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Abstract

We present an application of ambiguity pack-
ing and stochastic disambiguation techniques
for Lexical-Functional Grammars (LFG) to the
domain of sentence condensation. Our system
incorporates a linguistic parser/generator for
LFG, a transfer component for parse reduc-
tion operating on packed parse forests, and a
maximum-entropy model for stochastic output
selection. Furthermore, we propose the use of
standard parser evaluation methods for auto-
matically evaluating the summarization qual-
ity of sentence condensation systems. An ex-
perimental evaluation of summarization qual-
ity shows a close correlation between the au-
tomatic parse-based evaluation and a manual
evaluation of generated strings. Overall sum-
marization quality of the proposed system is
state-of-the-art, with guaranteed grammatical-
ity of the system output due to the use of a
constraint-based parser/generator.

Introduction

|crouch |zaenen }@parc.com

the original document. For example a sentence extraction
system might choose a sentence like:

The UNIX operating system, with implementations
from Apples to Crays, appears to have the advan-
tage.

from a document, which could be condensed as:
UNIX appears to have the advantage.

In the approach of Witbrock and Mittal (1999), selec-
tion and ordering of summary terms is based on bag-
of-words models andhi-grams. Such models may well
produce summaries that are indicative of the original’s
content; howevem-gram models seem to be insufficient
to guarantee grammatical well-formedness of the system
output. To overcome this problem, linguistic parsing and
generation systems are used in the sentence condensation
approaches of Knight and Marcu (2000) and Jing (2000).
In these approaches, decisions about which material to in-
clude/delete in the sentence summaries do not rely on rel-
ative frequency information on words, but rather on prob-
ability models of subtree deletions that are learned from
a corpus of parses for sentences and their summaries.

A related area where linguistic parsing systems
have been applied successfully is sentence simplifica-

Recent work in statistical text summarization has put fortion. Grefenstette (1998) presented a sentence reduction
ward systems that do not merely extract and concateiethod that is based on finite-state technology for lin-
nate sentences, but learn how to generate new sentengesstic markup and selection, and Carroll et al. (1998)
from (Summary, Text) tuples. Depending on the cho- present a sentence simplification system based on linguis-
sen task, such systems either generate single-senteticeparsing. However, these approaches do not employ
“headlines” for multi-sentence text (Witbrock and Mittal, statistical learning techniques to disambiguate simplifi-
1999), or they provide a sentence condensation modutation decisions, but iteratively apply symbolic reduction
designed for combination with sentence extraction sysules, producing a single output for each sentence.

tems (Knight and Marcu, 2000; Jing, 2000). The chal- The goal of our approach is to apply the fine-grained
lenge for such systems is to guarantee the grammaticabols for stochastic Lexical-Functional Grammar (LFG)
ity and summarization quality of the system output, i.eparsing to the task of sentence condensation. The system
the generated sentences need to be syntactically weliresented in this paper is conceptualized as a tool that can
formed and need to retain the most salient information dfe used as a standalone system for sentence condensation



or simplification, or in combination with sentence extrac2.1 Parsing and Transfer
tion for text-summarization beyond the sentence-level. Iy}, 4ig project, a broad-coverage LFG gram-

our system, to produce a condensed version of a SefNar and parser for English was employed (see

tence, the sentence is first parsed using a broad-coverggeor et al. (2002)). The parser produces a set of
LFG grammar for English. The parser produces a S‘?t Wontext-free constituentc{)structures and associated
functional (f)-structures for an ambiguous sentence in functional (f-)structures for each input sentence, repre-
packgd format. It presents these to the transfer COMPQanted in packed form (see Maxwell and Kaplan (1989)).
nent in a single packed data structure that represents gy sentence condensation we are only interested in the

one place the substructures shared by several different iﬁ‘r’edicate-argument structures encodedfistructures.
terpretations. The transfer component operates on thesg, example, Fig. 1 shows afi-structure manually

packed representations and modifies the parser outputdgiacted out of the 4p-structures for the sentence:
produce reduced-structures. The reduceftstructures

