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Abstract

We present an extension of the classic A* search
procedure to tabular PCFG parsing. The use of A*
search can dramatically reduce the time required to
find a best parse by conservatively estimating the
probabilities of parse completions. We discuss vari-
ous estimates and give efficient algorithms for com-
puting them. On average-length Penn treebank sen-
tences, our most detailed estimate reduces the to-
tal number of edges processed to less than 3% of
that required by exhaustive parsing, and a simpler
estimate, which requires less than a minute of pre-
computation, reduces the work to less than 5%. Un-
like best-first and finite-beam methods for achieving
this kind of speed-up, an A* method is guaranteed to
find the most likely parse, not just an approximation.
Our parser, which is simpler to implement than an
upward-propagating best-first parser, is correct for a
wide range of parser control strategies and maintains
worst-case cubic time.

I ntroduction

Christopher D. Manning
Computer Science Department
Stanford University
Stanford, CA 94305-9040

manning@cs.stanford.edu

too, gives no guarantee that the first parse returned is the
actual Viterbi parse (nor does it maintain a worst-case cu-
bic time bound). We discuss best-first parsing further in
section 3.3.

Both of these speed-up techniques are based on greedy
models of parser actions. The beam search greedily
prunes partial parses at each beam stage, and a best-first
FOM greedily orders parse item exploration. If we wish
to maintain optimality in a search procedure, the obvious
thing to try is A* methods (see for example Russell and
Norvig, 1995). We apply A* search to a tabular item-
based parser, ordering the parse items based on a com-
bination of their known internal cost of construction and
a conservative estimate of their cost of completion (see
figure 1). A* search has been proposed and used for
speech applications (Goel and Byrne, 1999, Corazza et
al., 1994); however, it has been little used, certainly & th
recent statistical parsing literature, apparently beeadis
difficulty in conceptualizing and computing effective ad-
missible estimates. The contribution of this paper is to
demonstrate effective ways of doing this, by precomput-

PCFG parsing algorithms with worst-case cubic-timéng grammar statistics which can be used as effective A*
bounds are well-known. However, when dealing withestimates.

wide-coverage grammars and long sentences, even cu-The A* formulation provides three benefits. First, it
bic algorithms can be far too expensive in practice. Twsubstantially reduces the work required to parse a sen-
primary types of methods for accelerating parse seletence, without sacrificing either the optimality of the an-
tion have been proposed. Roark (2001) and Ratnaparkdwer or the worst-case cubic time bounds on the parser.
(1999) use a beam-search strategy, in which only the beSecond, the resulting parser is structurally simpler than a
n parses are tracked at any moment. Parsing time is liffOM-driven best-first parser. Finally, it allows us to eas-
ear and can be made arbitrarily fast by reducingrhis  ily prove the correctness of our algorithm, over a broad
is a greedy strategy, and the actual Viterbi (highest probaange of control strategies and grammar encodings.
bility) parse can be pruned from the beam because, while In this paper, we describe two methods of construct-
it is globally optimal, it may not be locally optimal at ev- ing A* bounds for PCFGs. One involves context sum-
ery parse stage. Chitrao and Grishman (1990), Carabalaarization, which uses estimates of the sort proposed in
and Charniak (1998), Charniak et al. (1998), and Collin€orazza et al. (1994), but considering richer summaries.
(1999) describe best-first parsing, which is intended fofhe other involves grammar summarization, which, to
a tabular item-based framework. In best-first parsingur knowledge, is entirely novel. We present the esti-
one builds afigure-of-merit(FOM) over parser items, mates that we use, along with algorithms to efficiently
and uses the FOM to decide the order in which agendzlculate them, and illustrate their effectiveness in a tab
items should be processed. This approach also dramatar PCFG parsing algorithm, applied to Penn Treebank
ically reduces the work done during parsing, though itsentences.



