labél
Sentences with high training utility are those most likely
to improve the parser. The other approach, and the fo-
cus of this paper, iso-training (Sarkar, 2001), a mostly-
unsupervised algorithm that replaces the human by hav-
ing two (or more) parsers label training examples for each
other. The goal is for both parsers to improve by boot-
strapping off each other’s strengths. Because the parsers
may label examples incorrectly, only a subset of their out-
put, chosen by some selection mechanism, is used in or-
der to minimize errors. The choice of selection method
significantly affects the quality of the resulting parsers.
We investigate a novel approach of selecting training
examples for co-training parsers by incorporating the idea
of maximizing training utility from sample selection. The
selection mechanism is integral to both sample selection
and co-training; however, because co-training and sam-
ple selection have different goals, their selection methods
focus on different criteria: co-training typically favors se-
lecting accurately labeled examples, while sample selec-
tion typically favors selecting examples with high train-
ing utility, which often are not sentences that the parsers

Current state-of-the-art statistical parsers (Collins, 199@/ready label accurately. In this work, we investigate se-
Charniak, 2000) are trained on large annotated corpol@ction methods for co-training that explore the trade-off
such as the Penn Treebank (Marcus et al., 1993). Howetween maximizing training utility and minimizing er-
ever, the production of such corpora is expensive an®rs.
labor-intensive. Given this bottleneck, there is consider- Empirical studies were conducted to compare selection
able interest in (partially) automating the annotation promethods under both co-training and a semi-supervised
cess. framework called corrected co-training (Pierce and

To overcome this bottleneck, two approaches from mg=ardie, 2001), in which the selected examples are man-
chine learning have been applied to training parsers. Onilly checked and corrected before being added to the
is sample selectiofiThompson et al., 1999; Hwa, 2000; Yn the context of training parsers, a labeled example is a

Tang etal., 2002), a variant of active learning (Cohn et alsentence with its parse tree. Throughout this paper, we use the
1994), which tries to identify a small set of unlabeled senterm “label” and “parse” interchangeably.



training data. For co-training, we show that the benefit of A andB are two different parsers.

selecting examples with high training utility can offset the| M andM}; are the models oft and B at stepi.
additional errors they contain. For corrected co-training| U is @ large pool of unlabeled sentences.

we show that selecting examples with high training util-| U" i & small cache holding a subset 6@t step.

ity reduces the number of sentences the human annotatorLIS the manually labeled seed data.

Ity ‘4 and L are the labeled training examples férand B
has to check. For both frameworks, we show that seleg- "4t step;.

tion methods that maximize training utility find labeled | Initialize:

examples that result in better trained parsers than those L% « L% « L.

that only minimize error. M3}« Train(A, LY)
MY — Train(B,LY%)
Loop:
2 Co-training U « Add unlabeled sentences frdih

MY and M % parse the sentencesiif and
assign scores to them according to their scoring

Blum and Mitchell (1998) introduced co-training to functionsf4 and fz.

bootstrap two classifiers with differemtewsof the data. Select new parseP, } and{ Pz} according to some
The two classifiers are initially trained on a small amount selection method, which uses the scores

of annotated seed data; then they label unannotated data ~from fa andfz.

for each other in an iterative training process. Blum ang Ly is LYy augmented witH Ps }

Ly is Ly augmented witH Pa}
M‘Z;’l — Train(A, Lf_j‘l)
M — Train(B, L'f)

Mitchell prove that, when the two views atenditionally
independengiven the label, and each view is sufficient
for learning the task, co-training can boost an initial
weak learner using unlabeled data.

The theory underlying co-training has been extended. . i . .
by Dasgupta et al. (2002) to prove that, by maximizingglgure 1: The pseudo-code for the co-training algorithm

their agreement over the unlabeled data, the two learn-

ers make few genera!ization errors (under the same iy Selecting Training Examples

dependence assumption adopted by Blum and Mitchell).

