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Abstract

We propose a new phrase-based translation
model and decoding algorithm that enables
us to evaluate and compare several, previ-
ously proposed phrase-based translation mod-
els. Within our framework, we carry out a
large number of experiments to understand bet-
ter and explain why phrase-based models out-
perform word-based models. Our empirical re-
sults, which hold for all examined language
pairs, suggest that the highest levels of perfor-
mance can be obtained through relatively sim-
ple means: heuristic learning of phrase trans-
lations from word-based alignments and lexi-
cal weighting of phrase translations. Surpris-
ingly, learning phrases longer than three words
and learning phrases from high-accuracy word-
level alignment models does not have a strong
impact on performance. Learning only syntac-
tically motivated phrases degrades the perfor-
mance of our systems.

1 Introduction

Various researchers have improved the quality of statis-
tical machine translation system with the use of phrase
translation. Och et al. [1999]’s alignment template model
can be reframed as a phrase translation system; Yamada
and Knight [2001] use phrase translation in a syntax-
based translation system; Marcu and Wong [2002] in-
troduced a joint-probability model for phrase translation;
and the CMU and IBM word-based statistical machine
translation systems! are augmented with phrase transla-
tion capability.

Phrase translation clearly helps, as we will also show
with the experiments in this paper. But what is the best
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method to extract phrase translation pairs? In order to
investigate this question, we created a uniform evaluation
framework that enables the comparison of different ways
to build a phrase translation table.

Our experiments show that high levels of performance
can be achieved with fairly simple means. In fact,
for most of the steps necessary to build a phrase-based
system, tools and resources are freely available for re-
searchers in the field. More sophisticated approaches that
make use of syntax do not lead to better performance. In
fact, imposing syntactic restrictions on phrases, as used in
recently proposed syntax-based translation models [Ya-
mada and Knight, 2001], proves to be harmful. Our ex-
periments also show, that small phrases of up to three
words are sufficient for obtaining high levels of accuracy.

Performance differs widely depending on the methods
used to build the phrase translation table. We found ex-
traction heuristics based on word alignments to be better
than a more principled phrase-based alignment method.
However, what constitutes the best heuristic differs from
language pair to language pair and varies with the size of
the training corpus.

2 Evaluation Framework

In order to compare different phrase extraction methods,
we designed a uniform framework. We present a phrase
translation model and decoder that works with any phrase
translation table.

2.1 Mode

The phrase translation model is based on the noisy chan-
nel model. We use Bayes rule to reformulate the transla-
tion probability for translating a foreign sentence f into
English e as

argmax,p(e|f) = argmax p(f|e)p(e)

This allows for a language model p(e) and a separate
translation model p(f|e).



During decoding, the foreign input sentence f is seg-
mented into a sequence of I phrases f{. We assume a
uniform probability distribution over all possible segmen-
tations.

Each foreign phrase f; in f{ is translated into an En-
glish phrase ;. The English phrases may be reordered.
Phrase translation is modeled by a probability distribution
#(f:|€;). Recall that due to the Bayes rule, the translation
direction is inverted from a modeling standpoint.

Reordering of the English output phrases is modeled
by a relative distortion probability distribution d(a; —
bi—1), where a; denotes the start position of the foreign
phrase that was translated into the ith English phrase, and
b;—1 denotes the end position of the foreign phrase trans-
lated into the (i — 1)th English phrase.

In all our experiments, the distortion probability distri-
bution d(-) is trained using a joint probability model (see
Section 3.3). Alternatively, we could also use a simpler
distortion model d(a; — bi—1) = al*~t~1—11 with an
appropriate value for the parameter a.

In order to calibrate the output length, we introduce a
factor w for each generated English word in addition to
the trigram language model py 1. This is a simple means
to optimize performance. Usually, this factor is larger
than 1, biasing longer output.