are then filtered by the generator to determine syntac- A prototype is ready for testing, and Leary hopes to
tic well-formedness. A stochastic disambiguator using a  set requirements for a full system by the end of the
maximum entropy model is trained on parsed and manu-  Y¢a"

ally disambiguateg--structures for pairs of sentences aqd The transfer component for the sentence condensation

n&/ . . i
stem is based on a component previously used in a ma-
generated from the most probablg redugesitructure chine translation system (see Frank (1999)). It consists
produced by the transfer system is chosen. In contras} an ordered set of rules that rewrite ofiestructure

i 0

o the approaches_ m_ent|oned above, our system guardiis another. Structures are broken down into flat lists

tees the grammaticality of generated strings through th(% N

. . of facts, and rules may add, delete, or change individ

use of a constraint-based generator for LFG which uses It | b ional bli h

a slightly tighter version of the grammar than is used by 2 acts. Rules may be optional or obligatory. In the case

the parser. As shown in an experimental evaluation. su %f optional rules, transfer of a single input structure may
P i P SUEAd to multiple alternate output structures. The transfer

marization quality of our system is high, due to the com- . . .
N T X . . omponent is designed to operate on packed input from
bination of linguistically fine-grained analysis tools and-

. 2 ; : the parser and can also produce packed representations

expressive stochastic disambiguation models. . . .
of the condensation alternatives, using methods adapted
A second goal of our approach is to apply the standarilom parse packing.

evaluation methods for parsing to an automatic evaluation An example rule that (optionally) removes an adjunct
of summarization quality for sentence condensation sy$ shown below:
tems. Insteaq of deplqylng costly 'and non—reusable hL-L'adjunct(x,Y), in-setZy) 2=>
man evaluation, or using automatic evaluation methodgsiete-node(z,r1), rule-trace(rl,del(z,X)).
based on word error rate e-gram match, summariza-
tion quality can be evaluated directly and automatically is rule eliminates an adjund, by deleting the fact that
by matching the reduceftstructures that were producedz is contained within the set of adjunctg, associated
by the system against manually selecfestructures that With the expressioX. The+ before theadjunct(X,Y)
were produced by parsing a set of manually created coffct marks this fact as one that needs to be present for the
densations. Such an evaluation only requires human labgfe to be applied, but which is left unaltered by the rule
for the construction and manual structural disambiguzg@Pplication. Thein-set(Z,Y) fact is deleted. Two
tion of a reusable gold standard test set. Matching again@@W facts are addedelete-node(Z,r1) indicates
the test set can be done automatically and rapidly, arffat the structure rooted at nodeis to be deleted, and
is repeatable for development purposes and system cofile-trace(rl,del(Z,X)) adds a trace of this
parison. As shown in an experimental evaluation, a clogélle to an accumulating history of rule applications. This
correspondence can be established for rankings produc@igtory records the relation of transferrgestructures to
by the f-structure based automatic evaluation and a maiihe originalf-structure and is available for stochastic dis-

ual evaluation of generated strings. ambiguation. .
Rules used in the sentence condensation transfer sys-

tem include the optional deletion of all intersective ad-
juncts (e.g.He slept in the bedcan becoméHe slept,

2 Statistical Sentence Condensation in the but He did not sleepcannot becomeéle did sleepor He

LFG Framework

1The packing feature of the transfer component could not

. . . be employed in these experiments since the current interface

In this section, each of the system components will bg the generator and stochastic disambiguation component still
described in more detalil. requires unpacked representations.



“A prototype is ready for testing , and Leary hopes to set requirements for a full system by the end of the year."