Abney (2002) argues that this assumption is extremely, each iteration, selection is performed in two steps.

strong and typically violated in the data, and he proposesirst, each parser uses sosmring function f, to assess

a weaker independence assumption. the parses it generated for the sentences in the &che.
Goldman and Zhou (2000) show that, through careSecond, the central control uses sose¢ection methad

ful selection of newly labeled examples, co-training carf, to choose a subset of these labeled sentences (based on

work even when the classifiers’ views do not satisfithe scores assigned k) to add to the parsers’ training

the independence assumption. In this paper we investlata. The focus of this paper is on the selection phase, but

gate methods for selecting labeled examples produced by more fully investigate the effect of different selection

two statistical parsers. We do not explicitly maximizemethods we also consider two possible scoring functions.

agreement (along the lines of Abney’s algorithm (2002))

because it is too computationally intensive for training3.1  Scoring functions

parsers. The scoring function attempts to quantify the correctness
The pseudocode for our co-training framework is giverdf the parses produced by each parser. An ideal scor-
in Figure 1. It consists of two different parsers and a cering function would give the true accuracy rates (e.g., F-
tral control that interfaces between the two parsers angtore, the combined labeled precision and recall rates).
the data. At each co-training iteration, a small set of senn practice, accuracy is approximated by some notion
tences is drawn from a large pool of unlabeled sentences$ confidence. For example, one easy-to-compute scor-
and stored in @ache Both parsers then attempt to labeling function measures the conditional probability of the
every sentence in the cache. Next, a subset of the newinost likely) parse. If a high probability is assigned, the
labeled sentences is selected to be added to the traparser is said to be confident in the label it produced.
ing data. The examples added to the training set of one | our experimental studies, we considered the selec-
parser (referred to as tiseudenfare only those produced tion methods’ interaction with two scoring functions: an
by the other parser (referred to as teachej, although  oracle scoring functionp_score that returns the F-score

the methods we use generalize to the case in which t the parse as measured against a gold standard, and a
parsers share a single training set. During selection, one

parser first acts as the teacher and the other as the Student?m our experiments, both parsers use the same scoring func-
and then the roles are reversed. tion.




practical scoring functiorfprob that returns the condi- of the number of errors added to the training set. For ex-

tional probability of the parsé. ample, theSzpoye-nmethod would allow more sentences
_ to be selected ifi was set to a low value (with respect to
3.2 Selection methods the scoring function); however, this is likely to reduce the

Based on the scores assigned by the scoring functio¢curacy rate of the training set.

the selection method chooses a subset of the parser laThe above-nmethod attempts to maximize the accu-
beled sentences that best satisfy some selection criteniacy of the data (assuming that parses with higher scores
One such criterion is the accuracy of the labeled exanare more accurate). Thdifferencemethod attempts to
ples, which may be estimated by the teacher parser’s comaximize training utility: as long as the teacher’s label-
fidence in its labels. However, the examples that thing is more accurate than that of the student, it is cho-
teacher correctly labeled may not be those that the steen, even if its absolute accuracy rate is low. Triter-

dent needs. We hypothesize that the training utility oectionmethod attempts to maximize both: the selected
the examples for the student parser is another importas¢éntences are accurately labeled by the teamtaincor-
criterion. rectly labeled by the student.

Training utility measures the improvement a parser
would make if that sentence were correctly labeled an
added to the training set. Like accuracy, the utility o
an unlabeled sentence is difficult to quantify; therefore,
we approximate it with values that can be computed frofFXPeriments were performed to compare the effect of
features of the sentence. For example, sentences contdfte selection methods on co-training and corrected co-
ing many unknown words may have high training util-training. We consider a selection methds, superior
ity; so might sentences that a parser has trouble parsirf§. @nother,5;, if, when a large unlabeled pool of sen-
Under the co-training framework, we estimate the traintences has been exhausted, the examples select&d by
ing utility of a sentence for the student by comparing théas labeled by the machine, and possibly corrected by the
score the student assigned to its parse (according to filgman) improve the parser more than those selected by
scoring function) against the score the teacher assignéd- All experiments shared the same general setup, as
to its own parse. described below.