In summary, the best English output sentence epegt
given a foreign input sentence f according to our model
is

epest = argmaxp(e(f)

= argmax p(fle)p y (e)w' "IN

where p(f|e) is decomposed into
I
p(fllel) = [] ¢(Files)d(a; — bi1)
i=1

For all our experiments we use the same training data,
trigram language model [Seymore and Rosenfeld, 1997],
and a specialized decoder.

2.2 Decoder

The phrase-based decoder we developed for purpose of
comparing different phrase-based translation models em-
ploys a beam search algorithm, similar to the one by Je-
linek [1998]. The English output sentence is generated
left to right in form of partial translations (or hypothe-
ses).

We start with an initial empty hypothesis. A new hy-
pothesis is expanded from an existing hypothesis by the
translation of a phrase as follows: A sequence of un-
translated foreign words and a possible English phrase
translation for them is selected. The English phrase is at-
tached to the existing English output sequence. The for-
eign words are marked as translated and the probability
cost of the hypothesis is updated.

The cheapest (highest probability) final hypothesis
with no untranslated foreign words is the output of the
search.

The hypotheses are stored in stacks. The stack s,
contains all hypotheses in which m foreign words have
been translated. We recombine search hypotheses as done
by Och et al. [2001]. While this reduces the number of
hypotheses stored in each stack somewhat, stack size is
exponential with respect to input sentence length. This
makes an exhaustive search impractical.

Thus, we prune out weak hypotheses based on the cost
they incurred so far and a future cost estimate. For each
stack, we only keep a beam of the best n hypotheses.
Since the future cost estimate is not perfect, this leads to
search errors. Our future cost estimate takes into account
the estimated phrase translation cost, but not the expected
distortion cost.

We compute this estimate as follows: For each possi-
ble phrase translation anywhere in the sentence (we call
it a translation option), we multiply its phrase translation
probability with the language model probability for the
generated English phrase. As language model probabil-
ity we use the unigram probability for the first word, the
bigram probability for the second, and the trigram proba-
bility for all following words.

Given the costs for the translation options, we can com-
pute the estimated future cost for any sequence of con-
secutive foreign words by dynamic programming. Note
that this is only possible, since we ignore distortion costs.
Since there are only n(n + 1)/2 such sequences for a
foreign input sentence of length n, we can pre-compute
these cost estimates beforehand and store them in a table.

During translation, future costs for uncovered foreign
words can be quickly computed by consulting this table.
If a hypothesis has broken sequences of untranslated for-
eign words, we look up the cost for each sequence and
take the product of their costs.

The beam size, e.g. the maximum number of hypothe-
ses in each stack, is fixed to a certain number. The
number of translation options is linear with the sentence
length. Hence, the time complexity of the beam search is
quadratic with sentence length, and linear with the beam
size.

Since the beam size limits the search space and there-
fore search quality, we have to find the proper trade-off
between speed (low beam size) and performance (high
beam size). For our experiments, a beam size of only
100 proved to be sufficient. With larger beams sizes,
only few sentences are translated differently. With our
decoder, translating 1755 sentence of length 5-15 words
takes about 10 minutes on a 2 GHz Linux system. In
other words, we achieved fast decoding, while ensuring
high quality.



3 Methodsfor Learning Phrase
Trandlation

We carried out experiments to compare the performance
of three different methods to build phrase translation
probability tables. We also investigate a number of varia-
tions. We report most experimental results on a German-
English translation task, since we had sufficient resources
available for this language pair. We confirm the major
points in experiments on additional language pairs.

As the first method, we learn phrase alignments from
a corpus that has been word-aligned by a training toolkit
for a word-based translation model: the Giza++ [Och and
Ney, 2000] toolkit for the IBM models [Brown et al.,
1993]. The extraction heuristic is similar to the one used
in the alignment template work by Och et al. [1999].