PRED ' be<[93:ready] >[30:prototype]
[PRED ' prototype '
INTYPE [GRAIN count ]
suBJ PRED" a'
SPEC [DET [DET—FORME, DET—TYPEindef}
30|CASE nom NUMsg, PERS3
PRED ' ready <[30:prototype] >
XCOMP |SUBJ  [30:prototype]
93|ADEGREEpositive ., ATYPE predicative
PRED ' for <[14litesf] >
PRED ' test '
IADJUNCT oBJ NTYPE [GRAIN gerund ]
141|CASEacc, NUMsg, PERS3, PFORMor , VTYPE main
125|ADV-TYPEvpadv, PSEMunspecified , PTYPE sem
[TNS-ASP[MOODIndicative ~, PERF-_, PROG-_, TENSEpres]
PASSIVE -, STMT-TYPEdecl , VTYPE copular
73l>s (252:hope] )
PRED ' hope<[235:Leary] , [280:sef >
PRED ' Leary '
suBs GRAIN proper
NTYPEINSEM [PROPERNamd
235|ANIM +, CASEnom NUMsg, PERS 3|
PRED ' set <[235:Leary] , [336:requirement] . [355ifor] >’
SUBJ  [235:Leary]
PRED ' requirement
oBJy INTYPE [GRAIN unspecified ]
336 |CASEacc, NUMpl, PERS 3]
PRED ' for <[391:system] >'
PRED ' system '
PRED full
ADJUNCT{sgs [/—\DEGREEposmve . ADJUNCT-TYPEnominal , ATYPE attributive }}
oBL oBJ NTYPE  [GRAIN unspecified ]
PRED’ a’
SPEC [DET [DET—FORMa, DET-TYPEindef ﬂ
391|CASEacc, NUMsg, PERS3, PFORMfor
355 [PSEMunspecified , PTYPE sem
[PRED ' by<[469:end] >'
xcomp RED ' end’
PRED ' of <[519:year] >
RED ' year '
INTYPE [GRAIN count ]
lADJUNCT,  |oBa PRED’ the *
SPEC E:’ET [DET—FORMhe, DET—TYPEdefﬂ
(ADIUNCT) o8I 519|CASEacc, NUMsg, PERS3, PFORMof
512 |ADJUNCT-TYPEiominal , PSEMunspecified , PTYPE sel
NTYPE  [GRAIN count ]
PRED’ the '
SPEC  |DET [DET—FORMhe . DETfTYPEdefH
469 [CASEacc, NUMsg, PERS3, PFORMby
451 |ADV-TYPEvpadv, PSEMunspecified , PTYPEsem
[TNS-ASP[PERF —_, PROG-_]
280 INF-FORMto , PASSIVE -, VTYPE main
[TNS-ASP [MOODindicative , PERF-_, PROG-_, TENSEpres]
252 |PASSIVE -, STMT-TYPEdecl , VTYPE main
197 |[COORDF_, COORD-FORNhd, COORD-LEVEROOT

Figure 1:F-structure for non-condensed sentence.

slept), the optional deletion of parts of coordinate struc-
tures (e.g.They laughed and giggledan becomd&hey
giggled), and certain simplifications (e.f.is clear that
the earth is roundcan becomé& he earth is roundbut

"A prototype is ready for testing."

It seems that he is asleegannot becomele is asleep.
For example, one possible post-transfer output of the sen-
tence in Fig. 1 is shown in Fig. 2.

2.2 Stochastic Selection and Generation

The transfer rules are independent of the grammar and are
not constrained to preserve the grammaticality or well-

formedness of the reduced f-structures. Some of the re-
duced structures therefore may not correspond to any En-
glish sentence, and these are eliminated from future con-

PRED

ISUBJ

' be<[93:ready] >[30:prototype]
PRED ' prototype
NTYPE [GRAIN count ]

PRED’ a’
SPEC [DET BDET*FORMi, DET-TYPEindef ﬂ
30/CASEnom NUMsg, PERS3

XCOMP |SUBJ  [30:prototype]

IADJUNCT: OBJ

PRED ' ready <[30:prototype] >
93|ADEGRERositive , ATYPE predicative

PRED ' for <[141itest] >
PRED ' test *
INTYPE [GRAIN gerund ]
141|CASEacc, NUMsg, PERS3, PFORMfor ,
125 |[ADV-TYPEvpadv, PSEMunspecified , PTYPEsem

TNS-ASPMOODndicative , PERF-_, PROG-_, TENSEpres]
PASSIVE -, STMT-TYPEdecl , VTYPE copular

sideration by using the generator as a filter. The filter- ™
ing is done by running each transferred structure through
the generator to see whether it produces an output string.