S[0.n] G will be constructed at some point. A cubic time bound
. ’ follows straightforwardly by simply testing for edge exis-
N . tence, ensuring that we never process an edge twice. With
Cwp10.21> G PCFG parsing, there is a subtlety involved. In addition to
nowing whether edges can be constructed, we also wan
k g whether edg b tructed I t
' to know the scores of edges’ best parses. Therefore, we
Coroald  CQuvinald  (ezi2al record estimates of best-parse scores, updating them as

- better parses are found. If, during parsing, we find a new,
@ better way to construct some edgé¢hat has previously
(b) been entered into the chart, we may also have found a bet-

_ _ ter way to construct any edges which have already been
Figure 1. A* edge costs. (@) The cost of an edfjés a com-  jlt ysinge. Best-first parsers deal with this by allowing

bination of the cost to build the edge (the Viterbi insidersco : : )
() and the cost to incorporate it into a root parse (the Viterbf! upward propagation, which updates such edges’ scores

outside score). (b) In the corresponding hypergraph, we havdCaraballo and Charniak, 1998). If run to exhaustion, all
exact values for the inside score from the explored hypaedgedges’ Viterbi scores will be correct, but the propagation

(solid lines), and use upper bounds on the outside scorefwhidestroys the cubic time bound of the parser, since in effect
estimate the dashed hyperedges. each edge can be processed many times.
. In order to ensure optimality, it is sufficient that, for
* ) l
2 An A* Algorithm any edgee, all edgesf which are contained in a best

An agenda-based PCFG parser operates on parse itep@ése ofe get removed from the agenda beferéself
callededges such asvp:[0,2], which denote a grammar does. If we have an edge priority which ensures this or-
symbol over a span. The parser maintains two data struéering, we can avoid upward propagation entirely (and
tures: a chart or table, which records edges for whicAmit the data structures involved in it) and still be sure
(best) parses have already been found, and an agendé'"tﬁt each edge leaves the agenda scored correctly. If the
newly-formed edges waiting to be processed. The co@ammar happens to be in CNF, one way to do this is to
loop involves removing an edge from the agenda an@ive shorter spans higher priority than longer ones; this
combining that edge with edges already in the chart tBriority essentially gives the CKY algorithm.
create new edges. For exampie:[0,2] might be re- Formally, assume we have a PCKfzand a sentence
moved from the agenda, and, if there were aBie NP s = ow,, (We place indices as fenceposts between words).
vP andvP:[2,8] was already entered into the chart, théAn inside parseof an edge: = X:[4, j] is a derivation in
edges:[0,8] would be formed, and added to the agenda if’ from X to ;w;. Let 3¢ (e, s) denote the log-probability
it were not in the chart already. of a best inside parse ef(its Viterbi inside score® We

The way an A* parser differs from a classic chartwill drop theG, s, and evere when context permits. Our
parser is that, like a best-first parser, agenda edges &@'ser, like a best-first parser, maintains estimatess)
processed according to a priority. In best-first parsingf 5(e, s) which begin at-oo, only increase over time,
this priority is called afigure-of-merit(FOM), and is and always represent the score of the best parses of their
based on various approximations fo(c|s), the frac- edges: discovered so far. Optimality means that for any
tion of parses of a sentensewhich include an edge € b(e, s) will equal 3¢ (e, s) whene is removed from the
(though see Goodman (1997) for an alternative notion gfgenda.
FOM). Edges which seem promising are explored first; Ifone used(e, s) to prioritize edges, we show in Klein
others can wait on the agenda indefinitely. Note tha@nd Manning (2001a), that the parser is optimal over ar-
even if we did knowP(e|s) exactly, we still would not bitrary PCFGs, and a wide range of control strategies.
know whethere occurs in anybestparse ofs. Nonethe- This is proved using an extension of Dijkstra’s algorithm
less, good FOMs empirically lead quickly to good parsed0 a certain kind of hypergraph associated with parsing,
Best-first parsing aims to find a (hopefully good) parséhown in figure 1(b): parse items are nodes in the hyper-
quickly, but gives no guarantee that the first parse disco@raph, hyperarcs take sets of parse items to their result
ered is the Viterbi parse, nor does it allow one to recogtem, and hyperpaths map to parses. Reachability from
nize the Viterbi parse when it is found. start corresponds to parseability, and shortest paths to