A number of researchers have proposed to focus on
the translation of phrases that have a linguistic motiva-
tion [Yamada and Knight, 2001; Imamura, 2002]. They
only consider word sequences as phrases, if they are con-
stituents, i.e. subtrees in a syntax tree (such as a noun
phrase). To identify these, we use a word-aligned corpus
annotated with parse trees generated by statistical syntac-
tic parsers [Collins, 1997; Schmidt and Schulte im Walde,
2000].

The third method for comparison is the joint phrase
model proposed by Marcu and Wong [2002]. This model
learns directly a phrase-level alignment of the parallel
corpus.

3.1 Phrasesfrom Word-Based Alignments

The Giza++ toolkit was developed to train word-based
translation models from parallel corpora. As a by-
product, it generates word alignments for this data. We
improve this alignment with a number of heuristics,
which are described in more detail in Section 4.5.

We collect all aligned phrase pairs that are consistent
with the word alignment: The words in a legal phrase pair
are only aligned to each other, and not to words outside
[Ochetal., 1999].

Given the collected phrase pairs, we estimate the
phrase translation probability distribution by relative fre-
quency:

Ao count(f,e)

(/1) = > 7 count(f, &)
No smoothing is performed.

3.2 Syntactic Phrases

If we collect all phrase pairs that are consistent with word
alignments, this includes many non-intuitive phrases. For
instance, translations for phrases such as “house the”
may be learned. Intuitively we would be inclined to be-
lieve that such phrases do not help: Restricting possible

phrases to syntactically motivated phrases could filter out
such non-intuitive pairs.

Another motivation to evaluate the performance of
a phrase translation model that contains only syntactic
phrases comes from recent efforts to built syntactic trans-
lation models [Yamada and Knight, 2001; Wu, 1997]. In
these models, reordering of words is restricted to reorder-
ing of constituents in well-formed syntactic parse trees.
When augmenting such models with phrase translations,
typically only translation of phrases that span entire syn-
tactic subtrees is possible. It is important to know if this
is a helpful or harmful restriction.

Consistent with Imamura [2002], we define a syntac-
tic phrase as a word sequence that is covered by a single
subtree in a syntactic parse tree.

We collect syntactic phrase pairs as follows: We word-
align a parallel corpus, as described in Section 3.1. We
then parse both sides of the corpus with syntactic parsers
[Collins, 1997; Schmidt and Schulte im Walde, 2000].
For all phrase pairs that are consistent with the word
alignment, we additionally check if both phrases are sub-
trees in the parse trees. Only these phrases are included
in the model.

Hence, the syntactically motivated phrase pairs learned
are a subset of the phrase pairs learned without knowl-
edge of syntax (Section 3.1).

As in Section 3.1, the phrase translation probability
distribution is estimated by relative frequency.

3.3 Phrasesfrom Phrase Alignments

Marcu and Wong [2002] proposed a translation model
that assumes that lexical correspondences can be estab-
lished not only at the word level, but at the phrase level
as well. To learn such correspondences, they introduced a
phrase-based joint probability model that simultaneously
generates both the Source and Target sentences in a paral-
lel corpus. Expectation Maximization learning in Marcu
and Wong’s framework yields both (i) a joint probabil-
ity distribution ¢(&, ), which reflects the probability that
phrases & and f are translation equivalents; (ii) and a joint
distribution d(i, j), which reflects the probability that a
phrase at position i is translated into a phrase at position
j. To use this model in the context of our framework, we
simply marginalize to conditional probabilities the joint
probabilities estimated by Marcu and Wong [2002]. Note
that this approach is consistent with the approach taken
by Marcu and Wong themselves, who use conditional
models during decoding.