To investigate how the selection criteria of utility and
accuracy affect the co-training process, we considereds) Experimental Setup
number of selection methods that satisfy the requirements
of accuracy and training utility to varying degrees. Thd-or two parsers to co-train, they should generate com-
different selection methods are shown below. For eagbarable output but use independent statistical models.
method, a sentence (as labeled by the teacher parserjrisour experiments, we used a lexicalized context free
selected if: grammar parser developed by Collins (1999), and a lex-

icalized Tree Adjoining Grammar parser developed by

e above-n(Sapove-n: the score of the teacher's parsesarkar (2002). Both parsers were initialized with some

(using its scoring functiony n. seed data. Since the goal is to minimize human annotated

 difference(Sgi.p): the score of the teacher’s parsedata, the size of the seed data should be small. In this pa-

is areater than the score of the student's parse kPerwe used a seed set sizd af00 sentences, taken from
sor%e threshold, P Section 2 of the Wall Street Journal (WSJ) Penn Tree-

bank. The total pool of unlabeled sentences was the re-
e intersection(Sjni.n): the score of the teacher’s parsemainder of sections 2-21 (stripped of their annotations),
is in the set of the teachers percent highest- consisting of about 38,000 sentences. The cache size is
scoring labeled sentences, and the score of the st€t at 500 sentences. We have explored using different
dent's parse for the same sentence is in the set 8fttings for the seed set size (Steedman et al., 2003).
the student’'s: percent lowest-scoring labeled sen- The parsers were evaluated on unseen test sentences
tences. (section 23 of the WSJ corpus). Section 0 was used as

. a development set for determining parameters. The eval-
Each selection method hasantrol parametern, that ation metric is the Parseval F-score over labeled con-

determines the number of labeled sentences to add at eagl ,ents: F-score — QE%REéP where LP and LR
.. . . . . . -+ 1
co-training iteration. It also serves as an indirect contral ¢ |3peled precision and recall rate, respectively. Both

A nice property of using conditional probability, parserswereevalugted,butforbrgvny, all'result_sreported
Pr(parse|sentence), as the scoring function is that it here are for the Collins parser, which received higher Par-
normalizes for sentence length. seval scores.

Experiments
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Figure 2: A comparison of selection methods using the oracle scoring fungfogyare controlling for the label
quality of the training data. (a) The average accuracy rates are about 85%. (b) The average accuracy rates (except for
those selected by it.109) are about 95%.

4.2 Experiment 1: Selection Methods and adjusting the selection method'’s control parameter to af-
Co-Training fect two factors: the accuracy rate of the newly labeled

We first examine the effect of the three selection metht-ralnlng datfa,_ano! the r_1umber of labeled sentences aqlded

at each training iteration. A relaxed parameter setting

ods on co-training without correction (i.e., the chosen -
. - ; dds more parses to the training data, but also reduces
machine-labeled training examples may contain errors}). .
e accuracy of the training data.

Because the selection decisions are based on the scoreE, 5 the effect of the th lecti

that the parsers assign to their outputs, the reliability of tlr?uorle comtpa_re_s fe e;hec Io de | f;ee sehec |o(;1

the scoring function has a significant impact on the pelr_ne 0dsS on co-training for the relaxe (left graph) an
e strict (right graph) parameter settings. Each curve in

formance of the selection methods. We evaluate the ei- ) 7 ,
fectiveness of the selection methods using two scorin etwo.graphg charts the improvement |n-the parsers ac-
functions. In Section 4.2.1, each parser assesses its 0 gracy in parsing the test sgntences '(y—aX|s) asitis tralned
put with anoracle scoring function that returns the par-ON more data chqsen by its sglectlon method (X'aX'Sf)'
Trpe curves have different endpoints because the selection

seval F-score of the output (as compared to the huma thods ch giff ‘ ber of N : h
annotated gold-standard). This is an idealized conditioff €'10YS chose a difierent number of senténces from the