If it does not, the structure is rejected. For example, for
the f-structure in Fig. 1, the transfer system proposed
32 possible reductions. After filtering these structures by
generation, 16 reduceftstructures comprising possible

VTYPE main}

Figure 2: Gold standard-structure reduction.




condensations of the input sentence survive. The 16 weknization routine:

formed structures correspond to the following strings that

were out i - - e Fls)
putted by the generator (note that a single struc L) = log

ture may correspond to more than one string and a given sy Zses(yj) eXF(s)’

string may correspond to more than one structure):

) At the core of the exponential probability model is a vec-
A prototype is ready. tor of property-functionsf to be weighted by parameters
A prototype is ready for testing. property o 9 yp .
Leary hopes to set requirements for a full system. A. For the application of sentence condensation, 13,000

A prototype is ready and Leary hopes to set require- property-functions of roughly three categories were used:
ments for a full system.

A prototype is ready for testing and Leary hopes to e Property-functions indicating attributes, attribute-

ig;rreq#(i)"semetgtsé?r :qu{'r'e?]/Ztnetm-for D full svstem b combinations, or attribute-value pairs fiistructure
y s to set requi S ull sys y - .
the end of the year. attributes £ 1,000 properties)

A prototype is ready and Leary hopes to set require- ¢ Property-functions indicating co-occurences of verb

ments for a full system by the end of the year. i ati .
A prototype is ready for testing and Leary hopes to Ztr(taig]:) and subcategorization framesl,000 prop

set requirements for a full system by the end of the
year. e Property-functions indicating transfer rules used to

arrive at the reducegd- structures4 60 properties).
In order to guarantee non-empty output for the over-

all condensation system, the generation component hasa trained probability model is applied to unseen data
to be fault-tolerant in cases where the transfer system ogy selecting the most probable transferrggtructure,
erates on a fragmentary parse, or produces non-¥alid yielding the string generated from the selected struc-
structures from valid |npuf'strUCtUreS. Robustness teCh-ture asthe target condensation. The transfépeﬂ'ucture

niques currently applied to the generator include insertiophosen for our current example is shown in Fig. 3.
and deletion of features in order to match invalid transfer-

output to the grammar rules and lexicon. Furthermorea prototype is ready.”
repair mechanisms such as repairing subject-verb agree-

i [PRED " be<[93:ready] >[30:prototype]
ment from the subject’s number value are employed. As RED ' prototype '
a last resort, a fall-back mechanism to the original un- NTYPE [GRAIN count ]
condensed-structure is used. These techniques guaran-  [*®  |spec [DET [EP)EEE’F’S’RW DET-TYPEindef ]]
tee that a non-empty set of reducgdtructures yielding 30|CASEnom NUMsg, PERSS3
grammatical strings in generation is passed on to the next RED  ready <[30:prototype] >’
system component. In case of fragmentary input to the XCOMP93EBE&RE[SF?(;EL?V“;WP?] ATYPE predicative ]
transfer component, grammaticaliy of the output is guar- TNS-ASP[MOODindicative , PERF-_, PROG-_, TENSEpres]
anteed for the separate fragments. In other words, strings 73[PASSIVE = STMT-TvPEdecl , VTYPE copular ]

generated from a reduced fragmentgrgtructure will be

as grammatical as the string that was fed into the parsing Figure 3: Transferred-structure chosen by system.
component.
After filtering by the generator, the remaining This structure was produced by the following set of

structures were weighted by the stochastic disambigugansfer rules, wherear refers to the indices in the rep-
tion component. Slmllgr to stochastic dlsamblguat.lon fofesentation of thef-structure:
constraint-based parsing (Johnson et al., 1999; Riezler et
al., 2002), an exponential (a.k.a. log-linear or maximum- "race(r13,keep(var(98),of)),
babili del f d . rtrace(rl61,keep(system,var(85))),