Training corpus size
Method | — ok 20k T 40k [ 8Ok | 160K | 320K
AP 84k | 176k | 370k | 736k | 1536k | 3152k
Joint 125k | 220k | 400k | 707k | 1254k | 2214k
Syn 19k 24k 67k | 105k 217k 373k

Table 1: Size of the phrase translation table in terms of
distinct phrase pairs (maximum phrase length 4)

4 Experiments

We used the freely available Europarl corpus 2 to carry
out experiments. This corpus contains over 20 million
words in each of the eleven official languages of the Eu-
ropean Union, covering the proceedings of the European
Parliament 1996-2001. 1755 sentences of length 5-15
were reserved for testing.

In all experiments in Section 4.1-4.6 we translate from
German to English. We measure performance using the
BLEU score [Papineni et al., 2001], which estimates the
accuracy of translation output with respect to a reference
translation.

4.1 Comparison of Core Methods

First, we compared the performance of the three methods
for phrase extraction head-on, using the same decoder
(Section 2) and the same trigram language model. Fig-
ure 1 displays the results.

In direct comparison, learning all phrases consistent
with the word alignment (AP) is superior to the joint
model (Joint), although not by much. The restriction to
only syntactic phrases (Syn) is harmful. We also included
in the figure the performance of an IBM Model 4 word-
based translation system (M4), which uses a greedy de-
coder [Germann et al., 2001]. Its performance is worse
than both AP and Joint. These results are consistent
over training corpus sizes from 10,000 sentence pairs to
320,000 sentence pairs. All systems improve with more
data.

Table 1 lists the number of distinct phrase translation
pairs learned by each method and each corpus. The hum-
ber grows almost linearly with the training corpus size,
due to the large number of singletons. The syntactic re-
striction eliminates over 80% of all phrase pairs.

Note that the millions of phrase pairs learned fit easily
into the working memory of modern computers. Even the
largest models take up only a few hundred megabyte of
RAM.

4.2 Weighting Syntactic Phrases

The restriction on syntactic phrases is harmful, because
too many phrases are eliminated. But still, we might sus-
pect, that these lead to more reliable phrase pairs.

’The Europarl corpus is available a
http://ww.isi.edu/ ~koehn/ europarl/
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Figure 1: Comparison of the core methods: all phrase
pairs consistent with a word alignment (AP), phrase pairs
from the joint model (Joint), IBM Model 4 (M4), and
only syntactic phrases (Syn)

One way to check this is to use all phrase pairs and give
more weight to syntactic phrase translations. This can be
done either during the data collection — say, by counting
syntactic phrase pairs twice — or during translation — each
time the decoder uses a syntactic phrase pair, it credits a
bonus factor to the hypothesis score.

We found that neither of these methods result in signif-
icant improvement of translation performance. Even pe-
nalizing the use of syntactic phrase pairs does not harm
performance significantly. These results suggest that re-
quiring phrases to be syntactically motivated does not
lead to better phrase pairs, but only to fewer phrase pairs,
with the loss of a good amount of valuable knowledge.

One illustration for this is the common German “es
gibt”, which literally translates as “it gives”, but really
means “there is”. “Es gibt” and “there is” are not syn-
tactic constituents. Note that also constructions such as
“with regard to” and “note that” have fairly complex syn-
tactic representations, but often simple one word trans-
lations. Allowing to learn phrase translations over such
sentence fragments is important for achieving high per-
formance.

4.3 Maximum Phrase Length

How long do phrases have to be to achieve high perfor-
mance? Figure 2 displays results from experiments with
different maximum phrase lengths. All phrases consis-
tent with the word alignment (AP) are used. Surprisingly,
limiting the length to a maximum of only three words
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Figure 2: Different limits for maximum phrase length
show that length 3 is enough

Max. Training corpus size

Length 10k | 20k | 40k | 80k | 160k | 320k
2 37k 70k | 135k 250k 474k 882k
3 63k | 128k | 261k 509k | 1028k | 1996k
4 84k | 176k | 370k 736k | 1536k | 3152k
5 101k | 215k | 459k 925k | 1968k | 4119k
7 130k | 278k | 605k | 1217k | 2657k | 5663k

Table 2: Size of the phrase translation table with varying
maximum phrase length limits

per phrase already achieves top performance. Learning
longer phrases does not yield much improvement, and
occasionally leads to worse results. Reducing the limit
to only two, however, is clearly detrimental.