that gives us direct control over the error rate of the laSame 38K unlabeled pool. For reference, we also plotted

beled training data. By keeping the error rates constaﬁpe improvement of a fully-supervised parser (i.e., trained

our goal is to determine which selection method is mor@" human-annotated data, ,W'th no selection).
successful in finding sentences with high training utility. F?]r thimore rIEITXt?dI 53“'”911 the gararﬂeters are chosen
In Section 4.2.2 we replace the oracle scoring functioR® that the newly labeled training data have an average

with fprop, Which returns the conditional probability of accuracy rate of about 85%:
the best parse as the score. We compare how the selection
methods’ performances degrade under the realistic con-
dition of basing selection decisions on unreliable parser
output assessment scores.

Sapbove-700dequires the labels to have an F-score

70%. It adds about 330 labeled sentences (out of the

500 sentence cache) with an average accuracy rate

of 85% to the training data per iteration.

4.2.1  Using the oracle scoring function/g-score e Sgifi-109% requires the score difference between the
The goal of this experiment is to evaluate the selection  teacher’s labeling and the student’s labeling to be at

methods using a reliable scoring function. We therefore  |east 10%. It adds about 50 labeled sentences with

use an oracle scoring functiofif_gcore Which guaran- an average accuracy rate of 80%.

tees a perfect assessment of the parser’s output. This,

however, may be too powerful. In practice, we expect e Sjhi_g09s, requires the teacher’'s parse to be in the

even a reliable scoring function to sometimes assign high  top 60% of its output and the student’s parse for the

scores to inaccurate parses. We account for this effect by same sentence to be in its bottom 60%. It adds about



150 labeled sentences with an average accuracy rate
of 85%.

81.2

o
2

®
3
®

T T
above-70% —+—

diff-30% --x--
int-30% --¥--

e

%

Although none rivals the parser trained on human an-
notated data, the selection method that improves the
parser the most iSyif.100, OnNe interpretation is that
the training utility of the examples chosen Bit.1004
outweighs the cost of errors introduced into the training
data. Another interpretation is that the other two selection
methods let in too many sentences containing errors. In
the right graph, we compare the sa$gs.1 0o, With the
other two selection methods using stricter control, such ™%
that the average accuracy rate for these methods is now
about 95%:

Parsing Accuracy on Test Data (Fscore)
*
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Figure 3: A comparison of selection methods using the

* Sabove-90%NOW requires the parses to be at leastgngitional probability scoring functionprop.
90% correct. It adds about 150 labeled sentences

per iteration.

r§O-50 sentences were added to the training data per iter-

¢ Sint-309 NOW requires the teacher’s parse to be i i Th te of the trainina data f
the top 30% of its output and the student's parse fof 0"+ ' '€ average accuracy rate of Ihe training data for

the same sentence in its bottom 30%. It adds abo(fbove-709%Was about 85%, and the rate i-3006
15 labeled sentences. andSint-309, Was about 75%.
As expected, the parser performances of all three selec-

The stricter control onSapoye-909 iMproved the  tion methods usingprop (Shown in Figure 3) are lower
parser's performance, but not enough to overtakihan usingfg.score (S€€ Figure 2). HoweveSgift.300
Sdifi-109 after all the sentences in the unlabeled pooind Sjnt-309 helped the co-training parsers to improve
had been considered, even though the training data with a 5% error reduction (1% absolute difference) over
Sdifi-109 contained many more errorsSini-300, has a the parser trained only on the initial seed data. In con-

faster initial improvemerit closely tracking the progress trast, despite an initial improvement, usisgpove-70%
of the fully-supervised parser. However, the stringent redid not help to improve the parser. In their experiments on
quirement exhausted the unlabeled data pool before traiNP identifiers, Pierce and Cardie (2001) observed a sim-
ing the parser to convergencsint.300, Might continue ilar effect. They hypothesize that co-training does not
to help the parser to improve if it had access to more urgcale well for natural language learning tasks that require
labeled data, which is easier to acquire than annotat@huge amount of training data because too many errors
dat&. are accrued over time. Our experimental results suggest
Comparing the three selection methods under boﬂl‘ilat the use of training Ut”ity in the selection process can
strict and relaxed control settings, the results suggest tha@ke co-training parsers more tolerant to these accumu-
training utility is an important criterion in selecting train- lated errors.