In A* parsing, we wish to construct priorities which Viterbi parses.
will speed up parsing, yet still guaranteptimality (that

: e ; 10Our use ofinside scoreandoutside scorevokes the same
the first parse returned is indeed a best parse). With ?cture as talk about inside and outside probabilities,nmiée

categorical CFG chart parser run to exhaustion, it dogga i this paper inside and outside scores always refea to (

not matter in what order one removes edges from thgsund on) the maximum (Viterbi) probability parse inside or
agenda; all edges involved in full parses of the sentenaitside some edge, rather than to the sum for all such parses.



Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6,NP,VBZ) (1,6,NP,VBZ,")") (entire context)
s s
vp VP S
Best Tree s vBZ NP PP VBZ NP S | NP VP
I v N NP NP CC NP VP PRPVEZ NP
IN NP | DT 33NN VBD DT NNP NNP NNP NNP ‘ DT 3 NN ‘ VEZ NP DT NN
PP ?? %2 2 2| vezNB ? ? 2 % 2 2 VBZ[NFl, » ? » ? 7 | VBZ NP, PRPVBZ DT NN .
Score —11.3 —13.9 —15.1 —18.1
(@) (b) (©) (d)

Figure 2: Best outside parses given richer summaries of edigiext. (a -sx) Knowing only the edge stateif) and the left and
right outside spans, (bsxL) also knowing the left tag, (c sXLR) left and right tags, and (d +RUE) the entire outside context.

The hypergraph shown in figure 1(b) shows a parse dfy some grammar symbol (stat§ X . Our presentation
the goals:[0,3] which includesvp:[0,2].2 This parse can assumes thaf’ is a binarized grammar, and so in gen-
be split into an inside portion (solid lines) and an outsideral X may be either aompletestate likeNp that was
portion (dashed lines), as indicated in figure 1(a). Th& an originaln-ary grammar, or an intermediate state,
outside portion is amutside parseformally, an outside like an Earley dotted rule, that is the result of implicit or
parse of an edg& :[i, j] in sentence = (w,, is a deriva- explicit grammar binarization. For the edggits yield
tion from G's root symbol towg; X w;,. We useng(e,s) ins = ow, is the sequence of terminals that it spans
to denote the score of a best outside parse of (;wj;). Its contextis its stateX along with the rest of

Usingb(e, s) as the edge priority corresponds to a genthe terminals of sentencguw(; X;w,). Scores are log-
eralization of uniform cost search on graphs (Russell angrobabilities; lower cost is higher log-probability. So,*
Norvig, 1995). In the analogous generalization of A*or ‘better’ will mean higher log-probability.
search, we add tb(e, s) an estimate:(e, s) of the com-
petion costvi (e, s) (the cost of the dashed outside parse
to focus exploration on regions of the graph which appedpne way to construct an admissible estimate is to sum-
to have goodotal cost. marize the context in some way, and to find the score of

A* search is correct as long as the estimateatis- the best parse ainy context that fits that summary. Let
fies two conditions. First, it must dmissiblemeaning c(e, s) be the context of in s. Leto be a summary func-
that it must not underestimate the actual log-probabilitfion of contexts. We can then use tbentext summary
required to complete the parse. Second, it must be monestimate
tonic, meaning that as one builds up a tree, the combined

. . . max
log-probability 3 + a never increases. The proof of this (¢/,s"):o(c(e’,s"))=
is very similar to the proof of the uniform-cost case in o(c(e,s))
Klein and Manning (2001a), and so we omit it for spacerhat is, we return the exact Viterbi outside scoresiome
reasons (it can be found in Klein and Manning, 2002). ¢ontext, generally not the actual context, whose summary

Concretely, we can use+ a as the edge priority, pro- matches the actual one’s summary. If the number of sum-
vided a is an admissible, monotonic estimate«af We  maries is reasonable, we can precompute and store the
will still have a correct algorithm, and even rough heurisgstimate for each summary once and for all, then retrieve
tics can dramatically cut down the number of edges prahem in constant time per edge at parse time.