e_ntropy) probability model on transferred structures is €S+, e (11, del(var(91),set, by)),
timated from a set of training data. The data for estima-rtrace(r1,del(var(53),be,for)),
tion consists of pairs of original sentencgsand gold-  rtrace(r20,equal(var(1),and)),
standard summarizeg-structuress which were manu-  rtrace(r20,equal(var(2),and)),
ally selected from the transfer output for each sentencefrace(r2.del(var(1),hope,and)),

g . rtrace(r22,delb(var(0),and)).
For training datd (s, y;)}7~, and a set of possible sum-
marized structureS(y) for each sentencg the objective These rules delete the adjunct of the first conjufiat (
was to maximize a discriminative criterion, namely theesting, the adjunct of the second conjunéty(the end
conditional likelihoodL () of a summarized-structure of the yea}, the rest of the second conjunte@ry hopes
given the sentence. Optimization of the function showo set requirements for a full systgrand the conjunction
below was performed using a conjugate gradient optitself (and).



3 A Method for Automatic Evaluation of det_type(a:7, indef),

i i adjunct(be:0, for:12),
Sentence Summarization obi(for-12. test14)

Evaluation of quality of sentence condensation systems, aggr—n%%fl({%“fﬁsvgi%‘ga)
and of text summarization and simplificat_ion_sy_stems in Stype(for;12: sempantic), ‘
general, has mostly been conducted as intrinsic evalua- num(test:14, sg),

tion by human experts. Recently, Papineni et al.'s (2001) pers(test:14, 3),
proposal for an automatic evaluation of translation sys- Pform(test:14, for),

tems by measuring-gram matches of the system out- ViyPe(test:14, main).

put against reference examples has become popular fgitching thesef-structures against each other corre-
evaluation of summarization SyStemS. In addition, an al.g‘ponds to a precision Of 1' reca” of 61, and F-score Of
tomatic evaluation method based on context-free deletiong

decisions has been proposed by Jing (2000). However, fortpe fact that our method does not rely on a compar-
summarization systems that employ a linguistic parser son, of the characteristics of surface strings is a clear
an integral system component, it is possible to employqyantage. Such comparisons are bad at handling exam-
the standard evaluation techniques for parsing directlyjes which are similar in meaning but differ in word or-
to an evaluation of summarization quality. A parsing-er or vary structurally, such as in passivization or nom-
based evaluation allows us to measure the semantic g3ajization. Our method handles such examples straight-
pects of summarization quality in terms of grammaticaltoryardly. Fig. 4 shows two serialization variants of the
functional information_ provided by deep parsers. Furthefsgndensed sentence of Fig. 2. Thetructures for these
more, human expertise was necessary only for the Crgzamples are similar to thg-structure assigned to the
ation of condensed versions of sentences, and for t'@%ld standard condensation shown in Fig. 2 (except for
manual disambiguation of parses assigned to those sgReg relationsADJUNT-TYPE:parenthetical ver-
tences. Given such a gold standard, summarization qU%'usADV-TYPE:vpadv versusADV-TYPE:sadv ). An

ity of a system can be evaluated automatically and rsgjuation of summarization quality that is based on
peatedly by matching the structures of the system oufatching f-structures will treat these examples equally,
put against the gold standard structures. The standafghereas an evaluation based on string matching will yield

metrics of precision recall, and F-score from statisti-  gifferent quality scores for different serializations.
cal parsing can be used as evaluation metrics for mea-

suring matching qualityPrecisionmeasures the number

"A prototype, for testing, is ready."

of matching structural items in the parses of the sys- PRED - bezziready]  S[E0prototype]
tem output and the gold standard, out of all structural PRED ° prototype
. . INTYPE [GRAIN count ]
items in the system output’'s parsegcall measures the suBJ PRED' o

ber of h fall i in the gold spec. [0ET [BRED Seum, oEr-rvrEindet
number of matches, out of a |terr.1$. in the gold stan- solcASERm Nowes. penss
dard’s parseF-score balances precision and recall as PRED ° ready <[30:prototype] >