ing examples, even at the cost of reduced accuracy. 43 Experiment 2: Selection Methods and

4.2.2 Using thefprob scoring function Corrected Co-training

To determine the effect of unreliable scores on the sero address the problem of the training data accumulating
lection methods, we replace the oracle scoring functionpo many errors over time, Pierce and Cardie proposed
fE-score With fhrop, Which approximates the accuracya semi-supervised variant of co-training called corrected
of a parse with its conditional probability. Although this co-training, which allows a human annotator to review
is a poor estimate of accuracy (especially when computeghd correct the output of the parsers before adding it to
from a partially trained parser), itis very easy to computethe training data. The main selection criterion in their
The unreliable scores also reduce the correlation betwees-training system is accuracy (approximated by confi-
the selection control parameters and the level of errors iflence). They argue that selecting examples with nearly
the training data. In this experiment, we set the parameorrect labels would require few manual interventions
ters for all three selection methods so that approximatelyom the annotator.

We hypothesize that it may be beneficial to consider

“4A fast improvement rate is not a central concern here, bui1 7 . o . .
it will be more relevant for corrected co-training. the training utility criterion in this framework as well.

5This oracle experiment is bounded by the size of the anndVe perform experiments to determine whether select-
tated portion of the WSJ corpus. ing fewer (and possibly less accurately labeled) exam-
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Figure 4: A comparison of selection methods for corrected co-training ygiRgore (@) in terms of the number of
sentences added to the training data; (b) in terms of the number of manually corrected constituents.

ples with higher training utility would require less effort than Sypgve-goosfor the same level of parsing perfor-
from the annotator. In our experiments, we simulatethance; though both require fewer corrections than the
the interactive sample selection process by revealing theference case of no selection (Figure 4(b)). Because
gold standard. As before, we compare the three selectitime amount of effort spent by the annotator depends on
methods using botlir_score @nd fprop as scoring func-  the number of sentences checked as well as the amount
tions® of corrections made, wheth8if-109 OF Sapove-90%S

more effort reducing may be a matter of the annotator’s
4.3.1 Using the oracle scoring functionfg._gcore preference.

Figure 4 shows the effect of the three selection meth- The selection method that improves the parser at the
ods (using the strict parameter setting) on corrected céastest rate isjy.309, For the same parser performance
training. As a point of reference, we plot the improveleVvel, it selects the fewest number of sentences for a hu-
ment rate for a fully supervised parser (same as the offean to check and requires the human to make the least
in Figure 2). In addition to charting the parser’s perfornumber of corrections. However, as we have seen in the
mance in terms of the number of labeled training sergarlier experiment, very few sentences in the unlabeled
tences (left graph), we also chart the parser’s performan&@0! satisfy its stringent criteria, so it ran out of data be-
in terms of the the number of constituents the machint®re the parser was trained to convergence. At this point
mislabeled (right graph). The pair of graphs indicates th&/e cannot determine wheth€f,309, Might continue to
amount of human effort required: the left graph showgnprove the parser if we used a larger set of unlabeled
the number of sentences the human has to check, and #a.
right graph shows the number of constituents the humaﬁp3 5 Usin : .
has to correct. 3. g thefprob scoring function