Cessed (and therefore tOtal WOI‘k). We next diSCUSS SeVerallf we give no information in the summary, the estimate
estimates, describe how to compute them efficiently, angill be constantly 0. This is the trivial estimateuLL,
show the edge savings when parsing Penn treebank Wgdd corresponds to simply using inside estimataone

?.1 Context Summary Estimates

as(e,s) = ag(e,s") > ag(e, s)

sentences. as priorities. On the other extreme, if each context had
. ) a unique summary, ther(e, s) would beag (e, ) itself.
3 A* Estimatesfor Parsing This is the ideal estimate, which we calkUE. In prac-
tice, of course, precomputintRUE would not be feasi-

When parsing with a PCF@&, each edge = X:[i, j] ble?
spans some interval, j| of the sentence and is labeled &
- ®Note that our ideal estimate is nét(e|s) like the ideal

2The example here shows a bottom-up construction of EOM, rather itisP(T} .)/P(T.) (whereT, . is a best parse of
parse tree. However, the present algorithm and estimatds wahe goalg among those which contaity andT. is a best parse
just as well for top-down chart parsing, given suitableacti of e over the yield ofe). That is, we are not estimatingarser
items as nodes; see (Klein and Manning, 2001a). choiceprobabilities, buparse tree probabilities



We used various intermediate summaries, some illus- Grammar State
trated in figure 2.s; specifies only the total number of | Projection| NP | CC | NP — - CC NP CC NP
words outsides, while s specifies separately the number | NULL X [ X | X
to the left and rightsx also specifieg’s label. sxL and SX NP | X NP — - X NP X NP
SXR add the tags adjacent toon the left and right re- XBAR NP | CC | NP
spectively. s;XLR includes both the left and right tags, | F X |CC|X—-CCXCCX
but merges the number of words to the left and right. TRUE NP | CC| NP— -CCNPCCNP

As the summaries become rlcher, the_estlmates becorp@ure 3. Examples of grammar state images under several
sharper. As an example, considermpin the context grammar projections.