XCOMP

(2 x precision x recall) /(precision + recall). 221
For the sentence condensation system presented above,

the structural items to be matched consist refa- ot e 3, PEORMIor . VTYPE main

tion(predicate, argumentyiples. For example, the gold- 73|ADIUNCT-TYPRoarenthetical , PSEMunspecified , PTYPE se

TNS-ASP [MOODndicative , PERF-_, PROG-_, TENSEpres]

standardf-structure of Fig. 2 corresponds to 23 depen- o |passive -, sTMT-TyPEdec, VTYPE copular
dency relations, the first 14 of which are shared with the ror tesing, a prototype is ready.”

SUBJ  [30:prototype]
IADEGRERpositive , ATYPE predicative

PRED ' for <[117:test] >
PRED ’test ’
IADJUNCT

reducedf-structure chosen by the stochastic disambigua- PRED ' be<[177:ready] >{131:prototype]
. . PRED ' prototype '’
tion SyStem NTYPE [GRAIN count ]
suBJ a
tense(be:0, pres), SPEC [DET EEEPFoaRNa, DET-TYPEindef ﬂ
mood(be:0, indicative), 131 |CASEnom NUMsg, PERS3
subj(be:0, prototype:2), xcome [S0B3 _ (iSTproonpe o
XCOmp(be:O ready:l) 177 |ADEGREBpositive , ATYPE predicative
stmt_type(be:0, declarative), e el
vtype(be:0, copular), IADJUNCT | 0BJ  |NTYPE [GRAIN gerund] }
; . . 27|CASEacc, NUMsg, PERS3, PFORMor , VTYPE mai
SUbJ(ready'l’ prOtOtypez)’ 11 ADV*TYPEsad?/C,C PSEMuSr?specified . PTYPEgrem e
adegree(ready:1, positive), TNS-ASP [MOODindicative , PERF-_, PROG-_, TENSEpres]

[}

atype(ready:1, predicative), 3[PASSIVE -, STMT-TYPEdec! , VTYPE copular
det(prototype:2, a:7),

num(prototype:2, sg), ) )
pers(prototype:2, 3), Figure 4: F-structure for word-order variants of gold

det_form(a:7, a), standard condensation.



In the next section, we present experimental result®ianually created gold-standard condensations extracted
of an automatic evaluation of the sentence condensatiémom the Ziff-Davis abstracts. The judges were asked
system described above. These results show a close ctrjudge summarization quality on a scale of increasing
respondence between automatically produced evaluatiguality from 1 to 5 by assessing how well the generated
results and human judgments on the quality of generatetrings retained the most salient information of the orig-

condensed strings. inal uncondensed sentences. Grammaticality of the sys-
] ) tem output is optimal and not reported separately. Results
4 Experimental Evaluation for both evaluations are reported for two test corpora of

r%?.’nexamples eachiestset Icontains the sentences and
data for the experiments of Knight and Marcu (zooo)condensatlons used to evaluate the system described in