Comparing Sapove-90%2and Sgifi-100, WE See that We also considgr the effect of unreliable.scores in the
Siff-109 rains a better parser thahyoye-ggoavhen all corrected po—trammg fram.ework..A comparison petween
the unlabeled sentences have been considered. It also i€ _Selection methods usinfrop, is reported in Figure
proves the parser using a smaller set of training exany: '€ left graph charts parser performance in terms of
ples. Thus, for the same parsing performance, it requird@€ number of sentences the human must check; the right
the human to check fewer sentences tBggoye-gos@nd charts parser performance in terms of the number of con-
the reference case of no selection (Figure 4(a)). On irelituents Fhe humgn must correct. As exp'ected, the unreli-
other hand, because the labeled sentences selected@)e Scoring function degrades the effectiveness of the se-

Sgifi-109, Contain more mistakes than those selected blg;ction methods; however, compared to its unsupervised

Sabove-90% Sdifi-10% 'equires slightly more corrections counterpart (Figure 3), the deg_radatio.n is not as severe.
In fact, Sgifr-309, and Sint-309 Still require fewer train-

5The selection control parameters are the same as the premfq data than the re.ference parser. Moreover, consistent
ous set of experiments, using the strict setting (i.e., Figure 2(bYyith the other experiments, the selection methods that at-
for fE_score tempt to maximize training utility achieve better parsing



performance thaS;pgve-700% Finally, interms of reduc-  The results of this study indicate the need for scor-
ing human effort, the three selection methods require thHag functions that are better estimates of the accuracy of
human to correct comparable amount of parser errors ftine parser’s output than conditional probabilities. Our
the same level of parsing performance, but$gf.3ge, Oracle experiments show that, by using effective selec-

andSjnt-3094 fewer sentences need to be checked. tion methods, the co-training process can improve parser
. . peformance even when the newly labeled parses are
4.3.3 Discussion not completely accurate. This suggests that co-training

Corrected co-training can be seen as a form of activd®ay still be beneficial when using a practical scoring
learning, whose goal is to identify the smallest set of unfunction that might only coarsely distinguish accurate
labeled data with high training utility for the human toParses from inaccurate parses. Further avenues to ex-
label. Active learning can be applied to a single learngplore include the development of selection methods to
(Lewis and Catlett, 1994) and to multiple learners (Fre€fficiently approximate maximizing the objective func-
und et al., 1997; Engelson and Dagan, 1996; Ngai arfipn of parser agreement on unlabeled data, following the
Yarowsky, 2000). In the context of parsing, all previ-Work of Dasgupta et al. (2002) and Abney (2002). Also,
ous work (Thompson et al., 1999; Hwa, 2000; Tang ggo-training might be made more effective if partial parses
al., 2002) has focussed on single learners. Corrected ¢§ere used as training data. Finally, we are conducting ex-
training is the first application of active learning for mul-Periments to compare corrected co-training with other ac-

tiple parsers. We are currently investigating comparisorid/€ learmning methods. We hope these studies will reveal
to the single learner approaches. ways to combine the strengths of co-training and active

Our approach is similar teo-testing(Muslea et al., learning to make better use of unlabeled data.

2002), an active learning technique that uses two clas? K led t
fiers to find contentious examples (i.e., data for which th cknowledagments

classifiers’ labels disagree) for a human to label. There ihis work has been supported, in part, by NSF/DARPA
a subtle but Significan'[ diﬁerence, however, in that theifunded 2002 Human Language Engineering Workshop
goal is to reduce the total number of labeled training exat JHU, EPSRC grant GR/M96889, the Department of
amples whereas we also wish to reduce the number pfefense contract RD-02-5700, and ONR MURI Con-
correctionsmade by the human. Therefore, our selectiofract FCP0O.810548265. We would like to thank Chris
methods must take into account the quality of the parsgallison-Burch, Michael Collins, John Henderson, Lil-

produced by the teacher in addition to how different it§ian Lee, Andrew McCallum, and Fernando Pereira for
parse is from the one produced by the student.ilit&- helpful discussions; to Ric Crabbe, Adam Lopez, the par-

sectionmethod precisely aims at selecting sentences thgkipants of CS775 at Cornell University, and the review-
satisfy both requirements. Exploring different selectioryrs for their comments on this paper.

methods is part of our on-going research effort.
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