“VBZ , PRP VBZ DT NN.” shown in figure 2 The

summarysx reveals only that there is avp with 1 word P(r') = max,cr P(r). Note that the resulting grammar
to the left and 6 the right, and gives an estimate-d1.3. G’ will not generally be a proper PCFG; it may assign
This score is backed by the concrete parse shown in fighore than probability 1 to the set of trees it generates. In
ure 2(a). This is a best parse of a context compatible witfact, it will usually assign infinite mass. However, all that
what little we specified, but very optimistic. It assumesmatters for our purposes is that every treeiprojects
very common tags in very common patterrsxL adds underr to a tree inG’ with the same or higher probabil-
that the tag to the left isBz, and the hypothesis that the jty, which is true because every rule @ does. There-
NP is part of a sentence-initi&#p must be abandoned; fore, we know thatvg (e, s) < agr(e, s). If G’ is much
the best score drops te13.9, backed by the parse in fig- more compact that, for each new sentence we can
ure 2(b). Specifying the right tag to be “,” drops the scoréirst rapidly calculate:, = o for all edges, then parse
further to —15.1, given by figure 2(c). The actual bestwjith G.
parse is figure 2(d), with a score ofi8.1. The identity projection returnsG and therefore, is
These estimates are similar to quantities calculated iﬂQU E. On the other extreme, a constant projection gives
Corazza et al. (1994); in that work, they are interesteglyL (if any rewrite has probability 1). In between, we
in the related problem of finding best completions fofried three other grammar projection estimates (examples
strings which contain gaps. For tex estimate, for in figure 3). First, consider mapping all terminal states to
example, the string would be the edge’s label and twg single terminal token, but not altering the grammar in
(fixed-length) gaps. They introduce quantities esseftiallany other way. If we do this projection, then we get the
the same as owsx estimate to fill gaps, and their one- sx estimate from the last section (collapsing the termi-
word update algorithms are similarly related to those WRas together effectively hides which terminals are in the
use here. The primary difference here is in the applicatiofontext, but not their number). However, the resulting
of these quantities, not their calculation. grammar is nearly as large 5 and therefore it is much
more efficient to use the precomputed context summary
formulation. Second, for the projectiotBAR, we tried
The context summary estimates described above use logallapsing all the incomplete states of each complete state
information, combined with span sizes. This gives theo a single state (s8P— - cc NPandNP— - PPwould
effect that, for larger contexts, the best parses which bagjoth becomeir’). This turned out to be ineffective, since
the estimates will have less and less to do with the actuglost productions then had merged probability 1.
contexts (and hence will become increasingly optimistic). For our current grammar, the best estimate of this type
Context summary estimates do not pin down the exagfas one we called, for filter, which collapsed all com-
context, but do use the original gramntarForgrammar  plete (passive) symbols together, but did not collapse any
projection estimatesve use the exact context, but projectierminal symbols. So, for example, a state i@ - cc
the grammar to som@’ which is so much simpler that it np cc NPwould becomes— - cc X cc x (see section 3.3
is feasible to first EXhaUStiV8|y parse with and then use for a description of our grammar encodings)_ This esti-
the result to guide the search in the full gramrGar mate has an interesting behavior which is complementary
Formally, we have a projection which maps gram- to the context summary estimates. It does not indicate
mar states of+ (that is, the dotted rules of an Earley-stylewell when an edge would be moderately expensive to in-
parser) to some reduced set. This projection of states ifegrate into a sentence, but it is able to completely elimi-
duces a projection of rules. If a sBt= {r} of rulesin nate certain edges which are impossible to integrate into
G collide as the rule’ in G, we giver’ the probability 3 full parse (for example in this case maybe the two

We left and right outside span SizeSiXLR was tags required to complete ther are not present in the

done solely to reduce memory usage. future context).

SOur examples, and our experiments, use delexicalized sen-A Close approximation to the estimate can also be
tences from the Penn treebank. computed online especially quickly during parsing. Since

3.2 Grammar Projection Estimates



Original Rules Outside-Trie Rules Inside-Trie Rules

CONTEXT SUMMARY NP—DTJINN 0.3 NP— Xyp—..nn NN 0.4 | NP— XpryyNN - 0.3
NP—DTNNNN 0.1| Xnp—.nn — DT JJ 0.75] NP— Xpraw NN 0.1
Xnp—.nn— DTNN  0.25| Xprgy— DT I 1.0
Xpraw — DTNN 1.0

Figure 5: Two trie encodings of rules.
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Figure 4: .(a) The A* estimqtes form a lattice. Lines ilnSji(.:a.te & @ Pas & +& ég. @& Q
subsumptionp! indicates estimates which are the explicit join < & &F
of lower estimates. (b) Context summary vs. grammar projec-
tion estimates: some estimates can be cast either way. Figure 6. Fraction of edges saved by using various estimate

methods, for two rule encodingso-TRIE is a deterministic

we are parsing wih he Pen reebark covering grarifaTetng e <headng (eemalers 1952 wiboes
mar, almost any (phrasal) non-terminal can be built 0Vegianching trie with weights on rule entry as in Charniak et al
almost any span. As discussed in Klein and Manningi9gg).