which were provided to us by Daniel Marcu. These da’[gnight and Marcu (2000)Testset IIC(_)nsists of another
consist of pairs of sentences and their condensed versid@&domly extracted 32 sentence pairs from the same do-
that have been extracted from computer-news articles afiifin: Prepared in the same way.
abstracts of the Ziff-Davis corpus. Out of these data, we Fig. 5 shows evaluation results for a sentence conden-
parsed and manually disambiguated 500 sentence paifgtion run that uses manually selectedtructures for
These included a set of 32 sentence pairs that were uség original sentences as input to the transfer component.
for testing purposes in Knight and Marcu (2000). In or-These results demonstrate how the condenstation system
der to control for the small corpus size of this test set, weerforms under the optimal circumstances when the parse
randomly extracted an additional 32 sentence pairs frogh0sen as input is the best available. Fig. 6 applies the
the 500 parsed and disambiguated examples as a sec§aghe evaluation data and metrics to a sentence conden-
test set. The rest of the 436 randomly selected senteng@tion experiment that performs transfer from packed
pairs were used to create training data. For the purpo§guctures, i.e. transfer is performed on all parses for an
of discriminative training, a gold-standard of transferredmbiguous sentence instead of on a single manually se-
f-structures was created from the transfer output and th@cted parse. Alternatively, a single input parse could be
manually selected-structures for the condensed stringsselected by stochastic models such as the one described
This was done automatically by selecting for each exanit Riezler et al. (2002). A separate phase of parse disam-
ple the transferred-structure that best matched tifie  biguation, and perhaps the effects of any errors that this
structure annotated for the condensed string. might introduce, can be avoided by transferring from all
In the automatic evaluation gfstructure match, three parses for an ambiguous sentence. This approach is com-
different system variants were compared. Firstly, ranPutationally feasible, however, only if condensation can
domly chosen transferregf-structures were matched be carried all the way through without unpacking. Our
against the manually selectgdstructures for the man- technology is not yet able to do this (in particular, as men-
ually created condensations. This evaluation constituté®ned earlier, we have not yet implemented a method for
a lower bound on the F-score against the given goldtochastic disambiguation on packgdtructures). How-
standard. Secondly, matching results for transferfed €ver, we conducted a preliminary assessment of this pos-
structures yielding the maximal F-score against the gol8ibility by unpacking and enumerating the transferyed
standard were recorded, giving an upper bound for thructures. For many sentences this resulted in more can-
system. Thirdly, the performance of the stochastic modélidates than we could operate on in the available time
within the range of the lower bound and upper bound wagnd space, and in those cases we arbitrarily set a cut-off
measured by recording the F-score for fhstructure that 0N the number of transferrefistructures we considered.
received highest probability according to the learned disSince transferred-structures are produced according to
tribution on transferred structures. the number of rules applied to transfer them, in this setup
In order to make our results comparable to the rethe transfer system produces smalfestructures first,
sults of Knight and Marcu (2000) and also to investigat@&nd cuts off less condensed output. The result of this ex-
the correspondence between the automatic evaluation ap@fiment, shown in Fig. 6, thus provides a conservative
human judgments, a manual evaluation of the strings gefistimate on the quality of the condensations we might
erated by these system variants was conducted. Two hachieve with a full-packing implementation.
man judges were presented with the uncondensed sur-In Figs. 5 and 6, the first row shows F-scores for a
face string and five condensed strings that were displayedndom selection, the system selection, and the best pos-
in random order for each test example. The five corsible selection from the transfer output against the gold
densed strings presented to the human judges containgdndard. The second rows show summarization quality
(1) strings generated from three randomly selecfed scores for generations from a random selection and the
structures, (2) the strings generated from fh&tructures system selection, and for the human-written condensa-
which were selected by the stochastic model, and (3) tht®on. The third rows report compression ratios. As can

The sentences and condensations we used are taken f



lower system upper lower system upper
testset | bound se)I/ection ngnd testset | bound se)I/ection ngnd
F-score 58% 67.3% 77.2% F-score 55.2% 63.0% 72.0%
sum-quality 2.0 35 4.4 sum-quality 21 3.4 4.4
compr. 50.2% 60.4% 54.9% compres. 46.5% 61.6% 54.9%

lower system upper lower system upper
testset I bound se)I/ection ngnd testset I bound se)I/ection ngnd
F-score 59% 65.4% 83.3% F-score 54% 59.7% 76.0%
sum-quality 21 34 4.6 sum-quality 1.9 3.3 4.6
compr. 52.7% 65.9% 56.8% compres. 50.9% 60.0% 56.8%

Figure 5: Sentence condensation from manually selectédgure 6: Sentence condensation from packgd
f-structure for original uncondensed sentences. structures for original uncondensed sentences.