Allowing for longer phrases increases the phrase trans-
lation table size (see Table 2). The increase is almost lin-
ear with the maximum length limit. Still, none of these
model sizes cause memory problems.

4.4 Lexical Weighting

One way to validate the quality of a phrase translation
pair is to check, how well its words translate to each other.
For this, we need a lexical translation probability distribu-
tion w(fle). We estimated it by relative frequency from
the same word alignments as the phrase model.

count(f, e)
w(fle) = > count(f’,e)

A special English NULL token is added to each En-
glish sentence and aligned to each unaligned foreign
word.

Given a phrase pair f,e and a word alignment a be-
tween the foreign word positions ¢ = 1,...,n and the
English word positions j = 0,1, ..., m, we compute the
lexical weight pw by

HI{JUJ ) € a}| 2

v(i,j)€a

w(file;)

(flé,a) =

fl1f2f3
NULL -- -- ##

pw(f1f2f3|€1€2€3, a)
w(file1)

X %(w(f2|82) +w(f2les))
xw( f3|NULL)

Figure 3: Lexical weight p,, of a phrase pair (f, &) given
an alignment a and a lexical translation probability distri-
bution w(+)

See Figure 3 for an example.
_If there are multiple alignments a for a phrase pair
(f,e), we use the one with the highest lexical weight:

pu(flE) = maxap. (fl€, a)

We use the lexical weight p,, during translation as a
additional factor. This means that the model p(f|e) is
extended to

p(filel) =

1
I1 #(file:)d(a: — bi—1)pu (files, a)*
i=1

The parameter A\ defines the strength of the lexical
weight p,,. Good values for this parameter are around
0.25.

Figure 4 shows the impact of lexical weighting on ma-
chine translation performance. In our experiments, we
achieved improvements of up to 0.01 on the BLEU score
scale. Again, all phrases consistent with the word align-
ment are used (Section 3.1).

Note that phrase translation with a lexical weight is a
special case of the alignment template model [Och et al.,
1999] with one word class for each word. Our simplifica-
tion has the advantage that the lexical weights can be fac-
tored into the phrase translation table beforehand, speed-
ing up decoding. In contrast to the beam search decoder
for the alignment template model, our decoder is able to
search all possible phrase segmentations of the input sen-
tence, instead of choosing one segmentation before de-
coding.

45 Phrase Extraction Heuristic

Recall from Section 3.1 that we learn phrase pairs from
word alignments generated by Giza++. The IBM Models
that this toolkit implements only allow at most one En-
glish word to be aligned with a foreign word. We remedy
this problem with a heuristic approach.
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Figure 4: Lexical weighting (lex) improves performance

First, we align a parallel corpus bidirectionally — for-
eign to English and English to foreign. This gives us two
word alignments that we try to reconcile. If we intersect
the two alignments, we get a high-precision alignment of
high-confidence alignment points. If we take the union of
the two alignments, we get a high-recall alignment with
additional alignment points.

We explore the space between intersection and union
with expansion heuristics that start with the intersection
and add additional alignment points. The decision which
points to add may depend on a number of criteria:

e In which alignment does the potential alignment
point exist? Foreign-English or English-foreign?

e Does the potential point neighbor already estab-
lished points?

e Does “neighboring” mean directly adjacent (block-
distance), or also diagonally adjacent?

e Is the English or the foreign word that the poten-
tial point connects unaligned so far? Are both un-
aligned?

e What is the lexical probability for the potential
point?

The base heuristic [Och et al., 1999] proceeds as fol-
lows: We start with intersection of the two word align-
ments. We only add new alignment points that exist in
the union of two word alignments. We also always re-
quire that a new alignment point connects at least one
previously unaligned word.