(2001b), the only source of constraint on what edges can

be built where is the tags in the rules. Therefore, an edggates, such as by annotating nodes with their parent and
with a label likeNP— - cC NP cC NPcan essentially be even grandparent categories (Johnson, 1998). This anno-
built whenever (and only whenever) twax tags are in tation multiplies out the state space, giving a much larger
the edge’s right context, one of them being immediatelgrammar, and projecting back to the unannotated state set
to the right. To the extent that this is truecan be ap- can be used as an outside estimate. Second, and perhaps
proximated by simply scanning for the tag configuratiormore importantly, this technique can be applied to lexical
required by a state’s local rule, and returning O if it isparsing, where the state projections are onto the delex-
present and-oo otherwise. This is the method we usedicalized PCFG symbols and/or onto the word-word de-
to implementr; exactly parsing with the projected gram-pendency structures. This is particularly effective when
mar was much slower and did not result in substantidhe tree model takes a certain factored form; see Klein
improvement. and Manning (2003) for details.

It is worth explicitly discussing how the estimate dif- 33 Parsing Performance
fers from top-down grammar-driven filtering standardly™ 9
used by top-down chart parsers; in the treebank gramméollowing (Charniak et al., 1998), we parsed unseen sen-
there is virtually no top-down filtering to be exploited tences of length 18—-26 from the Penn Treebank, using the
(again, see Klein and Manning (2001b)). In a left-to-righgrammar induced from the remainder of the treelfank.
parse, top-down filtering is a prefix licensing conditien; We tried all estimates described above.
is more of a sophisticated lookahead condition on suf- Rules were encoded as both inside (I) and outside (O)
fixes. tries, shown in figure 5. Such an encoding binarizes the

The relationships between all of these estimates aggammar, and compacts it. I-tries are as in Charniak et
shown in figure 4. The estimates form a join lattice (fig&l- (1998), wheraip— DT JJ NNbecomesip — XDT 33
ure 4(a)): adding context information to a merged conN @ndXxpr 35 — DT JJ and correspond to dropping the
text estimate can only sharpen the individual outside e®0rtion of an Earley dotted rule after the dotO-tries,
timates. In this sense, for exampe< sx. The lattice @S in Leermakers (1992), tuNP— DT JJ NNinto NP —
top is TRUE and the bottom isvULL. In addition, the Xne—.nn NN andXye_, .nv — DT JJ, and correspond to
minir_nu_m Q) O.f a set of admissible _estimates ?S sl anmhe data set used by Charniak and coauthors, so
admissible estimate. We can use this to combine our bgs (5 facilitate comparison with previous work. We do howeve
sic estimates into composite estimatesMLR = LI (SXL,  acknowledge that many of our current local estimates am les
sxR) will be valid, and a better estimate than eitlsen.  effective on longer spans, and so would work less well on 40—
or sxr individually. Similarly, B is U (SXMLR, S;XLR). 50 word sentences. This is an area of future research.

Th th ful ecti hich ’In Charniak et al. (1998), the binarization is in the reverse
ere are otner usetul grammar projections, whic ar(‘]-ﬁrec’[ion; we binarize into a left chain because it is thedéad

beyond the scope of this paper. First, much recent statistjirection implicit in chart parsers’ dotted rules, and tirection
cal parsing work has gotten value from splitting grammamakes little difference in edge counts.



100% Estimate| Savings| w/ Filter | Storage| Precomp

= 902/0 ] ——BF NULL 11.2 58.3 OK none
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0 2000 4000 6000 8000 10000 Figure 8: The trade-off between online savings and precempu

Edges Processed tation time.