be seen from these tables, the ranking of system variarfigality of the system output is state-of-the-art, and gram-
produced by the automatic and manual evaluation comraticality of condensed strings is guaranteed. Robustness
firm a close correlation between the automatic evaluatidiechniques for parsing and generation guarantee that the
and human judgments. A comparison of evaluation resystem produces non-empty output for unseen input.
sults across colums, i.e. across selection variants, showsOverall, the summarization quality achieved by
that a stochastic selection of transferrgdtructures is our system is similar to the results reported in
indeed important. Even if alf-structures are transferred Knight and Marcu (2000). This might seem disappoint-
from the same linguistically rich source, and all genering considering the more complex machinery employed
ated strings are grammatical, a reduction in error rate @i our approach. It has to be noted that these re-
around 50% relative to the upper bound can be achievetllts are partially due to the somewhat artificial na-
by stochastic selection. In contrast, a comparison bédre of the data that were used in the experiments of
tween transfer runs with and without perfect disambigua<night and Marcu (2000) and therefore in our experi-
tion of the original string shows a decrease of about 5% iments: The human-written condensations in the data set
F-score, and of only .1 points for summarization qualityextracted from the Ziff-Davis corpus show the same
when transferring from packed parses instead of from thaord order as the original sentences and do not exhibit
manually selected parse. This shows that it is more in&ny structural modification that are common in human-
portant to learn what a good transferrgdtructure looks written summaries. For example, humans tend to make
like than to have a perfegt-structure to transfer from. use of structural modifications such as nominalization
The compression rates associated with the systems tl@std verb alternations such as active/passive or transi-
used stochastic selection is around 60%, which is accepive/intransitive alternations in condensation. Such alter-
able, but not as aggressive as human-written condens#tions can easily be expressed in our transfer-based
tions. Note that in our current implementation, in some@pproach, whereas they impose severe problems to ap-
cases the transfer component was unable to operate pmaches that operate only on phrase structure trees. In
the packed representation. In those cases a parse was dhe- given test set, however, the condensation task re-
sen at random as a conservative estimate of transfer frostricted to the operation of deletion. A creation of addi-
all parses. This fall-back mechanism explains the drop itional condensations for the original sentences other than
F-score for the upper bound in comparing Figs. 5 and 6the condensed versions extracted from the human-written
abstracts would provide a more diverse test set, and fur-
5 Conclusion thermore make it possible to match each system output
against any number of independent human-written con-
We presented an approach to sentence condensatignsations of the same original sentence. This idea of
that employs linguistically rich LFG grammars in acomputing matching scores to multiple reference exam-
parsing/generation-based stochastic sentence conder@as was proposed by Alshawi et al. (1998), and later by
tion system. Fine-grained dependency structures are oltapineni et al. (2001) for evaluation of machine transla-
put by the parser, then modified by a highly expressivéon systems. Similar to these proposals, an evaluation
transfer system, and filtered by a constraint-based gen@f-condensation quality could consider multiple reference
ator. Stochastic selection of generation-filtered reducezbndensations and record the matching score against the
structures uses a powerful Maximum-Entropy modelmost similar example.
As shown in an experimental evaluation, summarization Another desideratum for future work is to carry



condensation all the way through without unpackinglohn Maxwell and Ronald M. Kaplan. 1989. An
at any stage. Work on employing packing techniques overview of disjunctive constraint satisfaction. fro-
not only for parsing and transfer, but also for genera- ceedings of the International Workshop on Parsing
tion and stochastic selection is currently underway (see TeéchnologiesPittsburgh, PA.

Geman and Johnson (2002)). This will eventually lead tQ;chore Papineni, Salim Roukos, Todd Ward, and Wei-

a system whose components work on packed represen-jing zhyu. 2001. Bleu: a method for automatic evalua-

tations of all orn-best solutions, but completely avoid tjon of machine translation. Technical Report IBM Re-

costly unpacking of representations. search Division Technical Report, RC22176 (W0190-
022), Yorktown Heights, N.Y.
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