First, we expand to only directly adjacent alignment
points. We check for potential points starting from the top
right corner of the alignment matrix, checking for align-
ment points for the first English word, then continue with
alignment points for the second English word, and so on.
This is done iteratively until no alignment point can be
added anymore. In a final step, we add non-adjacent
alignment points, with otherwise the same requirements.

¢

'2010k 20k 40k 80k 160k 320k

Training Corpus Size
Figure 5: Different heuristics to symmetrize word align-
ments from bidirectional Giza++ alignments

Figure 5 shows the performance of this heuristic (base)
compared against the two mono-directional alignments
(e2f, f2e) and their union (union). The figure also con-
tains two modifications of the base heuristic: In the first
(diag) we also permit diagonal neighborhood in the itera-
tive expansion stage. In a variation of this (diag-and), we
require in the final step that both words are unaligned.

The ranking of these different methods varies for dif-
ferent training corpus sizes. For instance, the alignment
f2e starts out second to worst for the 10,000 sentence pair
corpus, but ultimately is competitive with the best method
at 320,000 sentence pairs. The base heuristic is initially
the best, but then drops off.

The discrepancy between the best and the worst
method is quite large, about 0.02 BLEU. For almost
all training corpus sizes, the heuristic diag-and performs
best, albeit not always significantly.

4.6 Simpler Underlying Word-Based M odels

The initial word alignment for collecting phrase pairs
is generated by symmetrizing IBM Model 4 alignments.
Model 4 is computationally expensive, and only approxi-
mate solutions exist to estimate its parameters. The IBM
Models 1-3 are faster and easier to implement. For IBM
Model 1 and 2 word alignments can be computed effi-
ciently without relying on approximations. For more in-
formation on these models, please refer to Brown et al.
[1993]. Again, we use the heuristics from the Section 4.5
to reconcile the mono-directional alignments obtained
through training parameters using models of increasing
complexity.

How much is performance affected, if we base word
alignments on these simpler methods? As Figure 6 indi-
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Figure 6: Using simpler IBM models for word alignment
does not reduce performance much

Language Pair Model4 | Phrase Lex

English-German | 0.2040 | 0.2361 | 0.2449
French-English 0.2787 | 0.3294 | 0.3389
English-French 0.2555 | 0.3145 | 0.3247
Finnish-English 0.2178 | 0.2742 | 0.2806
Swedish-English | 0.3137 | 0.3459 | 0.3554
Chinese-English | 0.1190 | 0.1395 | 0.1418

Table 3: Confirmation of our findings for additional lan-
guage pairs (measured with BLEU)

cates, not much. While Model 1 clearly results in worse
performance, the difference is less striking for Model 2
and 3. Using different expansion heuristics during sym-
metrizing the word alignments has a bigger effect.

We can conclude from this, that high quality phrase
alignments can be learned with fairly simple means. The
simpler and faster Model 2 provides similar performance
to the complex Model 4.

4.7 Other LanguagePairs

We validated our findings for additional language pairs.
Table 3 displays some of the results. For all language
pairs the phrase model (based on word alignments, Sec-
tion 3.1) outperforms IBM Model 4. Lexicalization (Lex)
always helps as well.

5 Conclusion

We created a framework (translation model and decoder)
that enables us to evaluate and compare various phrase
translation methods. Our results show that phrase transla-
tion gives better performance than traditional word-based
methods. We obtain the best results even with small

phrases of up to three words. Lexical weighting of phrase
translation helps.

Straight-forward syntactic models that map con-
stituents into constituents fail to account for important
phrase alignments. As a consequence, straight-forward
syntax-based mappings do not lead to better translations
than unmotivated phrase mappings. This is a challenge
for syntactic translation models.

It matters how phrases are extracted. The results sug-
gest that choosing the right alignment heuristic is more
important than which model is used to create the initial
word alignments.
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