Figure 7: Number of sentences parsed as more edges are fays optimal, while the FOM parses need not be (and

panded. Sentences are Penn treebank sentences of lengéh 18— :
parsed with the treebank grammar. A typical number of edgé deed sometimes are n@tAIso, our parser never needs

in an exhaustive parse is 150,000. Even relatively simple A¥0 Propagate score changes upwards, and so may be_ ex-
estimates allow substantial savings. pected to do less work overall per edge, all else being

equal. This savings is substantial, even if no propaga-

dropping the portion which precedes the dot. Figure 6on is done, because no data structure needs to be cre-
shows the overall savings for several estimates of eaelted to track the edges which are supported by each given
type. The I-tries were superior for the coarser estimatesdge (for us, this represents a factor of approximately
while O-tries were superior for the finer estimates. Ir2 in memory savings). Moreover, the context summary
addition, only O-tries permit the accelerated version oéstimates require only a single table lookup per edge,
F, since they explicitly declare their right requirementswhile the accelerated version sfrequires only a rapid
Additionally, with I-tries, only the top-level intermedi- quadratic scan of the input per sentence (less than 1% of
ate rules have probability less than 1, while for O-triesparse time per sentence), followed by a table lookup per
one can back-weight probability as in (Mohri, 1997), alseedge. The complex FOMs in (Charniak et al., 1998) re-
shown in figure 5, enabling sub-parts of rare rules to bguire somewhat more online computation to assemble.
penalized even before they are compléteor all sub- Itis interesting thas xR is so much more effective than
sequent results, we discuss only the O-trie numbers.  sxL; this is primarily because of the way that the rules

Figure 8 lists the overall savings for each context sunhave been encoded. If we factor the rules in the other
mary estimate, with and withogtjoined in. We see that direction, we get the opposite effect. Also, when com-
the NULL estimate (i.e., uniform cost search) is not verypined withF, the difference in their performance drops
effective — alone it only blocks 11% of the edges. But ifrom 10.3% to 0.8%;F is a right-filter and is partially
is still better than exhaustive parsing: with it, one stopgedundant when added #xR, but is orthogonal texc.
parsing when the best parse is found, while in exhaustive ,
parsing one continues until no edges remain. Even thg4 EStimate Sharpness
simplest non-trivial estimates, blocks 40% of the edges, A disadvantage of admissibility for the context summary
and the best estimate blocks over 97% of the edges, aestimates is that, necessarily, they are overly optimistic
speed-up of over 35 times, without sacrificing optimalityas to the contents of the outside context. The larger the
or algorithmic complexity. outside context, the farther the gap between the true cost

For comparison to previous FOM work, figure 7and the estimate. Figure 9 shows average outside esti-
shows, for an edge count and an estimate, the propanates for Viterbi edges as span size increases. For small
tion of sentences for which a first parse was found usutside spans, all estimates are fairly good approxima-
ing at most that many edges. To situate our results, ti®ns of TRUE. As the span increases, the approximations
FOMSs used by (Caraballo and Charniak, 1998) requirtll behind. Beyond the smallest outside spans, all of the
10K edges to parse 96% of these sentences, \BRile- curves are approximately linear, but the actual value’s
quires only 6K edges. On the other hand, the more constope is roughly twice that of the estimates. The gap
plex, tuned FOM in (Charniak et al., 1998) is able to parsbetween our empirical methods and the true cost grows
all of these sentences using around 2K edges, wirle fairly steadily, but the differences between the empirical
requires 7K edges. Our estimates do not reduce the tethods themselves stay relatively constant. This reflects

tal edge count quite as much as the best FOMs can, btitg——— ,
In fact, the bias from the FOM commonly raises the bracket

they gre in the San.]e range. .Thls IS as _mUCh as one co I9c:uracy slightly over the Viterbi parses, but that differenev-
possibly expect, since, crucially, our first parses are altheless demonstrates that the first parses are not alvays t
- Viterbi ones. In our experiments, non-optimal pruning seme

8However, context summary estimates which include théimes bought slight per-node accuracy gains at the cost of a
state compensate for this automatically. slight drop in exact match.



outsideSX(state, Ispan, rspan)
if (Ispan+rspan == 0)

8 if state is the root then 0 elseco

E - S score =—oo

a - ——SX % could have a left sibling

X - ——SXR for sibsize in [0,Ispan-1]

Q. ——B for (x—vy state) in grammar

g — TRUE cost = insideSX(y,sibsize)+

z outsideSX(x,Ispan-sibsize,rspan)+
40 - ‘ log P(x—y statg

score = max(score,cost)
. % could have a right sibling
Outside Span for sibsize in [0,rspan-1]
for (x—state y) in grammar
cost = insideSX(y,sibsize)+
outsideSX(x,Ispan,rspan-sibsize)+
log P(x—state y
score = max(score,cost)
the nature of these estimates: they have differing local in- return score;

formation in their_summaries, but all are equally ignoranltnsidesx(state, span)
about the more distant context elements. The various lo- (span == 0)

cal environments can be more or less costly to integrate if state is a terminal then 0 elseco
into a parse, but, within a few words, the local restric- score =—oo

tions have been incorporated one way or another, and the?® choose a split point

estimates are all free to be equally optimistic about the " SPiitin [1.span-1]
for (state—x y) in grammar

2 4 6 8 10 12 14 16 18
Figure 9: The average estimate by outside span length fer var

ious methods. For large outside spans, the estimates Hiffer
relatively constant amounts.

remainder of the context. The cost to “package up” the cost = insideSX(x,split)+
local restrictions creates their constant differences, an insideSX(y,span-split)+
the shared ignorance about the wider context causes their log P(state—xy)

same-slope linear drop-off. This suggests that it would  SCore = max(score,cost)

be interesting to explore other, more global, notions of return score;

context. We do not claim that our context estimates areigure 10: Pseudocode for tiex estimate in the case where
the best possible — one could hope to find features of e grammar is in CNF. Other estimates and more general gram-
context, such as number of verbs to the right or numbépars are similar.

of unusual tags in th_e context, w_hlch would partmo_n thqables populate.

contexts more effectively than adjacent tags, especially a

i o With the optimal forward estimateérUE, the actual
the outside context grows in size.

distance to the closest goal, we would never expand edges
other than those in best parses, but computRgE is as
hard as parsing the sentence in the first place. On the
The amount of work required to (pre)calculate contexbther hand, no precomputation is neededNorL. In
summary estimates depends on how easy it is 10 efiietween is a trade off of space/time requirements for pre-
ciently take the max over all parses compatible with eacBymputation and the online savings during the parsing of
context summary. The benefit provided by an estimatgew sentences. Figure 8 shows the average savings ver-
will depend on how well the restrictions in that summaryss the precomputation tirt®.Where on this curve one
nail down the important features of the full context. chooses to be depends on many factors; 9 hours may be
Figure 10 shows recursive pseudocode forshees-  too much to spend computirgy but an hour forsxMLR
timate; the others are similar. To pl’ecalculate our A*gives near|y the same performance, and the one minute
estimates efficiently, we used a memoization approag@quired forsx is comparable to the I/O time to read the
rather than a dynamic programming approach. This rgeenn treebank in our system.
sulted in code comparable in efficiency, but which was Tpe grammar projection estimatehad to be recom-
simpler to reason about, and, more importantly, allowegted for each sentence parsed, but took less than 1% of
us to exploit sparseness when present. For example Wil total parse time. Although this method alone was less
left-factored trie encodings, 76% of (state, right tag) €0megffective thansx (only 58.3% edge savings), it was ex-
binations are simply impossible. Tables which mappegemely effective in combination with the context sum-
arguments to returned results were used to memoize e%ry methods. In practice, the combinatiorFaindsx

procedure. In our experiments, we forced these tables {9easy to implement, fast to initialize, and very effective
be filled in a precomputation step, but depending on the

situation it might be advantageous to allow them to fill 19| times are for a Java implementation running on a 2GB
as needed, with early parses proceeding slowly while tH#®0MHz Intel machine.

3.5 Estimate Computation
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